Pub Date : 2023-03-09DOI: 10.15388/namc.2023.28.31721
Murugesan Johnson, M. Mohan Raja, V. Vijayakumar, A. Shukla, K. Nisar, H. Jahanshahi
This research investigates the existence of nonlocal impulsive fractional integrodifferential equations of order 1 < r < 2 with infinite delay. To begin with, we discuss the existence of a mild solution for the fractional derivatives by using the sectorial operators, the nonlinear alternative of the Leray–Schauder fixed point theorem, mixed Volterra–Fredholm integrodifferential types, and impulsive systems. Furthermore, we develop the optimal control results for the given system. The application of our findings is demonstrated with the help of an example.
研究了一类具有无限时滞的1 < r < 2阶非局部脉冲分数阶积分微分方程的存在性。首先,我们利用扇形算子、Leray-Schauder不动点定理的非线性替代、混合Volterra-Fredholm积分微分型和脉冲系统讨论了分数阶导数的温和解的存在性。进一步给出了给定系统的最优控制结果。通过一个例子说明了我们的研究结果的应用。
{"title":"Optimal control results for impulsive fractional delay integrodifferential equations of order 1 < r < 2 via sectorial operator","authors":"Murugesan Johnson, M. Mohan Raja, V. Vijayakumar, A. Shukla, K. Nisar, H. Jahanshahi","doi":"10.15388/namc.2023.28.31721","DOIUrl":"https://doi.org/10.15388/namc.2023.28.31721","url":null,"abstract":"This research investigates the existence of nonlocal impulsive fractional integrodifferential equations of order 1 < r < 2 with infinite delay. To begin with, we discuss the existence of a mild solution for the fractional derivatives by using the sectorial operators, the nonlinear alternative of the Leray–Schauder fixed point theorem, mixed Volterra–Fredholm integrodifferential types, and impulsive systems. Furthermore, we develop the optimal control results for the given system. The application of our findings is demonstrated with the help of an example.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46539652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.15388/namc.2023.28.31662
Yuanchao Si, De-yuan Meng, Jinrong Wang
Distributed cooperative control of multi-agent systems is broadly applied in artificial intelligence in which time delay is of great concern because of its ubiquitous. This paper considers the controllability of leader-follower multi-agent systems with input and communication delays. For the first-order systems with input delay, neighbor-based protocol is adopted to realize the interactions among agents, yielding a system with delay existed in state and control input. New notions of interval controllability and interval structural controllability for the system are defined. Algebraic criterion is established for interval controllability, and graph-theoretic interpretation is put forward for the interval structural controllability. Results imply that input delay of the multi-agent systems has significant influence on the interval controllability and interval structural controllability. Corresponding conclusions are generalized to the first-order systems and the high-order ones with communication delays, respectively. Example is attached to illustrate the work.
{"title":"Controllability of multi-agent systems with input and communication delays","authors":"Yuanchao Si, De-yuan Meng, Jinrong Wang","doi":"10.15388/namc.2023.28.31662","DOIUrl":"https://doi.org/10.15388/namc.2023.28.31662","url":null,"abstract":"Distributed cooperative control of multi-agent systems is broadly applied in artificial intelligence in which time delay is of great concern because of its ubiquitous. This paper considers the controllability of leader-follower multi-agent systems with input and communication delays. For the first-order systems with input delay, neighbor-based protocol is adopted to realize the interactions among agents, yielding a system with delay existed in state and control input. New notions of interval controllability and interval structural controllability for the system are defined. Algebraic criterion is established for interval controllability, and graph-theoretic interpretation is put forward for the interval structural controllability. Results imply that input delay of the multi-agent systems has significant influence on the interval controllability and interval structural controllability. Corresponding conclusions are generalized to the first-order systems and the high-order ones with communication delays, respectively. Example is attached to illustrate the work.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41298964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-23DOI: 10.15388/namc.2023.28.31609
Sameh E. Ahmed, A. Mahdy, M. A. Mansour
This paper aims to examine impacts of Cattaneo–Christov heat flux on the magnetohydrodynamic convective transport within irregular containers in the presence of the thermal radiation. Both of the magnetic field and flow domain are slant with the inclination angles Ω and γ, respectively. The worked fluid is consisting of water (H2O) and Al2O3-Cu hybrid nanoparticles. The enclosures are filled with a porous medium, and the local thermal nonequilibrium (LTNE) model between the hybrid nanofluids and the porous elements are considered. Influences of various types of the obstacles are examined, namely, horizontal cold elliptic, vertical elliptic and cross section ellipsis. The solution methodology is depending on the finite volume method with nonorthogonal grids. The major outcomes revealed that the location (0.75, 0.5) is better for the rate of the flow and temperature gradients. The higher values of H* causes that the solid phase temperature has a similar behavior of the fluid phase temperature indicating to the thermal equilibrium state. Also, the fluid-phase average Nusselt number is maximizing by increasing Cattaneo–Christov heat flux factor.
{"title":"Cattaneo–Christov heat flux impacts on MHD radiative natural convection of Al2O3-Cu-H2O hybrid nanofluid in wavy porous containers using LTNE","authors":"Sameh E. Ahmed, A. Mahdy, M. A. Mansour","doi":"10.15388/namc.2023.28.31609","DOIUrl":"https://doi.org/10.15388/namc.2023.28.31609","url":null,"abstract":"This paper aims to examine impacts of Cattaneo–Christov heat flux on the magnetohydrodynamic convective transport within irregular containers in the presence of the thermal radiation. Both of the magnetic field and flow domain are slant with the inclination angles Ω and γ, respectively. The worked fluid is consisting of water (H2O) and Al2O3-Cu hybrid nanoparticles. The enclosures are filled with a porous medium, and the local thermal nonequilibrium (LTNE) model between the hybrid nanofluids and the porous elements are considered. Influences of various types of the obstacles are examined, namely, horizontal cold elliptic, vertical elliptic and cross section ellipsis. The solution methodology is depending on the finite volume method with nonorthogonal grids. The major outcomes revealed that the location (0.75, 0.5) is better for the rate of the flow and temperature gradients. The higher values of H* causes that the solid phase temperature has a similar behavior of the fluid phase temperature indicating to the thermal equilibrium state. Also, the fluid-phase average Nusselt number is maximizing by increasing Cattaneo–Christov heat flux factor.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44579087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-22DOI: 10.15388/namc.2023.28.31549
M. S. Rahman, Subhash Pramanik, E. Venturino
We introduce here a predator–prey model where the prey are affected by a disease. The prey are assumed to gather in herds, while the predators are loose and act on an individualistic basis. Therefore their hunting affects mainly the prey individuals occupying the outermost positions in the herd, which is modeled via a square root functional response. The conditions of boundedness and uniform persistence are established. Stability and bifurcation analysis of all feasible equilibrium are carried out. Conditions on the model parameters for the possible existence of limit cycles are derived, global stability analysis is also shown in proper choice of suitable Lyapunov function. Numerical simulation of the various bifurcations validate the theoretical results. It is found that the system ultimate behavior depends mainly on two crucial parameters, the force of infection and predator average handling time. A discussion of the biological significance of the investigation concludes the paper.
{"title":"An ecoepidemic model with healthy prey herding and infected prey drifting away","authors":"M. S. Rahman, Subhash Pramanik, E. Venturino","doi":"10.15388/namc.2023.28.31549","DOIUrl":"https://doi.org/10.15388/namc.2023.28.31549","url":null,"abstract":"We introduce here a predator–prey model where the prey are affected by a disease. The prey are assumed to gather in herds, while the predators are loose and act on an individualistic basis. Therefore their hunting affects mainly the prey individuals occupying the outermost positions in the herd, which is modeled via a square root functional response. The conditions of boundedness and uniform persistence are established. Stability and bifurcation analysis of all feasible equilibrium are carried out. Conditions on the model parameters for the possible existence of limit cycles are derived, global stability analysis is also shown in proper choice of suitable Lyapunov function. Numerical simulation of the various bifurcations validate the theoretical results. It is found that the system ultimate behavior depends mainly on two crucial parameters, the force of infection and predator average handling time. A discussion of the biological significance of the investigation concludes the paper.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43761896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-22DOI: 10.15388/namc.2023.28.31449
Tahira Batool, A. Seadawy, S. Rizvi
In this article, lump solutions, lump with I-kink, lump with II- kink, periodic, multiwaves, rogue waves and several other interactions such as lump interaction with II-kink, interaction between lump, lump with I-kink and periodic, interaction between lump, lump with II-kink and periodic are derived for Pavlov equation by using appropriate transformations. Additionally, we also present 3-dimensional, 2-dimensional and contour graphs for our solutions.
{"title":"Multiple lump solutions and their interactions for an integrable nonlinear dispersionless PDE in vector fields","authors":"Tahira Batool, A. Seadawy, S. Rizvi","doi":"10.15388/namc.2023.28.31449","DOIUrl":"https://doi.org/10.15388/namc.2023.28.31449","url":null,"abstract":"In this article, lump solutions, lump with I-kink, lump with II- kink, periodic, multiwaves, rogue waves and several other interactions such as lump interaction with II-kink, interaction between lump, lump with I-kink and periodic, interaction between lump, lump with II-kink and periodic are derived for Pavlov equation by using appropriate transformations. Additionally, we also present 3-dimensional, 2-dimensional and contour graphs for our solutions.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48416182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-22DOI: 10.15388/namc.2023.28.31563
Xuening Xu, Zhiyong Yu, Da Huang, Haijun Jiang
This article studies the distributed optimization problem for multi-agent systems with communication delays and external disturbances in a directed network. Firstly, a distributed optimization algorithm is proposed based on the internal model principle in which the internal model term can effectively compensate for external environmental disturbances. Secondly, the relationship between the optimal solution and the equilibrium point of the system is discussed through the properties of the Laplacian matrix and graph theory. Some sufficient conditions are derived by using the Lyapunov–Razumikhin theory, which ensures all agents asymptotically reach the optimal value of the distributed optimization problem. Moreover, an aperiodic sampled-data control protocol is proposed, which can be well transformed into the proposed time-varying delay protocol and analyzed by using the Lyapunov–Razumikhin theory. Finally, an example is given to verify the effectiveness of the results.
{"title":"Distributed optimization for multi-agent systems with communication delays and external disturbances under a directed network","authors":"Xuening Xu, Zhiyong Yu, Da Huang, Haijun Jiang","doi":"10.15388/namc.2023.28.31563","DOIUrl":"https://doi.org/10.15388/namc.2023.28.31563","url":null,"abstract":"This article studies the distributed optimization problem for multi-agent systems with communication delays and external disturbances in a directed network. Firstly, a distributed optimization algorithm is proposed based on the internal model principle in which the internal model term can effectively compensate for external environmental disturbances. Secondly, the relationship between the optimal solution and the equilibrium point of the system is discussed through the properties of the Laplacian matrix and graph theory. Some sufficient conditions are derived by using the Lyapunov–Razumikhin theory, which ensures all agents asymptotically reach the optimal value of the distributed optimization problem. Moreover, an aperiodic sampled-data control protocol is proposed, which can be well transformed into the proposed time-varying delay protocol and analyzed by using the Lyapunov–Razumikhin theory. Finally, an example is given to verify the effectiveness of the results.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44331063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-22DOI: 10.15388/namc.2023.28.31503
M. Padma Devi, Sunitha C. Srinivas
The MHD oscillatory flow of two immiscible, viscous liquids in a porous channel with heat transfer is the subject of this investigation. The two liquid layers with different viscosities flow in both regions. The analytical expressions for velocity and temperature distribution have been derived by solving the governing flow equations using the regular perturbation method. The effects of various parameters on the velocity, temperature, and Nusselt number have been shown graphically, and numerical values of skin friction and flow rate are presented in tabular form and discussed. According to our analysis, the mass flux reduces as the magnetic field strength rises. While the temperature of the liquid enhances with an increase in the Eckert number and the Prandtl number, the temperature distribution rises with a decrease in the thermal conductivity ratio. To validate the results, the analytical solutions are compared with the fourth-order numerical Runge–Kutta method coupled with the shooting approach, and the results are found to be in excellent agreement.
{"title":"Heat transfer effects on the oscillatory MHD flow in a porous channel with two immiscible fluids","authors":"M. Padma Devi, Sunitha C. Srinivas","doi":"10.15388/namc.2023.28.31503","DOIUrl":"https://doi.org/10.15388/namc.2023.28.31503","url":null,"abstract":"The MHD oscillatory flow of two immiscible, viscous liquids in a porous channel with heat transfer is the subject of this investigation. The two liquid layers with different viscosities flow in both regions. The analytical expressions for velocity and temperature distribution have been derived by solving the governing flow equations using the regular perturbation method. The effects of various parameters on the velocity, temperature, and Nusselt number have been shown graphically, and numerical values of skin friction and flow rate are presented in tabular form and discussed. According to our analysis, the mass flux reduces as the magnetic field strength rises. While the temperature of the liquid enhances with an increase in the Eckert number and the Prandtl number, the temperature distribution rises with a decrease in the thermal conductivity ratio. To validate the results, the analytical solutions are compared with the fourth-order numerical Runge–Kutta method coupled with the shooting approach, and the results are found to be in excellent agreement.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43694438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-22DOI: 10.15388/namc.2023.28.30770
Fang Wang, Maoxing Liu, Lei Zhang, Boli Xie
A new network-based SIR epidemic model, which incorporates the individual medical resource factor and public medical resource factor is proposed. It is verified that the larger the public medical resource factor, the smaller the control reproduction number, and the larger individual medical resource factor can weaken the spread of diseases. We found that the control reproduction number below unity is not enough to ensure global asymptotic stability of the disease-free equilibrium. When the number of hospital beds or the individual medical resource factor is small enough, the system will undergoes backward bifurcation. Moreover, the existence and uniqueness of the optimal control and two time-varying variables’s optimal solutions are obtained. On the scale-free network, the level of optimal control is also proved to be different for different degrees. Finally, the theoretical results are illustrated by numerical simulations. This study suggests that maintaining sufficient both public medical resources and individual medical resources is crucial for the control of infectious diseases.
{"title":"Bifurcation analysis and optimal control of a network-based SIR model with the impact of medical resources","authors":"Fang Wang, Maoxing Liu, Lei Zhang, Boli Xie","doi":"10.15388/namc.2023.28.30770","DOIUrl":"https://doi.org/10.15388/namc.2023.28.30770","url":null,"abstract":"A new network-based SIR epidemic model, which incorporates the individual medical resource factor and public medical resource factor is proposed. It is verified that the larger the public medical resource factor, the smaller the control reproduction number, and the larger individual medical resource factor can weaken the spread of diseases. We found that the control reproduction number below unity is not enough to ensure global asymptotic stability of the disease-free equilibrium. When the number of hospital beds or the individual medical resource factor is small enough, the system will undergoes backward bifurcation. Moreover, the existence and uniqueness of the optimal control and two time-varying variables’s optimal solutions are obtained. On the scale-free network, the level of optimal control is also proved to be different for different degrees. Finally, the theoretical results are illustrated by numerical simulations. This study suggests that maintaining sufficient both public medical resources and individual medical resources is crucial for the control of infectious diseases.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41456780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-22DOI: 10.15388/namc.2023.28.31450
S. Sivasankar, R. Udhayakumar, V. Muthukumaran
The existence of Hilfer fractional stochastic Volterra–Fredholm integro-differential inclusions via almost sectorial operators is the topic of our paper. The researchers used fractional calculus, stochastic analysis theory, and Bohnenblust–Karlin’s fixed point theorem for multivalued maps to support their findings. To begin with, we must establish the existence of a mild solution. In addition, to show the principle, an application is presented.
{"title":"A new conversation on the existence of Hilfer fractional stochastic Volterra–Fredholm integro-differential inclusions via almost sectorial operators","authors":"S. Sivasankar, R. Udhayakumar, V. Muthukumaran","doi":"10.15388/namc.2023.28.31450","DOIUrl":"https://doi.org/10.15388/namc.2023.28.31450","url":null,"abstract":"The existence of Hilfer fractional stochastic Volterra–Fredholm integro-differential inclusions via almost sectorial operators is the topic of our paper. The researchers used fractional calculus, stochastic analysis theory, and Bohnenblust–Karlin’s fixed point theorem for multivalued maps to support their findings. To begin with, we must establish the existence of a mild solution. In addition, to show the principle, an application is presented.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48554829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-22DOI: 10.15388/namc.2023.28.31562
M. Sapagovas, Jurij Novickij
We construct and analyze the backward Euler method for one nonlinear one-dimensional parabolic equation with nonlocal boundary condition. The main objective of this article is to investigate the stability and convergence of the difference scheme in the maximum norm. For this purpose, we use the M-matrices theory. We describe some new approach for the estimation of the error of solution and construct the majorant for it. Some conclusions and discussion of our approach are presented.
{"title":"On stability in the maximum norm of difference scheme for nonlinear parabolic equation with nonlocal condition","authors":"M. Sapagovas, Jurij Novickij","doi":"10.15388/namc.2023.28.31562","DOIUrl":"https://doi.org/10.15388/namc.2023.28.31562","url":null,"abstract":"We construct and analyze the backward Euler method for one nonlinear one-dimensional parabolic equation with nonlocal boundary condition. The main objective of this article is to investigate the stability and convergence of the difference scheme in the maximum norm. For this purpose, we use the M-matrices theory. We describe some new approach for the estimation of the error of solution and construct the majorant for it. Some conclusions and discussion of our approach are presented.","PeriodicalId":49286,"journal":{"name":"Nonlinear Analysis-Modelling and Control","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48535928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}