Overharvesting is a pressing global problem, and spatial management, such as protecting designated areas, is one proposed solution. This study examines how connectivity (in terms of dispersal rate) between protected and harvested areas affects the asymptotic total population size and the asymptotic yield, which are key questions for conservation management and the design of protected areas. We utilise a two-patch model with heterogeneous habitat qualities, symmetric dispersal and density-dependent growth functions in both discrete and continuous time. One patch is subject to proportional harvesting, while the other one is protected.
Our results show that increased dispersal does not always increase the asymptotic total population size or the asymptotic yield. Depending on the circumstances, dispersal enables the protected patch to rescue the harvested patch from overexploitation, potentially increasing both total population size and yield. However, high levels of dispersal can also lead to a lower total population size or even cause extinction of both patches if harvesting pressure is strong. The population in the protected patch needs to have high reproductive potential and the protected patch needs to be the effectively larger patch in order to benefit monotonically from increased dispersal. These findings provide a fundamental understanding of how dispersal influences dynamics in fragmented landscapes under harvesting pressure.
扫码关注我们
求助内容:
应助结果提醒方式:
