首页 > 最新文献

Theoretical Population Biology最新文献

英文 中文
Mean-field interacting multi-type birth–death processes with a view to applications in phylodynamics 平均场相互作用的多类型生死过程在系统动力学中的应用。
IF 1.2 4区 生物学 Q4 ECOLOGY Pub Date : 2024-07-15 DOI: 10.1016/j.tpb.2024.07.002
William S. DeWitt , Steven N. Evans , Ella Hiesmayr , Sebastian Hummel

Multi-type birth–death processes underlie approaches for inferring evolutionary dynamics from phylogenetic trees across biological scales, ranging from deep-time species macroevolution to rapid viral evolution and somatic cellular proliferation. A limitation of current phylogenetic birth–death models is that they require restrictive linearity assumptions that yield tractable message-passing likelihoods, but that also preclude interactions between individuals. Many fundamental evolutionary processes – such as environmental carrying capacity or frequency-dependent selection – entail interactions, and may strongly influence the dynamics in some systems. Here, we introduce a multi-type birth–death process in mean-field interaction with an ensemble of replicas of the focal process. We prove that, under quite general conditions, the ensemble’s stochastically evolving interaction field converges to a deterministic trajectory in the limit of an infinite ensemble. In this limit, the replicas effectively decouple, and self-consistent interactions appear as nonlinearities in the infinitesimal generator of the focal process. We investigate a special case that is rich enough to model both carrying capacity and frequency-dependent selection while yielding tractable message-passing likelihoods in the context of a phylogenetic birth–death model.

从深时物种宏观进化到快速病毒进化和体细胞增殖,多种类型的出生-死亡过程是从系统发育树推断跨生物尺度进化动态的基础方法。目前的系统发育出生-死亡模型的局限性在于,它们需要限制性的线性假设,这些假设可以产生可控的信息传递可能性,但也排除了个体之间的相互作用。许多基本的进化过程--如环境承载力或频率依赖性选择--都包含相互作用,并可能对某些系统的动力学产生重大影响。在这里,我们引入了一个多类型的出生-死亡过程,该过程与焦点过程的集合复制发生均场相互作用。我们证明,在相当一般的条件下,在无限集合的极限中,集合随机演化的相互作用场会收敛到确定性轨迹。在这一极限中,复制品有效解耦,自洽的相互作用作为非线性出现在焦点过程的无限小发生器中。我们研究了一个特例,它的丰富程度足以模拟承载能力和频率依赖性选择,同时在系统发育出生-死亡模型的背景下产生可处理的信息传递似然。
{"title":"Mean-field interacting multi-type birth–death processes with a view to applications in phylodynamics","authors":"William S. DeWitt ,&nbsp;Steven N. Evans ,&nbsp;Ella Hiesmayr ,&nbsp;Sebastian Hummel","doi":"10.1016/j.tpb.2024.07.002","DOIUrl":"10.1016/j.tpb.2024.07.002","url":null,"abstract":"<div><p>Multi-type birth–death processes underlie approaches for inferring evolutionary dynamics from phylogenetic trees across biological scales, ranging from deep-time species macroevolution to rapid viral evolution and somatic cellular proliferation. A limitation of current phylogenetic birth–death models is that they require restrictive linearity assumptions that yield tractable message-passing likelihoods, but that also preclude interactions between individuals. Many fundamental evolutionary processes – such as environmental carrying capacity or frequency-dependent selection – entail interactions, and may strongly influence the dynamics in some systems. Here, we introduce a multi-type birth–death process in mean-field interaction with an ensemble of replicas of the focal process. We prove that, under quite general conditions, the ensemble’s stochastically evolving interaction field converges to a <em>deterministic</em> trajectory in the limit of an infinite ensemble. In this limit, the replicas effectively decouple, and self-consistent interactions appear as nonlinearities in the infinitesimal generator of the focal process. We investigate a special case that is rich enough to model both carrying capacity and frequency-dependent selection while yielding tractable message-passing likelihoods in the context of a phylogenetic birth–death model.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"159 ","pages":"Pages 1-12"},"PeriodicalIF":1.2,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000753/pdfft?md5=449649d0ee10fbb5ed718ac4824a76ef&pid=1-s2.0-S0040580924000753-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141635178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial invasion of cooperative parasites 合作寄生虫的空间入侵。
IF 1.2 4区 生物学 Q4 ECOLOGY Pub Date : 2024-07-09 DOI: 10.1016/j.tpb.2024.07.001

In this paper we study invasion probabilities and invasion times of cooperative parasites spreading in spatially structured host populations. The spatial structure of the host population is given by a random geometric graph on [0,1]n, nN, with a Poisson(N)-distributed number of vertices and in which vertices are connected over an edge when they have a distance of at most rN with rN of order N(β1)/n for some 0<β<1. At a host infection many parasites are generated and parasites move along edges to neighbouring hosts. We assume that parasites have to cooperate to infect hosts, in the sense that at least two parasites need to attack a host simultaneously. We find lower and upper bounds on the invasion probability of the parasites in terms of survival probabilities of branching processes with cooperation. Furthermore, we characterize the asymptotic invasion time.

An important ingredient of the proofs is a comparison with infection dynamics of cooperative parasites in host populations structured according to a complete graph, i.e. in well-mixed host populations. For these infection processes we can show that invasion probabilities are asymptotically equal to survival probabilities of branching processes with cooperation. Furthermore, we build on proof techniques developed in Brouard and Pokalyuk (2022), where an analogous invasion process has been studied for host populations structured according to a configuration model.

We substantiate our results with simulations.

本文研究了在空间结构宿主种群中传播的合作寄生虫的入侵概率和入侵时间。宿主种群的空间结构由[0,1]n, n∈N 上的随机几何图给出,图中顶点的数量是泊松(N)分布的,当顶点之间的距离最多为 rN 时,它们通过边相连,rN 的阶数为 N(β-1)/n,对于某个 0
{"title":"Spatial invasion of cooperative parasites","authors":"","doi":"10.1016/j.tpb.2024.07.001","DOIUrl":"10.1016/j.tpb.2024.07.001","url":null,"abstract":"<div><p>In this paper we study invasion probabilities and invasion times of cooperative parasites spreading in spatially structured host populations. The spatial structure of the host population is given by a random geometric graph on <span><math><msup><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, with a Poisson<span><math><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></math></span>-distributed number of vertices and in which vertices are connected over an edge when they have a distance of at most <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> with <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> of order <span><math><msup><mrow><mi>N</mi></mrow><mrow><mrow><mo>(</mo><mi>β</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>/</mo><mi>n</mi></mrow></msup></math></span> for some <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>β</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>. At a host infection many parasites are generated and parasites move along edges to neighbouring hosts. We assume that parasites have to cooperate to infect hosts, in the sense that at least two parasites need to attack a host simultaneously. We find lower and upper bounds on the invasion probability of the parasites in terms of survival probabilities of branching processes with cooperation. Furthermore, we characterize the asymptotic invasion time.</p><p>An important ingredient of the proofs is a comparison with infection dynamics of cooperative parasites in host populations structured according to a complete graph, i.e. in well-mixed host populations. For these infection processes we can show that invasion probabilities are asymptotically equal to survival probabilities of branching processes with cooperation. Furthermore, we build on proof techniques developed in Brouard and Pokalyuk (2022), where an analogous invasion process has been studied for host populations structured according to a configuration model.</p><p>We substantiate our results with simulations.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"159 ","pages":"Pages 35-58"},"PeriodicalIF":1.2,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000686/pdfft?md5=7baf961ab53e2f51f9344de949b836db&pid=1-s2.0-S0040580924000686-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141591851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal variability can promote migration between habitats 时间变化可促进栖息地之间的迁移。
IF 1.2 4区 生物学 Q4 ECOLOGY Pub Date : 2024-06-24 DOI: 10.1016/j.tpb.2024.06.005
Harman Jaggi , David Steinsaltz , Shripad Tuljapurkar

Understanding the conditions that promote the evolution of migration is important in ecology and evolution. When environments are fixed and there is one most favorable site, migration to other sites lowers overall growth rate and is not favored. Here we ask, can environmental variability favor migration when there is one best site on average? Previous work suggests that the answer is yes, but a general and precise answer remained elusive. Here we establish new, rigorous inequalities to show (and use simulations to illustrate) how stochastic growth rate can increase with migration when fitness (dis)advantages fluctuate over time across sites. The effect of migration between sites on the overall stochastic growth rate depends on the difference in expected growth rates and the variance of the fluctuating difference in growth rates. When fluctuations (variance) are large, a population can benefit from bursts of higher growth in sites that are worse on average. Such bursts become more probable as the between-site variance increases. Our results apply to many ( 2) sites, and reveal an interplay between the length of paths between sites, the average differences in site-specific growth rates, and the size of fluctuations. Our findings have implications for evolutionary biology as they provide conditions for departure from the reduction principle, and for ecological dynamics: even when there are superior sites in a sea of poor habitats, variability and habitat quality across space determine the importance of migration.

了解促进迁移进化的条件在生态学和进化论中非常重要。当环境固定且存在一个最有利的地点时,向其他地点迁移会降低整体生长率,因而不被看好。在这里,我们要问的是,当平均只有一个最佳地点时,环境变异是否有利于迁移?以前的研究表明答案是肯定的,但一个普遍而精确的答案仍然难以捉摸。在这里,我们建立了新的、严格的不等式,以显示(并使用模拟来说明)当不同地点的适应性(不)优势随时间波动时,随机增长率如何随着迁移而增加。不同地点之间的迁移对总体随机增长率的影响取决于预期增长率的差异和增长率波动差异的方差。当波动(方差)较大时,一个种群可以从平均增长率较低的地点的突发高增长中获益。随着地点间差异的增大,这种突发性增长的可能性也会增大。我们的结果适用于许多(≥ 2)地点,并揭示了地点间路径长度、地点特定增长率的平均差异和波动大小之间的相互作用。我们的发现对进化生物学和生态动力学都有意义,因为它们为偏离还原原则提供了条件:即使在一片贫瘠的栖息地中存在优越的地点,空间的变异性和栖息地的质量也决定了迁移的重要性。
{"title":"Temporal variability can promote migration between habitats","authors":"Harman Jaggi ,&nbsp;David Steinsaltz ,&nbsp;Shripad Tuljapurkar","doi":"10.1016/j.tpb.2024.06.005","DOIUrl":"10.1016/j.tpb.2024.06.005","url":null,"abstract":"<div><p>Understanding the conditions that promote the evolution of migration is important in ecology and evolution. When environments are fixed and there is one most favorable site, migration to other sites lowers overall growth rate and is not favored. Here we ask, can environmental variability favor migration when there is one best site on average? Previous work suggests that the answer is yes, but a general and precise answer remained elusive. Here we establish new, rigorous inequalities to show (and use simulations to illustrate) how stochastic growth rate can increase with migration when fitness (dis)advantages fluctuate over time across sites. The effect of migration between sites on the overall stochastic growth rate depends on the difference in expected growth rates and the variance of the fluctuating difference in growth rates. When fluctuations (variance) are large, a population can benefit from bursts of higher growth in sites that are worse on average. Such bursts become more probable as the between-site variance increases. Our results apply to many (<span><math><mo>≥</mo></math></span> 2) sites, and reveal an interplay between the length of paths between sites, the average differences in site-specific growth rates, and the size of fluctuations. Our findings have implications for evolutionary biology as they provide conditions for departure from the reduction principle, and for ecological dynamics: even when there are superior sites in a sea of poor habitats, variability and habitat quality across space determine the importance of migration.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"158 ","pages":"Pages 195-205"},"PeriodicalIF":1.2,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Host control and species interactions jointly determine microbiome community structure 宿主控制和物种相互作用共同决定了微生物群落结构。
IF 1.2 4区 生物学 Q4 ECOLOGY Pub Date : 2024-06-24 DOI: 10.1016/j.tpb.2024.06.006
Eeman Abbasi, Erol Akçay

The host microbiome can be considered an ecological community of microbes present inside a complex and dynamic host environment. The host is under selective pressure to ensure that its microbiome remains beneficial. The host can impose a range of ecological filters including the immune response that can influence the assembly and composition of the microbial community. How the host immune response interacts with the within-microbiome community dynamics to affect the assembly of the microbiome has been largely unexplored. We present here a mathematical framework to elucidate the role of host immune response and its interaction with the balance of ecological interactions types within the microbiome community. We find that highly mutualistic microbial communities characteristic of high community density are most susceptible to changes in immune control and become invasion prone as host immune control strength is increased. Whereas highly competitive communities remain relatively stable in resisting invasion to changing host immune control. Our model reveals that the host immune control can interact in unexpected ways with a microbial community depending on the prevalent ecological interactions types for that community. We stress the need to incorporate the role of host-control mechanisms to better understand microbiome community assembly and stability.

宿主微生物组可被视为存在于复杂多变的宿主环境中的微生物生态群落。宿主受到选择性压力,以确保其微生物群保持有益状态。宿主可以施加一系列生态过滤器,包括影响微生物群落组装和组成的免疫反应。宿主的免疫反应如何与微生物群落内部的动态相互作用,从而影响微生物群落的组装,这在很大程度上还没有被探索。我们在此提出一个数学框架,以阐明宿主免疫反应的作用及其与微生物群落内生态相互作用类型平衡的相互作用。我们发现,以高群落密度为特征的高度互利性微生物群落最容易受到免疫控制变化的影响,并随着宿主免疫控制强度的增加而变得容易受到入侵。而高度竞争性群落在抵御宿主免疫控制变化的入侵方面保持相对稳定。我们的模型揭示了宿主免疫控制可以以意想不到的方式与微生物群落相互作用,这取决于该群落的普遍生态相互作用类型。我们强调有必要纳入宿主控制机制的作用,以更好地理解微生物群落的组装和稳定性。
{"title":"Host control and species interactions jointly determine microbiome community structure","authors":"Eeman Abbasi,&nbsp;Erol Akçay","doi":"10.1016/j.tpb.2024.06.006","DOIUrl":"10.1016/j.tpb.2024.06.006","url":null,"abstract":"<div><p>The host microbiome can be considered an ecological community of microbes present inside a complex and dynamic host environment. The host is under selective pressure to ensure that its microbiome remains beneficial. The host can impose a range of ecological filters including the immune response that can influence the assembly and composition of the microbial community. How the host immune response interacts with the within-microbiome community dynamics to affect the assembly of the microbiome has been largely unexplored. We present here a mathematical framework to elucidate the role of host immune response and its interaction with the balance of ecological interactions types within the microbiome community. We find that highly mutualistic microbial communities characteristic of high community density are most susceptible to changes in immune control and become invasion prone as host immune control strength is increased. Whereas highly competitive communities remain relatively stable in resisting invasion to changing host immune control. Our model reveals that the host immune control can interact in unexpected ways with a microbial community depending on the prevalent ecological interactions types for that community. We stress the need to incorporate the role of host-control mechanisms to better understand microbiome community assembly and stability.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"158 ","pages":"Pages 185-194"},"PeriodicalIF":1.2,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141460283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unifying quantification methods for sexual selection and assortative mating using information theory 利用信息论统一性选择和同类交配的量化方法。
IF 1.2 4区 生物学 Q4 ECOLOGY Pub Date : 2024-06-23 DOI: 10.1016/j.tpb.2024.06.007
A. Carvajal-Rodríguez

Sexual selection plays a crucial role in modern evolutionary theory, offering valuable insight into evolutionary patterns and species diversity. Recently, a comprehensive definition of sexual selection has been proposed, defining it as any selection that arises from fitness differences associated with nonrandom success in the competition for access to gametes for fertilization. Previous research on discrete traits demonstrated that non-random mating can be effectively quantified using Jeffreys (or symmetrized Kullback-Leibler) divergence, capturing information acquired through mating influenced by mutual mating propensities instead of random occurrences. This novel theoretical framework allows for detecting and assessing the strength of sexual selection and assortative mating.

In this study, we aim to achieve two primary objectives. Firstly, we demonstrate the seamless alignment of the previous theoretical development, rooted in information theory and mutual mating propensity, with the aforementioned definition of sexual selection. Secondly, we extend the theory to encompass quantitative traits. Our findings reveal that sexual selection and assortative mating can be quantified effectively for quantitative traits by measuring the information gain relative to the random mating pattern. The connection of the information indices of sexual selection with the classical measures of sexual selection is established.

Additionally, if mating traits are normally distributed, the measure capturing the underlying information of assortative mating is a function of the square of the correlation coefficient, taking values within the non-negative real number set [0, +∞).

It is worth noting that the same divergence measure captures information acquired through mating for both discrete and quantitative traits. This is interesting as it provides a common context and can help simplify the study of sexual selection patterns.

性选择在现代进化理论中起着至关重要的作用,它为了解进化模式和物种多样性提供了宝贵的见解。最近,有人对性选择提出了一个全面的定义,将其界定为在获得受精配子的竞争中与非随机成功相关的适应性差异所产生的任何选择。以前对离散性状的研究表明,非随机交配可以通过杰弗里斯(或对称库尔贝克-莱伯勒)分歧有效地量化,从而捕捉到受相互交配倾向影响而不是随机发生的交配所获得的信息。这种新颖的理论框架可用于检测和评估性选择和同类交配的强度。在这项研究中,我们旨在实现两个主要目标。首先,我们证明了之前以信息论和相互交配倾向为基础的理论发展与上述性选择定义的无缝对接。其次,我们将这一理论扩展到数量性状。我们的研究结果表明,通过测量相对于随机交配模式的信息增益,性选择和同配可以有效地量化数量性状。性选择的信息指数与性选择的经典测量方法之间的联系已经建立。此外,如果交配性状是正态分布的,则捕捉同类交配基本信息的测量值是相关系数平方的函数,取值范围是非负实数集[0,+∞]。值得注意的是,相同的分歧度量可以捕捉到离散性状和数量性状通过交配获得的信息。这一点很有意思,因为它提供了一个共同的背景,有助于简化性选择模式的研究。
{"title":"Unifying quantification methods for sexual selection and assortative mating using information theory","authors":"A. Carvajal-Rodríguez","doi":"10.1016/j.tpb.2024.06.007","DOIUrl":"10.1016/j.tpb.2024.06.007","url":null,"abstract":"<div><p>Sexual selection plays a crucial role in modern evolutionary theory, offering valuable insight into evolutionary patterns and species diversity. Recently, a comprehensive definition of sexual selection has been proposed, defining it as any selection that arises from fitness differences associated with nonrandom success in the competition for access to gametes for fertilization. Previous research on discrete traits demonstrated that non-random mating can be effectively quantified using Jeffreys (or symmetrized Kullback-Leibler) divergence, capturing information acquired through mating influenced by mutual mating propensities instead of random occurrences. This novel theoretical framework allows for detecting and assessing the strength of sexual selection and assortative mating.</p><p>In this study, we aim to achieve two primary objectives. Firstly, we demonstrate the seamless alignment of the previous theoretical development, rooted in information theory and mutual mating propensity, with the aforementioned definition of sexual selection. Secondly, we extend the theory to encompass quantitative traits. Our findings reveal that sexual selection and assortative mating can be quantified effectively for quantitative traits by measuring the information gain relative to the random mating pattern. The connection of the information indices of sexual selection with the classical measures of sexual selection is established.</p><p>Additionally, if mating traits are normally distributed, the measure capturing the underlying information of assortative mating is a function of the square of the correlation coefficient, taking values within the non-negative real number set [0, +∞).</p><p>It is worth noting that the same divergence measure captures information acquired through mating for both discrete and quantitative traits. This is interesting as it provides a common context and can help simplify the study of sexual selection patterns.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"158 ","pages":"Pages 206-215"},"PeriodicalIF":1.2,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000650/pdfft?md5=a22dea1ed5eeb299ff36e9cf8734d81b&pid=1-s2.0-S0040580924000650-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic viability in an island model with partial dispersal: Approximation by a diffusion process in the limit of a large number of islands 部分分散的岛屿模型中的随机生存能力:大量岛屿限制下的扩散过程近似。
IF 1.2 4区 生物学 Q4 ECOLOGY Pub Date : 2024-06-21 DOI: 10.1016/j.tpb.2024.06.003
Dhaker Kroumi , Sabin Lessard
<div><p>In this paper, we investigate a finite population undergoing evolution through an island model with partial dispersal and without mutation, where generations are discrete and non-overlapping. The population is structured into <span><math><mi>D</mi></math></span> demes, each containing <span><math><mi>N</mi></math></span> individuals of two possible types, <span><math><mi>A</mi></math></span> and <span><math><mi>B</mi></math></span>, whose viability coefficients, <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span>, respectively, vary randomly from one generation to the next. We assume that the means, variances and covariance of the viability coefficients are inversely proportional to the number of demes <span><math><mi>D</mi></math></span>, while higher-order moments are negligible in comparison to <span><math><mrow><mn>1</mn><mo>/</mo><mi>D</mi></mrow></math></span>. We use a discrete-time Markov chain with two timescales to model the evolutionary process, and we demonstrate that as the number of demes <span><math><mi>D</mi></math></span> approaches infinity, the accelerated Markov chain converges to a diffusion process for any deme size <span><math><mrow><mi>N</mi><mo>≥</mo><mn>2</mn></mrow></math></span>. This diffusion process allows us to evaluate the fixation probability of type <span><math><mi>A</mi></math></span> following its introduction as a single mutant in a population that was fixed for type <span><math><mi>B</mi></math></span>. We explore the impact of increasing the variability in the viability coefficients on this fixation probability. At least when <span><math><mi>N</mi></math></span> is large enough, it is shown that increasing this variability for type <span><math><mi>B</mi></math></span> or decreasing it for type <span><math><mi>A</mi></math></span> leads to an increase in the fixation probability of a single <span><math><mi>A</mi></math></span>. The effect of the population-scaled variances, <span><math><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> and <span><math><msubsup><mrow><mi>σ</mi></mrow><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, can even cancel the effects of the population-scaled means, <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>A</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span>. We also show that the fixation probability of a single <span><math><mi>A</mi></math></span> increases as the deme-scaled migration rate increases. Moreover, this probability is higher for type <span><math><mi>A</mi></math></span> than for type <span><math><mi>B</mi></math></span> if the population-scaled geometric mean viability coefficient is higher for type <span><math><mi>A</mi></math></span> than for type <span><math><mi>B</mi></math></span>,
在本文中,我们研究了一个有限种群的进化过程,该种群是通过部分扩散和无突变的岛屿模型进化而来的,其世代是离散和非重叠的。种群结构分为 D 个种群,每个种群包含 N 个个体,分别属于 A 和 B 两种可能的类型,其生存能力系数 sA 和 sB 在世代间随机变化。我们假设生命力系数的均值、方差和协方差与种群数量 D 成反比,而高阶矩与 1/D 相比可以忽略不计。我们使用具有两种时间尺度的离散-时间马尔可夫链来模拟演化过程,并证明了当种群数量 D 接近无穷大时,对于任何种群数量 N≥2 的种群,加速马尔可夫链都会收敛到一个扩散过程。通过这一扩散过程,我们可以评估 A 型作为单一突变体引入 B 型固定种群后的固定概率。至少当 N 足够大时,我们发现增加 B 型的变异性或减少 A 型的变异性都会导致单个 A 的固定概率增加。种群标度方差 σA2 和 σB2 的影响甚至可以抵消种群标度平均值 μA 和 μB 的影响。我们还发现,单个 A 的固定概率会随着种群迁移率的增加而增加。此外,如果 A 型的种群几何平均活力系数高于 B 型,则 A 型的固定概率高于 B 型,这意味着 μA-σA2/2>μB-σB2/2.
{"title":"Stochastic viability in an island model with partial dispersal: Approximation by a diffusion process in the limit of a large number of islands","authors":"Dhaker Kroumi ,&nbsp;Sabin Lessard","doi":"10.1016/j.tpb.2024.06.003","DOIUrl":"10.1016/j.tpb.2024.06.003","url":null,"abstract":"&lt;div&gt;&lt;p&gt;In this paper, we investigate a finite population undergoing evolution through an island model with partial dispersal and without mutation, where generations are discrete and non-overlapping. The population is structured into &lt;span&gt;&lt;math&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; demes, each containing &lt;span&gt;&lt;math&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; individuals of two possible types, &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, whose viability coefficients, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, respectively, vary randomly from one generation to the next. We assume that the means, variances and covariance of the viability coefficients are inversely proportional to the number of demes &lt;span&gt;&lt;math&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, while higher-order moments are negligible in comparison to &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. We use a discrete-time Markov chain with two timescales to model the evolutionary process, and we demonstrate that as the number of demes &lt;span&gt;&lt;math&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; approaches infinity, the accelerated Markov chain converges to a diffusion process for any deme size &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. This diffusion process allows us to evaluate the fixation probability of type &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; following its introduction as a single mutant in a population that was fixed for type &lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. We explore the impact of increasing the variability in the viability coefficients on this fixation probability. At least when &lt;span&gt;&lt;math&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is large enough, it is shown that increasing this variability for type &lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; or decreasing it for type &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; leads to an increase in the fixation probability of a single &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. The effect of the population-scaled variances, &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;, can even cancel the effects of the population-scaled means, &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. We also show that the fixation probability of a single &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; increases as the deme-scaled migration rate increases. Moreover, this probability is higher for type &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; than for type &lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; if the population-scaled geometric mean viability coefficient is higher for type &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; than for type &lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;,","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"158 ","pages":"Pages 170-184"},"PeriodicalIF":1.2,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The coalescent in finite populations with arbitrary, fixed structure 具有任意固定结构的有限种群的凝聚力。
IF 1.2 4区 生物学 Q4 ECOLOGY Pub Date : 2024-06-14 DOI: 10.1016/j.tpb.2024.06.004
Benjamin Allen , Alex McAvoy

The coalescent is a stochastic process representing ancestral lineages in a population undergoing neutral genetic drift. Originally defined for a well-mixed population, the coalescent has been adapted in various ways to accommodate spatial, age, and class structure, along with other features of real-world populations. To further extend the range of population structures to which coalescent theory applies, we formulate a coalescent process for a broad class of neutral drift models with arbitrary – but fixed – spatial, age, sex, and class structure, haploid or diploid genetics, and any fixed mating pattern. Here, the coalescent is represented as a random sequence of mappings C=Ctt=0 from a finite set G to itself. The set G represents the “sites” (in individuals, in particular locations and/or classes) at which these alleles can live. The state of the coalescent, Ct:GG, maps each site gG to the site containing g’s ancestor, t time-steps into the past. Using this representation, we define and analyze coalescence time, coalescence branch length, mutations prior to coalescence, and stationary probabilities of identity-by-descent and identity-by-state. For low mutation, we provide a recipe for computing identity-by-descent and identity-by-state probabilities via the coalescent. Applying our results to a diploid population with arbitrary sex ratio r, we find that measures of genetic dissimilarity, among any set of sites, are scaled by 4r(1r) relative to the even sex ratio case.

凝聚态是一个随机过程,代表了一个种群中发生中性遗传漂移的祖先系谱。凝聚态最初是针对混合良好的种群而定义的,后来经过各种调整,以适应空间结构、年龄结构、阶级结构以及现实世界种群的其他特征。为了进一步扩大凝聚态理论适用的种群结构范围,我们为一大类具有任意但固定的空间、年龄、性别和阶级结构、单倍体或二倍体遗传以及任何固定交配模式的中性漂移模型制定了凝聚态过程。在这里,聚合被表示为从有限集合 G 到自身的随机映射序列[公式:见正文]。集合 G 代表这些等位基因可以存活的 "位点"(个体、特定位置和/或类别)。凝聚状态 Ct:G→G 将每个位点 g∈G 映射到过去 t 个时间步中包含 g 祖先的位点。利用这种表示方法,我们定义并分析了凝聚时间、凝聚分支长度、凝聚前的突变以及按祖先和按状态识别的静态概率。对于低突变,我们提供了通过凝聚计算逐世系同一性和逐状态同一性概率的方法。将我们的结果应用于具有任意性别比 r 的二倍体种群,我们发现相对于偶数性别比的情况,任何一组位点间遗传异质性的测量值都是按 4r(1-r)缩放的。
{"title":"The coalescent in finite populations with arbitrary, fixed structure","authors":"Benjamin Allen ,&nbsp;Alex McAvoy","doi":"10.1016/j.tpb.2024.06.004","DOIUrl":"10.1016/j.tpb.2024.06.004","url":null,"abstract":"<div><p>The coalescent is a stochastic process representing ancestral lineages in a population undergoing neutral genetic drift. Originally defined for a well-mixed population, the coalescent has been adapted in various ways to accommodate spatial, age, and class structure, along with other features of real-world populations. To further extend the range of population structures to which coalescent theory applies, we formulate a coalescent process for a broad class of neutral drift models with arbitrary – but fixed – spatial, age, sex, and class structure, haploid or diploid genetics, and any fixed mating pattern. Here, the coalescent is represented as a random sequence of mappings <span><math><mrow><mi>C</mi><mo>=</mo><msubsup><mrow><mfenced><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></mfenced></mrow><mrow><mi>t</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></mrow></math></span> from a finite set <span><math><mi>G</mi></math></span> to itself. The set <span><math><mi>G</mi></math></span> represents the “sites” (in individuals, in particular locations and/or classes) at which these alleles can live. The state of the coalescent, <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>:</mo><mi>G</mi><mo>→</mo><mi>G</mi></mrow></math></span>, maps each site <span><math><mrow><mi>g</mi><mo>∈</mo><mi>G</mi></mrow></math></span> to the site containing <span><math><mi>g</mi></math></span>’s ancestor, <span><math><mi>t</mi></math></span> time-steps into the past. Using this representation, we define and analyze coalescence time, coalescence branch length, mutations prior to coalescence, and stationary probabilities of identity-by-descent and identity-by-state. For low mutation, we provide a recipe for computing identity-by-descent and identity-by-state probabilities via the coalescent. Applying our results to a diploid population with arbitrary sex ratio <span><math><mi>r</mi></math></span>, we find that measures of genetic dissimilarity, among any set of sites, are scaled by <span><math><mrow><mn>4</mn><mi>r</mi><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> relative to the even sex ratio case.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"158 ","pages":"Pages 150-169"},"PeriodicalIF":1.2,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000649/pdfft?md5=a09fbbcdb9b66c124896eb3ccc9340db&pid=1-s2.0-S0040580924000649-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141332353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the connections between the spatial Lambda–Fleming–Viot model and other processes for analysing geo-referenced genetic data 空间 Lambda-Fleming-Viot 模型与分析地理参照遗传数据的其他过程之间的联系。
IF 1.2 4区 生物学 Q4 ECOLOGY Pub Date : 2024-06-11 DOI: 10.1016/j.tpb.2024.06.002
Johannes Wirtz, Stéphane Guindon

The introduction of the spatial Lambda-Fleming–Viot model (ΛV) in population genetics was mainly driven by the pioneering work of Alison Etheridge, in collaboration with Nick Barton and Amandine Véber about ten years ago (Barton et al., 2010; Barton et al., 2013). The ΛV model provides a sound mathematical framework for describing the evolution of a population of related individuals along a spatial continuum. It alleviates the “pain in the torus” issue with Wright and Malécot’s isolation by distance model and is sampling consistent, making it a tool of choice for statistical inference. Yet, little is known about the potential connections between the ΛV and other stochastic processes generating trees and the spatial coordinates along the corresponding lineages. This work focuses on a version of the ΛV whereby lineages move rapidly over small distances. Using simulations, we show that the induced ΛV tree-generating process is well approximated by a birth–death model. Our results also indicate that Brownian motions modelling the movements of lines of descent along birth–death trees do not generally provide a good approximation of the ΛV due to habitat boundaries effects that play an increasingly important role in the long run. Accounting for habitat boundaries through reflected Brownian motions considerably increases the similarity to the ΛV model however. Finally, we describe efficient algorithms for fast simulation of the backward and forward in time versions of the ΛV model.

在群体遗传学中引入空间兰姆达-弗莱明-维奥特模型(ΛV)主要是由艾莉森-埃瑟里奇(Alison Etheridge)与尼克-巴顿(Nick Barton)和阿曼丁-韦伯(Amandine Véber)在十年前合作开展的开创性工作推动的(巴顿等人,2010;巴顿等人,2013)。ΛV模型提供了一个合理的数学框架,用于描述由相关个体组成的种群沿着空间连续体的演化过程。它缓解了 Wright 和 Malécot 的距离隔离模型所带来的 "环中之痛 "问题,并且具有采样一致性,是统计推断的首选工具。然而,人们对ΛV 和其他产生树的随机过程与相应世系的空间坐标之间的潜在联系知之甚少。这项研究的重点是ΛV的一个版本,在这个版本中,树系在小范围内快速移动。通过模拟,我们发现诱导的ΛV 树生成过程很好地近似于出生-死亡模型。我们的结果还表明,由于栖息地边界效应在长期内发挥着越来越重要的作用,以布朗运动模拟沿出生-死亡树的世系移动一般不能很好地近似ΛV。然而,通过反射布朗运动对栖息地边界的考虑大大增加了与ΛV模型的相似性。最后,我们介绍了快速模拟 ΛV 模型后向和前向时间版本的有效算法。
{"title":"On the connections between the spatial Lambda–Fleming–Viot model and other processes for analysing geo-referenced genetic data","authors":"Johannes Wirtz,&nbsp;Stéphane Guindon","doi":"10.1016/j.tpb.2024.06.002","DOIUrl":"10.1016/j.tpb.2024.06.002","url":null,"abstract":"<div><p>The introduction of the spatial Lambda-Fleming–Viot model (<span><math><mi>Λ</mi></math></span>V) in population genetics was mainly driven by the pioneering work of Alison Etheridge, in collaboration with Nick Barton and Amandine Véber about ten years ago (Barton et al., 2010; Barton et al., 2013). The <span><math><mi>Λ</mi></math></span>V model provides a sound mathematical framework for describing the evolution of a population of related individuals along a spatial continuum. It alleviates the “pain in the torus” issue with Wright and Malécot’s isolation by distance model and is sampling consistent, making it a tool of choice for statistical inference. Yet, little is known about the potential connections between the <span><math><mi>Λ</mi></math></span>V and other stochastic processes generating trees and the spatial coordinates along the corresponding lineages. This work focuses on a version of the <span><math><mi>Λ</mi></math></span>V whereby lineages move rapidly over small distances. Using simulations, we show that the induced <span><math><mi>Λ</mi></math></span>V tree-generating process is well approximated by a birth–death model. Our results also indicate that Brownian motions modelling the movements of lines of descent along birth–death trees do not generally provide a good approximation of the <span><math><mi>Λ</mi></math></span>V due to habitat boundaries effects that play an increasingly important role in the long run. Accounting for habitat boundaries through reflected Brownian motions considerably increases the similarity to the <span><math><mi>Λ</mi></math></span>V model however. Finally, we describe efficient algorithms for fast simulation of the backward and forward in time versions of the <span><math><mi>Λ</mi></math></span>V model.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"158 ","pages":"Pages 139-149"},"PeriodicalIF":1.2,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000625/pdfft?md5=ee7a75c55ad9b2bf9efb8f20c6348b32&pid=1-s2.0-S0040580924000625-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141318748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Muller’s ratchet in a near-critical regime: Tournament versus fitness proportional selection 近临界机制中的穆勒棘轮:锦标赛与适应性比例选择。
IF 1.4 4区 生物学 Q4 ECOLOGY Pub Date : 2024-06-04 DOI: 10.1016/j.tpb.2024.06.001
J.L. Igelbrink , A. González Casanova , C. Smadi , A. Wakolbinger

Muller’s ratchet, in its prototype version, models a haploid, asexual population whose size N is constant over the generations. Slightly deleterious mutations are acquired along the lineages at a constant rate, and individuals carrying less mutations have a selective advantage. The classical variant considers fitness proportional selection, but other fitness schemes are conceivable as well. Inspired by the work of Etheridge et al. (2009) we propose a parameter scaling which fits well to the “near-critical” regime that was in the focus of Etheridge et al. (2009) (and in which the mutation–selection ratio diverges logarithmically as N). Using a Moran model, we investigate the“rule of thumb” given in Etheridge et al. (2009) for the click rate of the “classical ratchet” by putting it into the context of new results on the long-time evolution of the size of the best class of the ratchet with (binary) tournament selection. This variant of Muller’s ratchet was introduced in González Casanova et al. (2023), and was analysed there in a subcritical parameter regime. Other than that of the classical ratchet, the size of the best class of the tournament ratchet follows an autonomous dynamics up to the time of its extinction. It turns out that, under a suitable correspondence of the model parameters, this dynamics coincides with the so called Poisson profile approximation of the dynamics of the best class of the classical ratchet.

穆勒棘轮模型的原型是一个单倍体无性种群,其规模 N 在世代中保持不变。轻微的有害突变以恒定的速度沿种系获得,携带较少突变的个体具有选择优势。经典变体考虑的是适合度比例选择,但也可以设想其他适合度方案。受 Etheridge 等人(2009 年)的研究启发,我们提出了一种参数缩放方法,该方法非常适合 Etheridge 等人(2009 年)重点研究的 "近临界 "机制(其中突变-选择比随着 N→∞ 的对数发散)。利用莫兰模型,我们研究了埃瑟里奇等人(2009)在 "经典棘轮 "点击率方面给出的 "经验法则",并将其与带有(二元)锦标赛选择的棘轮最佳类别大小的长期演化的新结果结合起来。González 等人(2023 年)介绍了穆勒棘轮的这一变体,并在亚临界参数机制下对其进行了分析。与经典的棘轮选择不同,锦标赛棘轮选择的最佳等级的大小在其消亡之前都是自主动态变化的。事实证明,在模型参数的适当对应关系下,这种动态与经典棘轮最佳类的动态的所谓泊松轮廓近似值相吻合。
{"title":"Muller’s ratchet in a near-critical regime: Tournament versus fitness proportional selection","authors":"J.L. Igelbrink ,&nbsp;A. González Casanova ,&nbsp;C. Smadi ,&nbsp;A. Wakolbinger","doi":"10.1016/j.tpb.2024.06.001","DOIUrl":"10.1016/j.tpb.2024.06.001","url":null,"abstract":"<div><p>Muller’s ratchet, in its prototype version, models a haploid, asexual population whose size <span><math><mi>N</mi></math></span> is constant over the generations. Slightly deleterious mutations are acquired along the lineages at a constant rate, and individuals carrying less mutations have a selective advantage. The classical variant considers <em>fitness proportional</em> selection, but other fitness schemes are conceivable as well. Inspired by the work of Etheridge et al. (2009) we propose a parameter scaling which fits well to the “near-critical” regime that was in the focus of Etheridge et al. (2009) (and in which the mutation–selection ratio diverges logarithmically as <span><math><mrow><mi>N</mi><mo>→</mo><mi>∞</mi></mrow></math></span>). Using a Moran model, we investigate the“rule of thumb” given in Etheridge et al. (2009) for the click rate of the “classical ratchet” by putting it into the context of new results on the long-time evolution of the size of the best class of the ratchet with (binary) tournament selection. This variant of Muller’s ratchet was introduced in González Casanova et al. (2023), and was analysed there in a subcritical parameter regime. Other than that of the classical ratchet, the size of the best class of the tournament ratchet follows an autonomous dynamics up to the time of its extinction. It turns out that, under a suitable correspondence of the model parameters, this dynamics coincides with the so called Poisson profile approximation of the dynamics of the best class of the classical ratchet.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"158 ","pages":"Pages 121-138"},"PeriodicalIF":1.4,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0040580924000613/pdfft?md5=39cd36b5168e3c4b5182ac2584e304f9&pid=1-s2.0-S0040580924000613-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Persistence in repeated games encourages the evolution of spite 在重复的游戏中坚持不懈,会促进怨恨的进化。
IF 1.4 4区 生物学 Q4 ECOLOGY Pub Date : 2024-05-31 DOI: 10.1016/j.tpb.2024.05.001
Shun Kurokawa

Social behavior is divided into four types: altruism, spite, mutualism, and selfishness. The former two are costly to the actor; therefore, from the perspective of natural selection, their existence can be regarded as mysterious. One potential setup which encourages the evolution of altruism and spite is repeated interaction. Players can behave conditionally based on their opponent's previous actions in the repeated interaction. On the one hand, the retaliatory strategy (who behaves altruistically when their opponent behaved altruistically and behaves non-altruistically when the opponent player behaved non-altruistically) is likely to evolve when players choose altruistic or selfish behavior in each round. On the other hand, the anti-retaliatory strategy (who is spiteful when the opponent was not spiteful and is not spiteful when the opponent player was spiteful) is likely to evolve when players opt for spiteful or mutualistic behavior in each round. These successful conditional behaviors can be favored by natural selection. Here, we notice that information on opponent players’ actions is not always available. When there is no such information, players cannot determine their behavior according to their opponent's action. By investigating the case of altruism, a previous study (Kurokawa, 2017, Mathematical Biosciences, 286, 94–103) found that persistent altruistic strategies, which choose the same action as the own previous action, are favored by natural selection. How, then, should a spiteful conditional strategy behave when the player does not know what their opponent did? By studying the repeated game, we find that persistent spiteful strategies, which choose the same action as the own previous action, are favored by natural selection. Altruism and spite differ concerning whether retaliatory or anti-retaliatory strategies are favored by natural selection; however, they are identical concerning whether persistent strategies are favored by natural selection.

社会行为分为四种类型:利他主义、怨恨主义、互助主义和自私自利。前两种行为对行为者来说代价高昂;因此,从自然选择的角度来看,它们的存在可以说是神秘的。鼓励利他主义和怨恨进化的一种潜在设置是重复互动。在重复互动中,参与者可以根据对手之前的行为做出有条件的行为。一方面,当玩家在每一轮选择利他或利己行为时,报复策略(当对手采取利他行为时,玩家采取利他行为;当对手采取非利他行为时,玩家采取非利他行为)很可能会进化。另一方面,反报复策略(当对手不报复时,自己报复;当对手报复时,自己不报复)则可能在每个回合中选择报复或互利行为。这些成功的条件行为会受到自然选择的青睐。在这里,我们注意到对手棋手的行动信息并不总是可用的。在没有此类信息的情况下,棋手无法根据对手的行动来决定自己的行为。通过调查利他主义的情况,之前的一项研究(Kurokawa,2017,Mathematical Biosciences,286,94-103)发现,选择与自己之前行动相同的行动的持续利他主义策略会受到自然选择的青睐。那么,当玩家不知道对手做了什么时,唾弃性条件策略应该如何表现呢?通过对重复博弈的研究,我们发现,选择与自己先前行动相同的行动的持续唾弃策略会受到自然选择的青睐。利他主义和恶意策略在报复性策略还是反报复性策略受到自然选择青睐的问题上存在差异;但是,在持续性策略是否受到自然选择青睐的问题上,两者是一致的。
{"title":"Persistence in repeated games encourages the evolution of spite","authors":"Shun Kurokawa","doi":"10.1016/j.tpb.2024.05.001","DOIUrl":"10.1016/j.tpb.2024.05.001","url":null,"abstract":"<div><p>Social behavior is divided into four types: altruism, spite, mutualism, and selfishness. The former two are costly to the actor; therefore, from the perspective of natural selection, their existence can be regarded as mysterious. One potential setup which encourages the evolution of altruism and spite is repeated interaction. Players can behave conditionally based on their opponent's previous actions in the repeated interaction. On the one hand, the retaliatory strategy (who behaves altruistically when their opponent behaved altruistically and behaves non-altruistically when the opponent player behaved non-altruistically) is likely to evolve when players choose altruistic or selfish behavior in each round. On the other hand, the anti-retaliatory strategy (who is spiteful when the opponent was not spiteful and is not spiteful when the opponent player was spiteful) is likely to evolve when players opt for spiteful or mutualistic behavior in each round. These successful conditional behaviors can be favored by natural selection. Here, we notice that information on opponent players’ actions is not always available. When there is no such information, players cannot determine their behavior according to their opponent's action. By investigating the case of altruism, a previous study (Kurokawa, 2017, Mathematical Biosciences, 286, 94–103) found that persistent altruistic strategies, which choose the same action as the own previous action, are favored by natural selection. How, then, should a spiteful conditional strategy behave when the player does not know what their opponent did? By studying the repeated game, we find that persistent spiteful strategies, which choose the same action as the own previous action, are favored by natural selection. Altruism and spite differ concerning whether retaliatory or anti-retaliatory strategies are favored by natural selection; however, they are identical concerning whether persistent strategies are favored by natural selection.</p></div>","PeriodicalId":49437,"journal":{"name":"Theoretical Population Biology","volume":"158 ","pages":"Pages 109-120"},"PeriodicalIF":1.4,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141186914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Theoretical Population Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1