首页 > 最新文献

Statistics & Probability Letters最新文献

英文 中文
Stochastic comparisons of two-series–parallel systems with independent components randomly chosen from two batches 从两个批次中随机选择独立组件的两个串并联系统的随机比较
IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2025-10-17 DOI: 10.1016/j.spl.2025.110576
Longxiang Fang , Yu Ruan , N. Balakrishnan
Stochastic comparisons are quite helpful in optimizing system designs by evaluating the performance of different configurations and ensuring that critical systems meet reliability standards under diverse conditions. In this paper, we discuss stochastic comparisons of lifetimes of two-series–parallel systems with 2n independent components randomly chosen from two different batches. We assume the n components from the first batch is more reliable than the n components from the second batch. Then, in the case of two-series–parallel system, we prove that the reliability of the system increases in terms of the usual stochastic order, as the random number, K, taking values in {0,1,,[n+12]}, of components chosen from the first batch increases in increasing concave order or the random number, K, taking values in {[n+12]+1,,n}, of components chosen from the first batch decreases in increasing convex order. We also present some numerical examples to illustrate all the results established here.
随机比较通过评估不同配置的性能,确保关键系统在不同条件下满足可靠性标准,有助于优化系统设计。本文讨论了从两个不同批次随机选择2n个独立元件的两串并联系统寿命的随机比较。我们假设来自第一批的n个成分比来自第二批的n个成分更可靠。然后,对于两串并联系统,我们证明了系统的可靠性在通常的随机顺序上增加,因为从第一批中选取的组件的随机数K在{0,1,…,[n+12]}中取值呈凹递增顺序增加,或者从第一批中选取的组件的随机数K在{[n+12]+1,…,n}中取值呈凸递增顺序减少。我们还提供了一些数值例子来说明这里所建立的所有结果。
{"title":"Stochastic comparisons of two-series–parallel systems with independent components randomly chosen from two batches","authors":"Longxiang Fang ,&nbsp;Yu Ruan ,&nbsp;N. Balakrishnan","doi":"10.1016/j.spl.2025.110576","DOIUrl":"10.1016/j.spl.2025.110576","url":null,"abstract":"<div><div>Stochastic comparisons are quite helpful in optimizing system designs by evaluating the performance of different configurations and ensuring that critical systems meet reliability standards under diverse conditions. In this paper, we discuss stochastic comparisons of lifetimes of two-series–parallel systems with <span><math><mrow><mn>2</mn><mi>n</mi></mrow></math></span> independent components randomly chosen from two different batches. We assume the <span><math><mi>n</mi></math></span> components from the first batch is more reliable than the <span><math><mi>n</mi></math></span> components from the second batch. Then, in the case of two-series–parallel system, we prove that the reliability of the system increases in terms of the usual stochastic order, as the random number, <span><math><mi>K</mi></math></span>, taking values in <span><math><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mrow><mo>[</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></mrow><mo>}</mo></mrow></math></span>, of components chosen from the first batch increases in increasing concave order or the random number, <span><math><mi>K</mi></math></span>, taking values in <span><math><mrow><mo>{</mo><mrow><mo>[</mo><mfrac><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>]</mo></mrow><mo>+</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></math></span>, of components chosen from the first batch decreases in increasing convex order. We also present some numerical examples to illustrate all the results established here.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"229 ","pages":"Article 110576"},"PeriodicalIF":0.7,"publicationDate":"2025-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145324181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on blinded continuous monitoring for continuous outcomes 关于连续结果的盲法连续监测的说明
IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2025-10-11 DOI: 10.1016/j.spl.2025.110575
Long-Hao Xu, Tim Friede
Continuous monitoring is becoming more popular due to its significant benefits, including reducing sample sizes and reaching earlier conclusions. In general, it involves monitoring nuisance parameters (e.g., the variance of outcomes) until a specific condition is satisfied. The blinded method, which does not require revealing group assignments, was recommended because it maintains the integrity of the experiment and mitigates potential bias. Although Friede and Miller (2012) investigated the characteristics of blinded continuous monitoring through simulation studies, its theoretical properties are not fully explored. In this paper, we aim to fill this gap by presenting the asymptotic and finite-sample properties of the blinded continuous monitoring for continuous outcomes. Furthermore, we examine the impact of using blinded versus unblinded variance estimators in the context of continuous monitoring. Simulation results are also provided to evaluate finite-sample performance and to support the theoretical findings.
由于其显著的好处,包括减少样本量和更早地得出结论,持续监测正变得越来越受欢迎。一般来说,它包括监控干扰参数(例如,结果的方差),直到满足特定条件。盲法不需要揭示分组分配,被推荐使用,因为它保持了实验的完整性并减轻了潜在的偏倚。Friede和Miller(2012)虽然通过仿真研究研究了盲法连续监测的特点,但其理论性质并没有得到充分的探讨。在本文中,我们的目标是通过提出盲法连续监测结果的渐近和有限样本性质来填补这一空白。此外,我们研究了在连续监测的背景下使用盲法和非盲法方差估计器的影响。仿真结果也提供了评估有限样本性能和支持理论研究结果。
{"title":"A note on blinded continuous monitoring for continuous outcomes","authors":"Long-Hao Xu,&nbsp;Tim Friede","doi":"10.1016/j.spl.2025.110575","DOIUrl":"10.1016/j.spl.2025.110575","url":null,"abstract":"<div><div>Continuous monitoring is becoming more popular due to its significant benefits, including reducing sample sizes and reaching earlier conclusions. In general, it involves monitoring nuisance parameters (e.g., the variance of outcomes) until a specific condition is satisfied. The blinded method, which does not require revealing group assignments, was recommended because it maintains the integrity of the experiment and mitigates potential bias. Although Friede and Miller (2012) investigated the characteristics of blinded continuous monitoring through simulation studies, its theoretical properties are not fully explored. In this paper, we aim to fill this gap by presenting the asymptotic and finite-sample properties of the blinded continuous monitoring for continuous outcomes. Furthermore, we examine the impact of using blinded versus unblinded variance estimators in the context of continuous monitoring. Simulation results are also provided to evaluate finite-sample performance and to support the theoretical findings.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"228 ","pages":"Article 110575"},"PeriodicalIF":0.7,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145321939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variance-based difference between graphical identification conditions of causal effects in linear structural equation models 线性结构方程模型中因果效应图形识别条件的方差差异
IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2025-10-10 DOI: 10.1016/j.spl.2025.110561
Chie Taguchi , Manabu Kuroki
In the context of statistical causal inference using linear structural equation models, researchers in the field of artificial intelligence and statistical science have developed several identification conditions for evaluating causal effects. However, there are some scenarios where several identification conditions can be applied simultaneously to estimate causal effects. To enhance estimation accuracy, we focus on five key identification conditions: the back-door criterion, the front-door criterion, the front-door-like criterion, the conditional instrumental variable condition, and the effect restoration condition. We then compare these five identification conditions in terms of estimation accuracy (asymptotic variance) and conclude that, in some cases, the qualitative comparison of estimation accuracy among these identification conditions can be directly assessed from the graphical structure, even before statistical data are collected.
在利用线性结构方程模型进行统计因果推理的背景下,人工智能和统计科学领域的研究人员开发了几种评估因果效应的识别条件。然而,在某些情况下,可以同时应用几个识别条件来估计因果效应。为了提高估计精度,我们重点研究了五个关键的识别条件:后门准则、前门准则、类前门准则、条件工具变量条件和效果恢复条件。然后,我们在估计精度(渐近方差)方面比较了这五种识别条件,并得出结论,在某些情况下,甚至在收集统计数据之前,可以直接从图形结构中评估这些识别条件之间估计精度的定性比较。
{"title":"Variance-based difference between graphical identification conditions of causal effects in linear structural equation models","authors":"Chie Taguchi ,&nbsp;Manabu Kuroki","doi":"10.1016/j.spl.2025.110561","DOIUrl":"10.1016/j.spl.2025.110561","url":null,"abstract":"<div><div>In the context of statistical causal inference using linear structural equation models, researchers in the field of artificial intelligence and statistical science have developed several identification conditions for evaluating causal effects. However, there are some scenarios where several identification conditions can be applied simultaneously to estimate causal effects. To enhance estimation accuracy, we focus on five key identification conditions: the back-door criterion, the front-door criterion, the front-door-like criterion, the conditional instrumental variable condition, and the effect restoration condition. We then compare these five identification conditions in terms of estimation accuracy (asymptotic variance) and conclude that, in some cases, the qualitative comparison of estimation accuracy among these identification conditions can be directly assessed from the graphical structure, even before statistical data are collected.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"228 ","pages":"Article 110561"},"PeriodicalIF":0.7,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145321940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial local linear quantile regression under association 关联下空间局部线性分位数回归
IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2025-10-04 DOI: 10.1016/j.spl.2025.110573
Xin-Yi Xu , Jiang-Feng Wang , Kang Hu , Shan He , Yu Xia
This paper investigates the asymptotic properties of local linear quantile regression estimators for spatial data generated by strictly stationary and associated spatial processes {(Yi,Xi),iZN}. We study local linear estimators for both the conditional quantile function qp(x) and its first-order partial derivatives. Under appropriate regularity conditions, we derive the Bahadur representation for these estimators, which is utilized to establish their joint asymptotic normality. To assess finite-sample performance, we conduct Monte Carlo simulations in a two-dimensional space (N=2). The results demonstrate the applicability of the proposed estimators and confirm the theoretical asymptotic properties.
本文研究了由严格平稳及其相关空间过程{(Yi,Xi),i∈ZN}生成的空间数据的局部线性分位数回归估计的渐近性质。研究了条件分位数函数qp(x)及其一阶偏导数的局部线性估计。在适当的正则性条件下,我们导出了这些估计量的Bahadur表示,并利用该表示建立了它们的联合渐近正态性。为了评估有限样本性能,我们在二维空间(N=2)中进行蒙特卡罗模拟。结果证明了所提估计量的适用性,并证实了理论渐近性质。
{"title":"Spatial local linear quantile regression under association","authors":"Xin-Yi Xu ,&nbsp;Jiang-Feng Wang ,&nbsp;Kang Hu ,&nbsp;Shan He ,&nbsp;Yu Xia","doi":"10.1016/j.spl.2025.110573","DOIUrl":"10.1016/j.spl.2025.110573","url":null,"abstract":"<div><div>This paper investigates the asymptotic properties of local linear quantile regression estimators for spatial data generated by strictly stationary and associated spatial processes <span><math><mrow><mo>{</mo><mrow><mo>(</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>,</mo><mi>i</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>}</mo></mrow></math></span>. We study local linear estimators for both the conditional quantile function <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and its first-order partial derivatives. Under appropriate regularity conditions, we derive the Bahadur representation for these estimators, which is utilized to establish their joint asymptotic normality. To assess finite-sample performance, we conduct Monte Carlo simulations in a two-dimensional space (<span><math><mrow><mi>N</mi><mo>=</mo><mn>2</mn></mrow></math></span>). The results demonstrate the applicability of the proposed estimators and confirm the theoretical asymptotic properties.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"228 ","pages":"Article 110573"},"PeriodicalIF":0.7,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145269905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iterated ergodic theorems and Erdös–Rényi law of large numbers 迭代遍历定理和Erdös-Rényi大数定律
IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2025-09-30 DOI: 10.1016/j.spl.2025.110572
Yuri Kifer
We obtain ergodic theorems and a version of the Erdös–Rènyi law of large numbers for multiple iterated sums and integrals of the form Σ(ν)(t)=0k1<...<kνtξ(k1)ξ(kν), t[0,T] and Σ(ν)(t)=0s1sνtξ(s1)ξ(sν)ds1dsν where {ξ(k)}<k< and {ξ(s)}<s< are stationary vector stochastic processes.
我们得到了多次迭代和积分的遍历定理和Erdös-Rènyi大数定律的一个版本,其形式为Σ(ν)(t)=∑0≤k1<;…<kν≤tξ(k1)⊗⋯⊗ξ(kν), t∈[0,t]和Σ(ν)(t)=∫0≤s1≤⋯≤sν≤tξ(s1)⊗⋯⊗ξ(sν)ds1⋯dsν,其中{ξ(k)}−∞<k<;∞和{ξ(s)}−∞<s<;∞是平稳向量随机过程。
{"title":"Iterated ergodic theorems and Erdös–Rényi law of large numbers","authors":"Yuri Kifer","doi":"10.1016/j.spl.2025.110572","DOIUrl":"10.1016/j.spl.2025.110572","url":null,"abstract":"<div><div>We obtain ergodic theorems and a version of the Erdös–Rènyi law of large numbers for multiple iterated sums and integrals of the form <span><math><mrow><msup><mrow><mi>Σ</mi></mrow><mrow><mrow><mo>(</mo><mi>ν</mi><mo>)</mo></mrow></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mn>0</mn><mo>≤</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>&lt;</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>≤</mo><mi>t</mi></mrow></msub><mi>ξ</mi><mrow><mo>(</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>⊗</mo><mo>⋯</mo><mo>⊗</mo><mi>ξ</mi><mrow><mo>(</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>t</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>Σ</mi></mrow><mrow><mrow><mo>(</mo><mi>ν</mi><mo>)</mo></mrow></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mn>0</mn><mo>≤</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mo>⋯</mo><mo>≤</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>≤</mo><mi>t</mi></mrow></msub><mi>ξ</mi><mrow><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>⊗</mo><mo>⋯</mo><mo>⊗</mo><mi>ξ</mi><mrow><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>ν</mi></mrow></msub><mo>)</mo></mrow><mi>d</mi><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⋯</mo><mi>d</mi><msub><mrow><mi>s</mi></mrow><mrow><mi>ν</mi></mrow></msub></mrow></math></span> where <span><math><msub><mrow><mrow><mo>{</mo><mi>ξ</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow><mrow><mo>−</mo><mi>∞</mi><mo>&lt;</mo><mi>k</mi><mo>&lt;</mo><mi>∞</mi></mrow></msub></math></span> and <span><math><msub><mrow><mrow><mo>{</mo><mi>ξ</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow><mrow><mo>−</mo><mi>∞</mi><mo>&lt;</mo><mi>s</mi><mo>&lt;</mo><mi>∞</mi></mrow></msub></math></span> are stationary vector stochastic processes.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"228 ","pages":"Article 110572"},"PeriodicalIF":0.7,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145222580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple imputation of censored bivariate event-times via inverse transform and nonparametric Gibbs sampling 基于反变换和非参数Gibbs抽样的截尾双变量事件时间的多次插值
IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2025-09-26 DOI: 10.1016/j.spl.2025.110564
Daniela Angulo, Susan Murray
Bivariate time-to-event data, subject to right censoring, frequently arise in medical research. This paper introduces a novel nonparametric multiple imputation (MI) procedure for analyzing censored bivariate time-to-event data. Our methodology offers a straightforward, easy-to-implement inverse transform MI method that effectively captures the joint distribution of bivariate random variables through the imputation of censored event-times.
医学研究中经常出现经过正确审查的双变量事件时间数据。本文介绍了一种新的非参数多重插值(MI)方法,用于分析截尾双变量时间事件数据。我们的方法提供了一种简单、易于实现的逆变换MI方法,该方法通过截除事件时间的插入有效地捕获二元随机变量的联合分布。
{"title":"Multiple imputation of censored bivariate event-times via inverse transform and nonparametric Gibbs sampling","authors":"Daniela Angulo,&nbsp;Susan Murray","doi":"10.1016/j.spl.2025.110564","DOIUrl":"10.1016/j.spl.2025.110564","url":null,"abstract":"<div><div>Bivariate time-to-event data, subject to right censoring, frequently arise in medical research. This paper introduces a novel nonparametric multiple imputation (MI) procedure for analyzing censored bivariate time-to-event data. Our methodology offers a straightforward, easy-to-implement inverse transform MI method that effectively captures the joint distribution of bivariate random variables through the imputation of censored event-times.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"228 ","pages":"Article 110564"},"PeriodicalIF":0.7,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145269461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Change-point detection in Vector-Tensor linear model 向量张量线性模型的变点检测
IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2025-09-25 DOI: 10.1016/j.spl.2025.110563
Haiyue Su , Zhiming Xia , Wenyuan Shang , Meili Shi
For high-throughput low-rank data, CANDECOMP/PARAFAC (CP) decomposition is frequently employed to reduce the dimensionality to a manageable level. In this article, we consider a Vector-Tensor linear regression model, where the low-rank structure is expressed through CP decomposition, and the change-point structure is incorporated into the multi-array coefficients. A novel procedure is proposed to jointly detect the change-point and estimate the tensor structure by minimizing the sum of squared residuals. The associated algorithm is developed based on Alternating Least Squares (ALS) algorithm, and is computationally efficient and scalable. Furthermore, we establish the consistency of the change-point estimator under a set of general conditions. Simulations and empirical studies illustrate the validity and effectiveness.
对于高吞吐量低秩数据,经常使用CANDECOMP/PARAFAC (CP)分解将维数降低到可管理的水平。在本文中,我们考虑一个向量张量线性回归模型,其中低秩结构通过CP分解表示,并将变点结构纳入多阵列系数中。提出了一种利用残差平方和最小化来联合检测变点和估计张量结构的新方法。该算法基于交替最小二乘(ALS)算法,具有计算效率高、可扩展性强的特点。进一步,我们在一组一般条件下建立了变点估计量的相合性。仿真和实证研究验证了该方法的有效性。
{"title":"Change-point detection in Vector-Tensor linear model","authors":"Haiyue Su ,&nbsp;Zhiming Xia ,&nbsp;Wenyuan Shang ,&nbsp;Meili Shi","doi":"10.1016/j.spl.2025.110563","DOIUrl":"10.1016/j.spl.2025.110563","url":null,"abstract":"<div><div>For high-throughput low-rank data, CANDECOMP/PARAFAC (<span><math><mi>CP</mi></math></span>) decomposition is frequently employed to reduce the dimensionality to a manageable level. In this article, we consider a Vector-Tensor linear regression model, where the low-rank structure is expressed through CP decomposition, and the change-point structure is incorporated into the multi-array coefficients. A novel procedure is proposed to jointly detect the change-point and estimate the tensor structure by minimizing the sum of squared residuals. The associated algorithm is developed based on Alternating Least Squares (ALS) algorithm, and is computationally efficient and scalable. Furthermore, we establish the consistency of the change-point estimator under a set of general conditions. Simulations and empirical studies illustrate the validity and effectiveness.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"228 ","pages":"Article 110563"},"PeriodicalIF":0.7,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145222582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Double dipping with balanced sampling 双浸均匀取样
IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2025-09-25 DOI: 10.1016/j.spl.2025.110562
Blair Robertson, Chris Price, Marco Reale
Doubly balanced samples from spatial populations have approximate balance on auxiliary variables and spread over spatial coordinates. This article shows that doubly balanced sampling is also efficient on non-spatial populations when we balance on auxiliary variables and spread over the space spanned by them. Numerical results on three example applications show that our extension of doubly balanced sampling works well in practice.
来自空间总体的双平衡样本在辅助变量上具有近似平衡,并且分布在空间坐标上。本文表明,当我们在辅助变量上进行平衡并在它们所跨越的空间上进行扩展时,双平衡抽样对非空间种群也是有效的。三个实例的数值计算结果表明,本文提出的双平衡抽样扩展方法在实际应用中效果良好。
{"title":"Double dipping with balanced sampling","authors":"Blair Robertson,&nbsp;Chris Price,&nbsp;Marco Reale","doi":"10.1016/j.spl.2025.110562","DOIUrl":"10.1016/j.spl.2025.110562","url":null,"abstract":"<div><div>Doubly balanced samples from spatial populations have approximate balance on auxiliary variables and spread over spatial coordinates. This article shows that doubly balanced sampling is also efficient on non-spatial populations when we balance on auxiliary variables and spread over the space spanned by them. Numerical results on three example applications show that our extension of doubly balanced sampling works well in practice.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"228 ","pages":"Article 110562"},"PeriodicalIF":0.7,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145160357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniform mean estimation for monotonic processes 单调过程的一致均值估计
IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2025-09-24 DOI: 10.1016/j.spl.2025.110558
Eugenio Clerico , Hamish E. Flynn , Patrick Rebeschini
We consider the problem of deriving uniform confidence bands for the mean of a monotonic stochastic process, such as the cumulative distribution function (CDF) of a random variable, based on a sequence of i.i.d. observations. Our approach leverages the coin-betting framework, and inherits several favourable characteristics of coin-betting methods. In particular, for each point in the domain of the mean function, we obtain anytime-valid confidence intervals that are numerically tight and adapt to the variance of the observations. To derive uniform confidence bands, we employ a continuous union bound that crucially leverages monotonicity. In the case of CDF estimation, we also exploit the fact that the empirical CDF is piece-wise constant to obtain simple confidence bands that can be easily computed. In simulations, we find that our confidence bands for the CDF achieve state-of-the-art performance.
我们考虑了一个单调随机过程均值的均匀置信带问题,如随机变量的累积分布函数(CDF),基于一系列的i.i.d观测值。我们的方法利用投币框架,并继承了投币方法的几个有利特征。特别是,对于平均函数域中的每个点,我们获得了任意时间有效的置信区间,这些置信区间在数值上是紧密的,并且适应于观测值的方差。为了得到一致的置信带,我们使用了一个连续的联合界,它关键地利用了单调性。在CDF估计的情况下,我们还利用经验CDF是分段常数的事实来获得易于计算的简单置信带。在模拟中,我们发现CDF的置信带达到了最先进的性能。
{"title":"Uniform mean estimation for monotonic processes","authors":"Eugenio Clerico ,&nbsp;Hamish E. Flynn ,&nbsp;Patrick Rebeschini","doi":"10.1016/j.spl.2025.110558","DOIUrl":"10.1016/j.spl.2025.110558","url":null,"abstract":"<div><div>We consider the problem of deriving uniform confidence bands for the mean of a monotonic stochastic process, such as the cumulative distribution function (CDF) of a random variable, based on a sequence of i.i.d. observations. Our approach leverages the coin-betting framework, and inherits several favourable characteristics of coin-betting methods. In particular, for each point in the domain of the mean function, we obtain anytime-valid confidence intervals that are numerically tight and adapt to the variance of the observations. To derive uniform confidence bands, we employ a continuous union bound that crucially leverages monotonicity. In the case of CDF estimation, we also exploit the fact that the empirical CDF is piece-wise constant to obtain simple confidence bands that can be easily computed. In simulations, we find that our confidence bands for the CDF achieve state-of-the-art performance.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"228 ","pages":"Article 110558"},"PeriodicalIF":0.7,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145160353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The eschewed sinh-arcsinh t distribution 避开了sinh-arcsinh - t分布
IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2025-09-24 DOI: 10.1016/j.spl.2025.110560
M.C. Jones , Arthur Pewsey
Rosco et al. (2011) introduced and studied the sinh-arcsinh t (SAS-t) distribution. In this article, we introduce a modified version of that distribution which we call the eschewed sinh-arcsinh t (ESAS-t) distribution. The new proposal proves to be somewhat simpler than the former and, on balance, given the pros and cons listed in the article, we now recommend the ESAS-t distribution over the SAS-t distribution as the preferable version of a sinh-arcsinh t distribution.
Rosco et al.(2011)介绍并研究了sinh-arcsinh t (SAS-t)分布。在本文中,我们将介绍该分布的一个修改版本,我们将其称为回避的sinh-arcsinh t (esa -t)分布。事实证明,新提案比前一个提案要简单一些,总的来说,考虑到本文中列出的优点和缺点,我们现在推荐ESAS-t发行版,而不是SAS-t发行版,作为sinh-arcsinh -t发行版的首选版本。
{"title":"The eschewed sinh-arcsinh t distribution","authors":"M.C. Jones ,&nbsp;Arthur Pewsey","doi":"10.1016/j.spl.2025.110560","DOIUrl":"10.1016/j.spl.2025.110560","url":null,"abstract":"<div><div>Rosco et al. (2011) introduced and studied the sinh-arcsinh <span><math><mi>t</mi></math></span> (SAS-<span><math><mi>t</mi></math></span>) distribution. In this article, we introduce a modified version of that distribution which we call the eschewed sinh-arcsinh <span><math><mi>t</mi></math></span> (ESAS-<span><math><mi>t</mi></math></span>) distribution. The new proposal proves to be somewhat simpler than the former and, on balance, given the pros and cons listed in the article, we now recommend the ESAS-<span><math><mi>t</mi></math></span> distribution over the SAS-<span><math><mi>t</mi></math></span> distribution as the preferable version of a sinh-arcsinh <span><math><mi>t</mi></math></span> distribution.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"228 ","pages":"Article 110560"},"PeriodicalIF":0.7,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145222581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Statistics & Probability Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1