Pub Date : 2024-05-01Epub Date: 2024-03-18DOI: 10.1177/01617346241236160
Matthew T Huber, Katelyn M Flint, Patricia J McNally, Sarah C Ellestad, Gregg E Trahey
This work measures temporal signal-to-noise ratio (SNR) thresholds that indicate when random noise during ultrasound scanning becomes imperceptible to expert human observers. Visible noise compromises image quality and can potentially lead to non-diagnostic scans. Noise can arise from both stable acoustic sources (clutter) or randomly varying electronic sources (temporal noise). Extensive engineering effort has focused on decreasing noise in both of these categories. In this work, an observer study with five practicing sonographers was performed to assess sonographer sensitivity to temporal noise in ultrasound cine clips. Understanding the conditions where temporal noise is no longer visible during ultrasound imaging can inform engineering efforts seeking to minimize the impact this noise has on image quality. The sonographers were presented with paired temporal noise-free and noise-added simulated speckle cine clips and asked to select the noise-added clips. The degree of motion in the imaging target was found to have a significant effect on the SNR levels where noise was perceived, while changing imaging frequency had little impact. At realistic in vivo motion levels, temporal noise was not perceived in cine clips at and above 28 dB SNR. In a case study presented here, the potential of adaptive intensity adjustment based on this noise perception threshold is validated in a fetal imaging scenario. This study demonstrates how noise perception thresholds can be applied to help design or tune ultrasound systems for different imaging tasks and noise conditions.
{"title":"Human Observer Sensitivity to Temporal Noise During B-Mode Ultrasound Scanning: Characterization and Imaging Implications.","authors":"Matthew T Huber, Katelyn M Flint, Patricia J McNally, Sarah C Ellestad, Gregg E Trahey","doi":"10.1177/01617346241236160","DOIUrl":"10.1177/01617346241236160","url":null,"abstract":"<p><p>This work measures temporal signal-to-noise ratio (SNR) thresholds that indicate when random noise during ultrasound scanning becomes imperceptible to expert human observers. Visible noise compromises image quality and can potentially lead to non-diagnostic scans. Noise can arise from both stable acoustic sources (clutter) or randomly varying electronic sources (temporal noise). Extensive engineering effort has focused on decreasing noise in both of these categories. In this work, an observer study with five practicing sonographers was performed to assess sonographer sensitivity to temporal noise in ultrasound cine clips. Understanding the conditions where temporal noise is no longer visible during ultrasound imaging can inform engineering efforts seeking to minimize the impact this noise has on image quality. The sonographers were presented with paired temporal noise-free and noise-added simulated speckle cine clips and asked to select the noise-added clips. The degree of motion in the imaging target was found to have a significant effect on the SNR levels where noise was perceived, while changing imaging frequency had little impact. At realistic in vivo motion levels, temporal noise was not perceived in cine clips at and above 28 dB SNR. In a case study presented here, the potential of adaptive intensity adjustment based on this noise perception threshold is validated in a fetal imaging scenario. This study demonstrates how noise perception thresholds can be applied to help design or tune ultrasound systems for different imaging tasks and noise conditions.</p>","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":" ","pages":"151-163"},"PeriodicalIF":2.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619465/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-02-09DOI: 10.1177/01617346241227900
Jacob R McCall, Arthur Chavignon, Olivier Couture, Paul A Dayton, Gianmarco F Pinton
Two-dimensional ultrasound transducers enable the acquisition of fully volumetric data that have been demonstrated to provide greater diagnostic information in the clinical setting and are a critical tool for emerging ultrasound methods, such as super-resolution and functional imaging. This technology, however, is not without its limitations. Due to increased fabrication complexity, some matrix probes with disjoint piezoelectric panels may require initial calibration. In this manuscript, two methods for calibrating the element positions of the Vermon 1024-channel 8 MHz matrix transducer are detailed. This calibration is a necessary step for acquiring high resolution B-mode images while minimizing transducer-based image degradation. This calibration is also necessary for eliminating vessel-doubling artifacts in super-resolution images and increasing the overall signal-to-noise ratio (SNR) of the image. Here, we show that the shape of the point spread function (PSF) can be significantly improved and PSF-doubling artifacts can be reduced by up to 10 dB via this simple calibration procedure.
{"title":"Element Position Calibration for Matrix Array Transducers with Multiple Disjoint Piezoelectric Panels.","authors":"Jacob R McCall, Arthur Chavignon, Olivier Couture, Paul A Dayton, Gianmarco F Pinton","doi":"10.1177/01617346241227900","DOIUrl":"10.1177/01617346241227900","url":null,"abstract":"<p><p>Two-dimensional ultrasound transducers enable the acquisition of fully volumetric data that have been demonstrated to provide greater diagnostic information in the clinical setting and are a critical tool for emerging ultrasound methods, such as super-resolution and functional imaging. This technology, however, is not without its limitations. Due to increased fabrication complexity, some matrix probes with disjoint piezoelectric panels may require initial calibration. In this manuscript, two methods for calibrating the element positions of the Vermon 1024-channel 8 MHz matrix transducer are detailed. This calibration is a necessary step for acquiring high resolution B-mode images while minimizing transducer-based image degradation. This calibration is also necessary for eliminating vessel-doubling artifacts in super-resolution images and increasing the overall signal-to-noise ratio (SNR) of the image. Here, we show that the shape of the point spread function (PSF) can be significantly improved and PSF-doubling artifacts can be reduced by up to 10 dB via this simple calibration procedure.</p>","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":" ","pages":"139-150"},"PeriodicalIF":2.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139708353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-22DOI: 10.1177/01617346241246807
Xiaoyi Jiang, Kexin Gan, Yuxin Wang, Chao Tao, Xiaojun Liu, Jie Yuan, Zhibin Jin
Conventional B-mode ultrasound imaging has difficulty in delineating homogeneous soft tissues with similar acoustic impedances, as the reflectivity depends on the acoustic impedance at the interface. As a quantitative imaging biomarker sensitive to alteration of biomechanical properties, speed-of-sound (SoS) holds promising potential for tissue and disease differentiation such as delineation of different breast tissue types with similar acoustic impedance. Compared to two-dimensional (2D) SoS images, three-dimensional (3D) volumetric SoS images achieved through a full-angle ultrasound scan can reveal more intricate morphological structures of tissues; however, they generally require a ring transducer. In this study, we introduce a 3D SoS reconstruction system that utilizes hand-held linear arrays instead. This system employs a passive reflector positioned opposite the linear arrays, serving as an echogenic reference for time-of-flight (ToF) measurements, and a high-definition camera to track the location corresponding to each group of transmit-receive data. To merge these two streams of ToF measurements and location tracking, a voxel-based reconstruction algorithm is implemented. Experimental results with gelatin phantom and ex vivo tissue have demonstrated the stability of our proposed method. Moreover, the results underscore the potential of this system as a complementary diagnostic modality, particularly in the context of diseases such as breast cancer.
传统的 B 型超声成像难以划分具有相似声阻抗的均质软组织,因为反射率取决于界面的声阻抗。声速(SoS)作为一种对生物力学特性改变敏感的定量成像生物标志物,在组织和疾病分化方面具有广阔的应用前景,例如可以划分出具有相似声阻抗的不同乳腺组织类型。与二维(2D)声速图像相比,通过全角度超声扫描获得的三维(3D)容积声速图像能揭示更复杂的组织形态结构,但通常需要一个环形换能器。在本研究中,我们介绍了一种利用手持式线性阵列的三维 SoS 重建系统。该系统在线性阵列的对面安装了一个无源反射器,作为飞行时间(ToF)测量的回声参考,并使用高清摄像头跟踪每组发射-接收数据对应的位置。为了合并这两组 ToF 测量数据和位置跟踪数据,采用了基于体素的重建算法。明胶模型和体外组织的实验结果表明,我们提出的方法非常稳定。此外,实验结果还强调了该系统作为辅助诊断方式的潜力,尤其是在乳腺癌等疾病方面。
{"title":"Demonstration Study of Reflector-Based Volumetric Speed-of-Sound Imaging With Linear Ultrasound Arrays","authors":"Xiaoyi Jiang, Kexin Gan, Yuxin Wang, Chao Tao, Xiaojun Liu, Jie Yuan, Zhibin Jin","doi":"10.1177/01617346241246807","DOIUrl":"https://doi.org/10.1177/01617346241246807","url":null,"abstract":"Conventional B-mode ultrasound imaging has difficulty in delineating homogeneous soft tissues with similar acoustic impedances, as the reflectivity depends on the acoustic impedance at the interface. As a quantitative imaging biomarker sensitive to alteration of biomechanical properties, speed-of-sound (SoS) holds promising potential for tissue and disease differentiation such as delineation of different breast tissue types with similar acoustic impedance. Compared to two-dimensional (2D) SoS images, three-dimensional (3D) volumetric SoS images achieved through a full-angle ultrasound scan can reveal more intricate morphological structures of tissues; however, they generally require a ring transducer. In this study, we introduce a 3D SoS reconstruction system that utilizes hand-held linear arrays instead. This system employs a passive reflector positioned opposite the linear arrays, serving as an echogenic reference for time-of-flight (ToF) measurements, and a high-definition camera to track the location corresponding to each group of transmit-receive data. To merge these two streams of ToF measurements and location tracking, a voxel-based reconstruction algorithm is implemented. Experimental results with gelatin phantom and ex vivo tissue have demonstrated the stability of our proposed method. Moreover, the results underscore the potential of this system as a complementary diagnostic modality, particularly in the context of diseases such as breast cancer.","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":"122 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140637140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-16DOI: 10.1177/01617346241246169
Song Kang, Jianfeng Chen, He Zhang, Guangyin Li, Yingying Liu, Xue Mei, Binyang Zhu, Xin Ai, Shuangquan Jiang
To evaluate the inter-observer variability and the intra-observer repeatability of pulmonary transit time (PTT) measurement using contrast-enhanced ultrasound (CEUS) in healthy rabbits, and assess the effects of dilution concentration of ultrasound contrast agents (UCAs) on PTT. Thirteen healthy rabbits were selected, and five concentrations UCAs of 1:200, 1:100, 1:50, 1:10, and 1:1 were injected into the right ear vein. Five digital loops were obtained from the apical 4-chamber view. Four sonographers obtained PTT by plotting the TIC of right atrium (RA) and left atrium (LA) at two time points (T1 and T2). The frame counts of the first appearance of UCAs in RA and LA had excellent inter-observer agreement, with intra-class correlations (ICC) of 0.996, 0.988, respectively. The agreement of PTT among four observers was all good at five different concentrations, with an ICC of 0.758–0.873. The reproducibility of PTT obtained by four observers at T1 and T2 was performed well, with ICC of 0.888–0.961. The median inter-observer variability across 13 rabbits was 6.5% and the median variability within 14 days for 4 observers was 1.9%, 1.7%, 2.2%, 1.9%, respectively; The PTT of 13 healthy rabbits is 1.01 ± 0.18 second. The difference of PTT between five concentrations is statistically significant. The PTT obtained by a concentration of 1:200 and 1:100 were higher than that of 1:1, while there were no significantly differences in PTT of a concentration of 1:1, 1:10, and 1:50. PTT measured by CEUS in rabbits is feasible, with excellent inter-observer and intra-observer reliability and reproducibility, and dilution concentration of UCAs influences PTT results.
目的:评估健康兔子使用造影剂增强超声(CEUS)测量肺转运时间(PTT)的观察者间变异性和观察者内重复性,并评估超声造影剂(UCA)稀释浓度对PTT的影响。选取 13 只健康兔子,将 1:200、1:100、1:50、1:10 和 1:1 五种浓度的 UCA 注入右耳静脉。从心尖四腔切面获取五个数字环。四名超声技师通过绘制右心房(RA)和左心房(LA)在两个时间点(T1 和 T2)的 TIC 图来获取 PTT。RA 和 LA 首次出现 UCA 的帧计数在观察者之间具有极好的一致性,类内相关性(ICC)分别为 0.996 和 0.988。在五种不同浓度下,四位观察者的 PTT 一致性都很好,ICC 为 0.758-0.873。四位观察者在 T1 和 T2 阶段获得的 PTT 重现性良好,ICC 为 0.888-0.961。13 只兔子的观察者间变异性中位数为 6.5%,4 名观察者在 14 天内的变异性中位数分别为 1.9%、1.7%、2.2% 和 1.9%;13 只健康兔子的 PTT 为 1.01 ± 0.18 秒。五种浓度之间的 PTT 差异具有统计学意义。浓度为 1:200 和 1:100 的 PTT 均高于 1:1 的 PTT,而浓度为 1:1、1:10 和 1:50 的 PTT 无明显差异。用 CEUS 测量家兔的 PTT 是可行的,具有良好的观察者间和观察者内可靠性和再现性,UCA 的稀释浓度会影响 PTT 结果。
{"title":"Pulmonary Transit Time Assessment by CEUS in Healthy Rabbits: Feasibility, and the Effects of UCAs Dilution Concentration","authors":"Song Kang, Jianfeng Chen, He Zhang, Guangyin Li, Yingying Liu, Xue Mei, Binyang Zhu, Xin Ai, Shuangquan Jiang","doi":"10.1177/01617346241246169","DOIUrl":"https://doi.org/10.1177/01617346241246169","url":null,"abstract":"To evaluate the inter-observer variability and the intra-observer repeatability of pulmonary transit time (PTT) measurement using contrast-enhanced ultrasound (CEUS) in healthy rabbits, and assess the effects of dilution concentration of ultrasound contrast agents (UCAs) on PTT. Thirteen healthy rabbits were selected, and five concentrations UCAs of 1:200, 1:100, 1:50, 1:10, and 1:1 were injected into the right ear vein. Five digital loops were obtained from the apical 4-chamber view. Four sonographers obtained PTT by plotting the TIC of right atrium (RA) and left atrium (LA) at two time points (T1 and T2). The frame counts of the first appearance of UCAs in RA and LA had excellent inter-observer agreement, with intra-class correlations (ICC) of 0.996, 0.988, respectively. The agreement of PTT among four observers was all good at five different concentrations, with an ICC of 0.758–0.873. The reproducibility of PTT obtained by four observers at T1 and T2 was performed well, with ICC of 0.888–0.961. The median inter-observer variability across 13 rabbits was 6.5% and the median variability within 14 days for 4 observers was 1.9%, 1.7%, 2.2%, 1.9%, respectively; The PTT of 13 healthy rabbits is 1.01 ± 0.18 second. The difference of PTT between five concentrations is statistically significant. The PTT obtained by a concentration of 1:200 and 1:100 were higher than that of 1:1, while there were no significantly differences in PTT of a concentration of 1:1, 1:10, and 1:50. PTT measured by CEUS in rabbits is feasible, with excellent inter-observer and intra-observer reliability and reproducibility, and dilution concentration of UCAs influences PTT results.","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":"37 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140609325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Three-dimensional (3D) ultrasonic imaging can enable post-facto plane of interest selection. It can be performed with devices such as wobbler probes, matrix probes, and sensor-based probes. Ultrasound systems that support 3D-imaging are expensive with added hardware complexity compared to 2D-imaging systems. An inertial measurement unit (IMU) can potentially be used for 3D-imaging by using it to track the motion of a one-dimensional array probe and constraining its motion in one degree of freedom (1-DoF) rotation (swept-fan). This work demonstrates the feasibility of an affordable IMU-assisted manual 3D-ultrasound scanner (IAM3US). A consumer-grade IMU-assisted 3D scanner prototype is designed with two support structures for swept-fan. After proper IMU calibration, an appropriate KF-based algorithm estimates the probe orientation during the swept-fan. An improved scanline-based reconstruction method is used for volume reconstruction. The evaluation of the IAM3US system is done by imaging a tennis ball filled with water and the head region of a fetal phantom. From fetal phantom reconstructed volumes, suitable 2D planes are extracted for biparietal diameter (BPD) manual measurements. Later, in-vivo data is collected. The novel contributions of this paper are (1) the application of a recently proposed algorithm for orientation estimation of swept-fan for 3D imaging, chosen based on the noise characteristics of selected consumer grade IMU (2) assessment of the quality of the 1-DoF swept-fan scan with a deflection detector along with monitoring of maximum angular rate during the scan and (3) two probe holder designs to aid the operator in performing the 1-DoF rotational motion and (4) end-to-end 3D-imaging system-integration. Phantom studies and preliminary in-vivo obstetric scans performed on two patients illustrate the usability of the system for diagnosis purposes.
{"title":"IMU-Assisted Manual 3D-Ultrasound Imaging Using Motion-Constrained Swept-Fan Scans","authors":"Aparna Harindranath, Komal Shah, Dhinagaran Devadass, Arun George, Kajoli Banerjee Krishnan, Manish Arora","doi":"10.1177/01617346241242718","DOIUrl":"https://doi.org/10.1177/01617346241242718","url":null,"abstract":"Three-dimensional (3D) ultrasonic imaging can enable post-facto plane of interest selection. It can be performed with devices such as wobbler probes, matrix probes, and sensor-based probes. Ultrasound systems that support 3D-imaging are expensive with added hardware complexity compared to 2D-imaging systems. An inertial measurement unit (IMU) can potentially be used for 3D-imaging by using it to track the motion of a one-dimensional array probe and constraining its motion in one degree of freedom (1-DoF) rotation (swept-fan). This work demonstrates the feasibility of an affordable IMU-assisted manual 3D-ultrasound scanner (IAM3US). A consumer-grade IMU-assisted 3D scanner prototype is designed with two support structures for swept-fan. After proper IMU calibration, an appropriate KF-based algorithm estimates the probe orientation during the swept-fan. An improved scanline-based reconstruction method is used for volume reconstruction. The evaluation of the IAM3US system is done by imaging a tennis ball filled with water and the head region of a fetal phantom. From fetal phantom reconstructed volumes, suitable 2D planes are extracted for biparietal diameter (BPD) manual measurements. Later, in-vivo data is collected. The novel contributions of this paper are (1) the application of a recently proposed algorithm for orientation estimation of swept-fan for 3D imaging, chosen based on the noise characteristics of selected consumer grade IMU (2) assessment of the quality of the 1-DoF swept-fan scan with a deflection detector along with monitoring of maximum angular rate during the scan and (3) two probe holder designs to aid the operator in performing the 1-DoF rotational motion and (4) end-to-end 3D-imaging system-integration. Phantom studies and preliminary in-vivo obstetric scans performed on two patients illustrate the usability of the system for diagnosis purposes.","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":"21 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-01-10DOI: 10.1177/01617346231218933
Xuesha Xing, Huanhuan Miao, Hong Wang, Jiawei Sun, Chengwei Wu, Yichun Wang, Xianli Zhou, Hongbo Wang
To establish a predictive model incorporating conventional ultrasound, strain elastography and clinicopathological features for Ki-67 expression in small breast cancer (SBC) which defined as maximum diameter less than2 cm. In this retrospective study, 165 SBC patients from our hospital were allocated to a high Ki-67 group (n = 104) and a low Ki-67 group (n = 61). Multivariate regression analysis was performed to identify independent indicators for developing predictive models. The area under the receiver operating characteristic (AUC) curve was also determined to establish the diagnostic performance of different predictive models. The corresponding sensitivities and specificities of different models at the cutoff value were compared. Conventional ultrasound parameters (spiculated margin, absence of posterior shadowing and Adler grade 2-3), strain elastic scores and clinicopathological information (HER2 positive) were significantly correlated with high expression of Ki-67 in SBC (all p < .05). Model 2, which incorporated conventional ultrasound features and strain elastic scores, yielded good diagnostic performance (AUC = 0.774) with better sensitivity than model 1, which only incorporated ultrasound characteristics (78.85%vs. 55.77%, p = .000), with specificities of 77.05% and 62.30% (p = .035), respectively. Model 3, which incorporated conventional ultrasound, strain elastography and clinicopathological features, yielded better performance (AUC = 0.853) than model 1 (AUC = 0.694) and model 2 (AUC = 0.774), and the specificity was higher than model 1 (86.89% vs. 77.05%, p = .001). The predictive model combining conventional ultrasound, strain elastic scores and clinicopathological features could improve the predictive performance of Ki-67 expression in SBC.
{"title":"A Model Combining Conventional Ultrasound Characteristics, Strain Elastography and Clinicopathological Features to Predict Ki-67 Expression in Small Breast Cancer.","authors":"Xuesha Xing, Huanhuan Miao, Hong Wang, Jiawei Sun, Chengwei Wu, Yichun Wang, Xianli Zhou, Hongbo Wang","doi":"10.1177/01617346231218933","DOIUrl":"10.1177/01617346231218933","url":null,"abstract":"<p><p>To establish a predictive model incorporating conventional ultrasound, strain elastography and clinicopathological features for Ki-67 expression in small breast cancer (SBC) which defined as maximum diameter less than2 cm. In this retrospective study, 165 SBC patients from our hospital were allocated to a high Ki-67 group (<i>n</i> = 104) and a low Ki-67 group (<i>n</i> = 61). Multivariate regression analysis was performed to identify independent indicators for developing predictive models. The area under the receiver operating characteristic (AUC) curve was also determined to establish the diagnostic performance of different predictive models. The corresponding sensitivities and specificities of different models at the cutoff value were compared. Conventional ultrasound parameters (spiculated margin, absence of posterior shadowing and Adler grade 2-3), strain elastic scores and clinicopathological information (HER2 positive) were significantly correlated with high expression of Ki-67 in SBC (all <i>p</i> < .05). Model 2, which incorporated conventional ultrasound features and strain elastic scores, yielded good diagnostic performance (AUC = 0.774) with better sensitivity than model 1, which only incorporated ultrasound characteristics (78.85%vs. 55.77%, <i>p</i> = .000), with specificities of 77.05% and 62.30% (<i>p</i> = .035), respectively. Model 3, which incorporated conventional ultrasound, strain elastography and clinicopathological features, yielded better performance (AUC = 0.853) than model 1 (AUC = 0.694) and model 2 (AUC = 0.774), and the specificity was higher than model 1 (86.89% vs. 77.05%, <i>p</i> = .001). The predictive model combining conventional ultrasound, strain elastic scores and clinicopathological features could improve the predictive performance of Ki-67 expression in SBC.</p>","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":" ","pages":"121-129"},"PeriodicalIF":2.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139404948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2023-12-01DOI: 10.1177/01617346231213385
Xiaoli Ma, Enxiang Shen, Jie Yuan, Li Gong, Wentao Kong, Zhibin Jin, Chao Tao, Xiaojun Liu
Vascular diseases may occur in the upper extremities, and the lesions can span the entire length of the blood vessel. One of the most popular methods to identify vascular disorders is ultrasound Doppler imaging. However, traditional two-dimensional (2D) ultrasound Doppler imaging cannot capture the entire length of a long vessel in one image. Medical professionals often have to painstakingly reconstruct three-dimensional (3D) data using 2D ultrasound images to locate the lesions, especially for large blood vessels. 3D ultrasound Doppler imaging can display the morphological structure of blood vessels and the distribution of lesions more directly, providing a more comprehensive view compared to 2D imaging. In this work, we propose a wide-range 3D volumetric ultrasound Doppler imaging system with dual modality, in which a high-definition camera is adopted to automatically track the movement of the ultrasound transducer, simultaneously capturing a corresponding sequence of 2D ultrasound Doppler images. We conducted experiments on human arms using our proposed system and separately with X-ray computerized tomography (X-CT). The comparison results prove the potential value of our proposed system in the diagnosis of arm vascular diseases.
{"title":"Volumetric B-mode ultrasound and Doppler Imaging: Automatic Tracking With One Single Camera.","authors":"Xiaoli Ma, Enxiang Shen, Jie Yuan, Li Gong, Wentao Kong, Zhibin Jin, Chao Tao, Xiaojun Liu","doi":"10.1177/01617346231213385","DOIUrl":"10.1177/01617346231213385","url":null,"abstract":"<p><p>Vascular diseases may occur in the upper extremities, and the lesions can span the entire length of the blood vessel. One of the most popular methods to identify vascular disorders is ultrasound Doppler imaging. However, traditional two-dimensional (2D) ultrasound Doppler imaging cannot capture the entire length of a long vessel in one image. Medical professionals often have to painstakingly reconstruct three-dimensional (3D) data using 2D ultrasound images to locate the lesions, especially for large blood vessels. 3D ultrasound Doppler imaging can display the morphological structure of blood vessels and the distribution of lesions more directly, providing a more comprehensive view compared to 2D imaging. In this work, we propose a wide-range 3D volumetric ultrasound Doppler imaging system with dual modality, in which a high-definition camera is adopted to automatically track the movement of the ultrasound transducer, simultaneously capturing a corresponding sequence of 2D ultrasound Doppler images. We conducted experiments on human arms using our proposed system and separately with X-ray computerized tomography (X-CT). The comparison results prove the potential value of our proposed system in the diagnosis of arm vascular diseases.</p>","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":" ","pages":"90-101"},"PeriodicalIF":2.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138471140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-06DOI: 10.1177/01617346241227971
Cara Esposito, Kenneth Tzan, Priscilla Machado, Flemming Forsberg, Jaydev K Dave
Subharmonic aided pressure estimation (SHAPE) is a technique that utilizes subharmonic signals from microbubble contrast agents for pressure estimation. Validation of the SHAPE technique relies on synchronous measurements of in vivo pressures using contrast microbubbles and a pressure catheter (reference standard). For the guidance and placement of pressure catheter in vivo, iodinated contrast is used with fluoroscopy. Therefore, during data acquisition for validation studies of the SHAPE technique, both contrast microbubbles and iodinated contrast are present simultaneously within the vasculature. This study aims to elucidate the effects of iodinated contrast (Visipaque, GE HealthCare) on subharmonic signal amplitude from contrast microbubbles (Definity, Lantheus Medical Imaging, Inc.). In an acrylic water tank, 0.06 mL of Definity and varied amounts of Visipaque (0.14, 0.43, 0.85, and 1.70 mL) were added to 425 mL of deionized water. Ultrasound scanning was performed with a SonixTablet scanner (BK Medical Systems) using optimized parameters for SHAPE with Definity (ftransmit/receive = 3.0/1.5 MHz; chirp down pulse). Subharmonic data was acquired and analyzed at 9 different incident acoustic outputs (n = 3). Results showed an increase in subharmonic signal amplitude from Definity microbubbles in the presence of 0.14 mL Visipaque by 2.8 ± 1.3 dB (p < .001), no change with 0.85 mL Visipaque (0.7 ± 1.2 dB; p = .09) and a decrease in subharmonic amplitude in the presence of 1.70 mL Visipaque by 1.9 ± 0.7 dB (p < .001). While statistically significant effect on subharmonic signal amplitude of Definity microbubbles was noted due to the mixture, the magnitude of the effect was minimal (~2.8 dB) and unlikely to impact in vivo SHAPE measurements.
次谐波辅助压力估算(SHAPE)是一种利用微气泡造影剂的次谐波信号进行压力估算的技术。SHAPE 技术的验证依赖于使用造影剂微气泡和压力导管(参考标准)对体内压力的同步测量。为了引导和放置体内压力导管,需要在透视下使用碘造影剂。因此,在 SHAPE 技术验证研究的数据采集过程中,造影剂微泡和碘化造影剂同时存在于血管中。本研究旨在阐明碘化造影剂(Visipaque,GE HealthCare)对造影剂微气泡(Definity,Lantheus Medical Imaging,Inc.)在丙烯酸水箱中,将 0.06 mL Definity 和不同量的 Visipaque(0.14、0.43、0.85 和 1.70 mL)加入 425 mL 去离子水中。超声扫描由 SonixTablet 扫描仪(BK 医疗系统公司)进行,使用 Definity 的 SHAPE 优化参数(发射/接收频率 = 3.0/1.5 MHz;啁啾向下脉冲)。在 9 个不同的入射声输出(n = 3)下采集并分析了次谐波数据。结果显示,在有 0.14 mL Visipaque 的情况下,Definity 微气泡的次谐波信号幅度增加了 2.8 ± 1.3 dB(p p = .09),而在有 1.70 mL Visipaque 的情况下,次谐波幅度降低了 1.9 ± 0.7 dB(p 在体内 SHAPE 测量中。
{"title":"The Effect of Mixing Iodinated Contrast Media and Ultrasound Contrast Agents on Subharmonic Signals.","authors":"Cara Esposito, Kenneth Tzan, Priscilla Machado, Flemming Forsberg, Jaydev K Dave","doi":"10.1177/01617346241227971","DOIUrl":"10.1177/01617346241227971","url":null,"abstract":"<p><p>Subharmonic aided pressure estimation (SHAPE) is a technique that utilizes subharmonic signals from microbubble contrast agents for pressure estimation. Validation of the SHAPE technique relies on synchronous measurements of <i>in vivo</i> pressures using contrast microbubbles and a pressure catheter (reference standard). For the guidance and placement of pressure catheter <i>in vivo</i>, iodinated contrast is used with fluoroscopy. Therefore, during data acquisition for validation studies of the SHAPE technique, both contrast microbubbles and iodinated contrast are present simultaneously within the vasculature. This study aims to elucidate the effects of iodinated contrast (Visipaque, GE HealthCare) on subharmonic signal amplitude from contrast microbubbles (Definity, Lantheus Medical Imaging, Inc.). In an acrylic water tank, 0.06 mL of Definity and varied amounts of Visipaque (0.14, 0.43, 0.85, and 1.70 mL) were added to 425 mL of deionized water. Ultrasound scanning was performed with a SonixTablet scanner (BK Medical Systems) using optimized parameters for SHAPE with Definity (<i>f</i><sub>transmit/receive</sub> = 3.0/1.5 MHz; chirp down pulse). Subharmonic data was acquired and analyzed at 9 different incident acoustic outputs (<i>n</i> = 3). Results showed an increase in subharmonic signal amplitude from Definity microbubbles in the presence of 0.14 mL Visipaque by 2.8 ± 1.3 dB (<i>p</i> < .001), no change with 0.85 mL Visipaque (0.7 ± 1.2 dB; <i>p</i> = .09) and a decrease in subharmonic amplitude in the presence of 1.70 mL Visipaque by 1.9 ± 0.7 dB (<i>p</i> < .001). While statistically significant effect on subharmonic signal amplitude of Definity microbubbles was noted due to the mixture, the magnitude of the effect was minimal (~2.8 dB) and unlikely to impact <i>in vivo</i> SHAPE measurements.</p>","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":" ","pages":"130-134"},"PeriodicalIF":2.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139693301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2023-12-22DOI: 10.1177/01617346231220000
Jie Chen, Zeying Wen, Xiaoqing Yang, Jie Jia, Xiaodong Zhang, Linping Pian, Ping Zhao
Henoch-Schönlein purpura nephritis (HSPN) is one of the most common kidney diseases in children. The current diagnosis and classification of HSPN depend on pathological biopsy, which is seriously limited by its invasive and high-risk nature. The aim of the study was to explore the potential of radiomics model for evaluating the histopathological classification of HSPN based on the ultrasound (US) images. A total of 440 patients with Henoch-Schönlein purpura nephritis proved by biopsy were analyzed retrospectively. They were grouped according to two histopathological categories: those without glomerular crescent formation (ISKDC grades I-II) and those with glomerular crescent formation (ISKDC grades III-V). The patients were randomly assigned to either a training cohort (n = 308) or a validation cohort (n = 132) with a ratio of 7:3. The sonologist manually drew the regions of interest (ROI) on the ultrasound images of the right kidney including the cortex and medulla. Then, the ultrasound radiomics features were extracted using the Pyradiomics package. The dimensions of radiomics features were reduced by Spearman correlation coefficients and least absolute shrinkage and selection operator (LASSO) method. Finally, three radiomics models using k-nearest neighbor (KNN), logistic regression (LR), and support vector machine (SVM) were established, respectively. The predictive performance of such classifiers was assessed with receiver operating characteristic (ROC) curve. 105 radiomics features were extracted from derived US images of each patient and 14 features were ultimately selected for the machine learning analysis. Three machine learning models including k-nearest neighbor (KNN), logistic regression (LR), and support vector machine (SVM) were established for HSPN classification. Of the three classifiers, the SVM classifier performed the best in the validation cohort [area under the curve (AUC) =0.870 (95% CI, 0.795-0.944), sensitivity = 0.706, specificity = 0.950]. The US-based radiomics had good predictive value for HSPN classification, which can be served as a noninvasive tool to evaluate the severity of renal pathology and crescentic formation in children with HSPN.
过敏性紫癜肾炎(HSPN)是儿童最常见的肾脏疾病之一。目前,HSPN 的诊断和分类依赖于病理活检,而病理活检因其侵入性和高风险性而受到严重限制。本研究旨在探索放射组学模型在基于超声(US)图像评估 HSPN 组织病理学分类方面的潜力。研究人员对 440 例经活检证实的过敏性紫癜肾炎患者进行了回顾性分析。他们按照两个组织病理学类别进行分组:无肾小球新月体形成(ISKDC I-II级)和有肾小球新月体形成(ISKDC III-V级)。患者被随机分配到训练组(308 人)或验证组(132 人),两者的比例为 7:3。超声专家在右肾的超声图像上手动绘制感兴趣区(ROI),包括皮质和髓质。然后,使用 Pyradiomics 软件包提取超声放射组学特征。利用斯皮尔曼相关系数和最小绝对缩小和选择算子(LASSO)方法缩小了放射组学特征的维数。最后,分别使用 k 近邻(KNN)、逻辑回归(LR)和支持向量机(SVM)建立了三个放射组学模型。这些分类器的预测性能通过接收者操作特征曲线(ROC)进行评估。从每位患者的衍生 US 图像中提取了 105 个放射组学特征,最终选择了 14 个特征进行机器学习分析。为 HSPN 分类建立了三种机器学习模型,包括 k 近邻(KNN)、逻辑回归(LR)和支持向量机(SVM)。在这三种分类器中,SVM分类器在验证队列中表现最佳[曲线下面积(AUC)=0.870(95% CI,0.795-0.944),灵敏度=0.706,特异性=0.950]。基于美国放射组学的 HSPN 分类具有良好的预测价值,可作为一种无创工具来评估 HSPN 儿童肾脏病理和新月体形成的严重程度。
{"title":"Ultrasound-Based Radiomics for the Classification of Henoch-Schönlein Purpura Nephritis in Children.","authors":"Jie Chen, Zeying Wen, Xiaoqing Yang, Jie Jia, Xiaodong Zhang, Linping Pian, Ping Zhao","doi":"10.1177/01617346231220000","DOIUrl":"10.1177/01617346231220000","url":null,"abstract":"<p><p>Henoch-Schönlein purpura nephritis (HSPN) is one of the most common kidney diseases in children. The current diagnosis and classification of HSPN depend on pathological biopsy, which is seriously limited by its invasive and high-risk nature. The aim of the study was to explore the potential of radiomics model for evaluating the histopathological classification of HSPN based on the ultrasound (US) images. A total of 440 patients with Henoch-Schönlein purpura nephritis proved by biopsy were analyzed retrospectively. They were grouped according to two histopathological categories: those without glomerular crescent formation (ISKDC grades I-II) and those with glomerular crescent formation (ISKDC grades III-V). The patients were randomly assigned to either a training cohort (<i>n</i> = 308) or a validation cohort (<i>n</i> = 132) with a ratio of 7:3. The sonologist manually drew the regions of interest (ROI) on the ultrasound images of the right kidney including the cortex and medulla. Then, the ultrasound radiomics features were extracted using the Pyradiomics package. The dimensions of radiomics features were reduced by Spearman correlation coefficients and least absolute shrinkage and selection operator (LASSO) method. Finally, three radiomics models using k-nearest neighbor (KNN), logistic regression (LR), and support vector machine (SVM) were established, respectively. The predictive performance of such classifiers was assessed with receiver operating characteristic (ROC) curve. 105 radiomics features were extracted from derived US images of each patient and 14 features were ultimately selected for the machine learning analysis. Three machine learning models including k-nearest neighbor (KNN), logistic regression (LR), and support vector machine (SVM) were established for HSPN classification. Of the three classifiers, the SVM classifier performed the best in the validation cohort [area under the curve (AUC) =0.870 (95% CI, 0.795-0.944), sensitivity = 0.706, specificity = 0.950]. The US-based radiomics had good predictive value for HSPN classification, which can be served as a noninvasive tool to evaluate the severity of renal pathology and crescentic formation in children with HSPN.</p>","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":" ","pages":"110-120"},"PeriodicalIF":2.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138886449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-01-10DOI: 10.1177/01617346231225016
{"title":"Corrigendum to \"A Data-Driven Approach for Estimating Temperature Variations Based on B-mode Ultrasound Images and Changes in Backscattered Energy\".","authors":"","doi":"10.1177/01617346231225016","DOIUrl":"10.1177/01617346231225016","url":null,"abstract":"","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":" ","pages":"135"},"PeriodicalIF":2.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139418449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}