首页 > 最新文献

Space Weather-The International Journal of Research and Applications最新文献

英文 中文
Studying the Fixing Rate of GPS PPP Ambiguity Resolution Under Different Geomagnetic Storm Intensities 不同地磁风暴强度下GPS PPP模糊度解定率研究
2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-10-01 DOI: 10.1029/2023sw003542
Xiaomin Luo, Zhuang Chen, Shengfeng Gu, Neng Yue, Tao Yue
Abstract Global Positioning System (GPS) Precise Point Positioning (PPP) with correct fixing ambiguity resolution (AR) can reach cm‐mm level positioning accuracy. However, this accuracy can be degraded by the geomagnetic storm effects. To comprehensively investigate the ambiguity resolved percentage (ARP) of GPS kinematic PPP, referred to as PPP‐ARP, under different intensities of geomagnetic storms, based on the Natural Resources Canada's Canadian Spatial Reference System (CSRS) PPP, this study for the first time gives the correlation between the PPP‐ARP and storm intensity using 67 storms occurred in the past 5 years of 2018–2022. Experimental results indicate that the PPP‐ARP decreases gradually as the increase of geomagnetic storm intensity. Under quiet and low geomagnetic conditions (Dst min > −50 nT), the PPP‐ARP of global GNSS stations can achieve more than 96%, while these during strong storms (Dst min ≤ −100 nT) are generally lower than 90.0%, especially for the PPP‐ARP of some stations located at low latitudes which are lower than 40.0%. The mechanism of PPP‐ARP decrease under geomagnetic storms is mainly due to the cycle slips and even loss of lock of GNSS signals caused by the storms induced ionospheric disturbances and scintillations. In addition, different from many previous studies, we found that the CSRS‐PPP with AR can achieve good positioning accuracy (3D RMS <0.2 m) even under strong geomagnetic storms.
全球定位系统(GPS)精确点定位(PPP)具有正确的定位模糊分辨率(AR),可以达到cm - mm级的定位精度。然而,这种精度可能会因地磁风暴的影响而降低。基于加拿大自然资源部的加拿大空间参考系统(CSRS) PPP,为了全面研究不同地磁风暴强度下GPS运动PPP (PPP‐ARP)的模糊解决百分比(ARP),本研究首次利用2018-2022年过去5年发生的67次风暴,给出了PPP‐ARP与风暴强度的相关性。实验结果表明,PPP‐ARP随磁暴强度的增加而逐渐减小。在安静和低地磁条件下(Dst min >−50 nT)时,全球GNSS站的PPP‐ARP可以达到96%以上,而在强风暴(Dst min≤−100 nT)时,全球GNSS站的PPP‐ARP一般低于90.0%,特别是低纬度地区的一些站的PPP‐ARP低于40.0%。地磁风暴下PPP‐ARP下降的机制主要是由于磁暴引起的电离层扰动和闪烁导致GNSS信号的周期滑移甚至失锁。此外,与以往的许多研究不同,我们发现即使在强磁暴条件下,具有AR的CSRS - PPP也能获得良好的定位精度(3D RMS <0.2 m)。
{"title":"Studying the Fixing Rate of GPS PPP Ambiguity Resolution Under Different Geomagnetic Storm Intensities","authors":"Xiaomin Luo, Zhuang Chen, Shengfeng Gu, Neng Yue, Tao Yue","doi":"10.1029/2023sw003542","DOIUrl":"https://doi.org/10.1029/2023sw003542","url":null,"abstract":"Abstract Global Positioning System (GPS) Precise Point Positioning (PPP) with correct fixing ambiguity resolution (AR) can reach cm‐mm level positioning accuracy. However, this accuracy can be degraded by the geomagnetic storm effects. To comprehensively investigate the ambiguity resolved percentage (ARP) of GPS kinematic PPP, referred to as PPP‐ARP, under different intensities of geomagnetic storms, based on the Natural Resources Canada's Canadian Spatial Reference System (CSRS) PPP, this study for the first time gives the correlation between the PPP‐ARP and storm intensity using 67 storms occurred in the past 5 years of 2018–2022. Experimental results indicate that the PPP‐ARP decreases gradually as the increase of geomagnetic storm intensity. Under quiet and low geomagnetic conditions (Dst min > −50 nT), the PPP‐ARP of global GNSS stations can achieve more than 96%, while these during strong storms (Dst min ≤ −100 nT) are generally lower than 90.0%, especially for the PPP‐ARP of some stations located at low latitudes which are lower than 40.0%. The mechanism of PPP‐ARP decrease under geomagnetic storms is mainly due to the cycle slips and even loss of lock of GNSS signals caused by the storms induced ionospheric disturbances and scintillations. In addition, different from many previous studies, we found that the CSRS‐PPP with AR can achieve good positioning accuracy (3D RMS <0.2 m) even under strong geomagnetic storms.","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136199371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Radiation Levels at Aviation Altitudes and Their Relationship to Plasma Waves in the Inner Magnetosphere 航空高度的增强辐射水平及其与内磁层等离子体波的关系
2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-10-01 DOI: 10.1029/2023sw003477
Homayon Aryan, Jacob Bortnik, W. Kent Tobiska, Piyush Mehta, Rashmi Siddalingappa
Abstract It is believed that galactic cosmic rays and solar energetic particles are the two major sources of ionizing radiation. However, the radiation source may also be due to relativistic electrons that are associated with precipitation from the Van Allen radiation belts. In this study, we use Automated Radiation Measurements for Aerospace Safety (ARMAS) measurements to investigate the precipitation mechanism of energetic radiation belt electrons. ARMAS instruments are flown on agency‐sponsored (NASA, National Oceanic and Atmospheric Administration, National Science Foundation, Federal Aviation Administration, DOE) flights, commercial space transportation companies and airliners (>9 km) in automated radiation collection mode. We identified magnetic conjunction events between ARMAS and NASA's Van Allen Probes to study the highly variable, dynamic mesoscale radiation events observed by ARMAS instruments at aviation altitudes and their relationship to various plasma waves in the inner magnetosphere measured by the Van Allen Probes. The results show that there is a strong correlation between dose rates observed by ARMAS and plasmaspheric hiss wave power measured by the Van Allen Probes, but no such relationship with electromagnetic ion cyclotron waves and only a modest correlation with whistler mode chorus waves. These results suggest that the space environment could have a potentially significant effect on passenger safety.
银河系宇宙射线和太阳高能粒子被认为是电离辐射的两个主要来源。然而,辐射源也可能是由于与范艾伦辐射带的降水有关的相对论性电子。在这项研究中,我们使用航空航天安全自动辐射测量(ARMAS)测量来研究高能辐射带电子的沉淀机制。ARMAS仪器以自动辐射收集模式在各机构(NASA、国家海洋和大气管理局、国家科学基金会、联邦航空管理局、美国能源部)资助的航班、商业太空运输公司和飞机(>9公里)上飞行。我们确定了ARMAS和NASA范艾伦探测器之间的磁合事件,以研究ARMAS仪器在航空高度观测到的高度可变的动态中尺度辐射事件及其与范艾伦探测器测量的内磁层中各种等离子体波的关系。结果表明,ARMAS观测到的剂量率与范艾伦探测器测量到的等离子体嘶嘶波功率之间有很强的相关性,但与电磁离子回旋波没有这种相关性,与哨声模式合唱波只有适度的相关性。这些结果表明,空间环境可能对乘客安全产生潜在的重大影响。
{"title":"Enhanced Radiation Levels at Aviation Altitudes and Their Relationship to Plasma Waves in the Inner Magnetosphere","authors":"Homayon Aryan, Jacob Bortnik, W. Kent Tobiska, Piyush Mehta, Rashmi Siddalingappa","doi":"10.1029/2023sw003477","DOIUrl":"https://doi.org/10.1029/2023sw003477","url":null,"abstract":"Abstract It is believed that galactic cosmic rays and solar energetic particles are the two major sources of ionizing radiation. However, the radiation source may also be due to relativistic electrons that are associated with precipitation from the Van Allen radiation belts. In this study, we use Automated Radiation Measurements for Aerospace Safety (ARMAS) measurements to investigate the precipitation mechanism of energetic radiation belt electrons. ARMAS instruments are flown on agency‐sponsored (NASA, National Oceanic and Atmospheric Administration, National Science Foundation, Federal Aviation Administration, DOE) flights, commercial space transportation companies and airliners (&gt;9 km) in automated radiation collection mode. We identified magnetic conjunction events between ARMAS and NASA's Van Allen Probes to study the highly variable, dynamic mesoscale radiation events observed by ARMAS instruments at aviation altitudes and their relationship to various plasma waves in the inner magnetosphere measured by the Van Allen Probes. The results show that there is a strong correlation between dose rates observed by ARMAS and plasmaspheric hiss wave power measured by the Van Allen Probes, but no such relationship with electromagnetic ion cyclotron waves and only a modest correlation with whistler mode chorus waves. These results suggest that the space environment could have a potentially significant effect on passenger safety.","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135963223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi‐Site Transfer Function Approach for Real‐Time Modeling of the Ground Electric Field Induced by Laterally‐Nonuniform Ionospheric Source 横向非均匀电离层源诱导地电场实时建模的多站点传递函数方法
2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-10-01 DOI: 10.1029/2023sw003621
Mikhail Kruglyakov, Elena Marshalko, Alexey Kuvshinov, Maxim Smirnov, Ari Viljanen
Abstract We propose a novel approach to model the ground electric field (GEF) induced by laterally‐nonuniform ionospheric sources in real time. The approach exploits the multi‐site transfer function concept, continuous magnetic field measurements at multiple sites in the region of interest, and spatial modes describing the ionospheric source. We compared the modeled GEFs with those measured at two locations in Fennoscandia and observed good agreement between modeled and measured GEF. Besides, we compared GEF‐based geomagnetically induced current (GIC) with that measured at the Mäntsälä natural gas pipeline recording point and again observed remarkable agreement between modeled and measured GIC.
摘要提出了一种新的方法来实时模拟横向非均匀电离层源引起的地电场(GEF)。该方法利用了多站点传递函数概念,在感兴趣的区域内多个站点进行连续磁场测量,以及描述电离层源的空间模式。我们将模拟的GEF与在Fennoscandia的两个地点测量的GEF进行了比较,观察到模型和测量的GEF之间有很好的一致性。此外,我们将基于GEF的地磁感应电流(GIC)与Mäntsälä天然气管道记录点的测量值进行了比较,再次观察到模型和测量值之间的显著一致性。
{"title":"Multi‐Site Transfer Function Approach for Real‐Time Modeling of the Ground Electric Field Induced by Laterally‐Nonuniform Ionospheric Source","authors":"Mikhail Kruglyakov, Elena Marshalko, Alexey Kuvshinov, Maxim Smirnov, Ari Viljanen","doi":"10.1029/2023sw003621","DOIUrl":"https://doi.org/10.1029/2023sw003621","url":null,"abstract":"Abstract We propose a novel approach to model the ground electric field (GEF) induced by laterally‐nonuniform ionospheric sources in real time. The approach exploits the multi‐site transfer function concept, continuous magnetic field measurements at multiple sites in the region of interest, and spatial modes describing the ionospheric source. We compared the modeled GEFs with those measured at two locations in Fennoscandia and observed good agreement between modeled and measured GEF. Besides, we compared GEF‐based geomagnetically induced current (GIC) with that measured at the Mäntsälä natural gas pipeline recording point and again observed remarkable agreement between modeled and measured GIC.","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136009360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Hybrid Deep Learning‐Based Forecasting Model for the Peak Height of Ionospheric F2 Layer 基于深度学习的电离层F2层峰值高度混合预测模型
2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-10-01 DOI: 10.1029/2023sw003581
Ya‐fei Shi, Cheng Yang, Jian Wang, Yu Zheng, Fan‐yi Meng, Leonid F. Chernogor
Abstract To achieve accurate forecasting of the peak height of the ionospheric F2 layer (hmF2), we propose a hybrid deep learning model of improved seagull optimization algorithm (ISOA) optimized long short‐term memory (LSTM) model based on a complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) theory. The hybrid model decomposes the hmF2 time data into multiple subsequences through CEEMDAN and reconstructs the subsequences by sample entropy and correlation coefficient into high and low‐frequency sequences, which effectively shortens the calculation time of the model. Then, we determine the optimal hyperparameters of the LSTM models through ISOA, achieving high‐precision forecasting of the hmF2. In single‐step forecasting, the forecasting values of the hybrid model in diurnal and seasonal changes are highly consistent with the observation, which can better capture the severe changes in the hmF2. The model's RMSE, MAE, MAPE, and CC evaluation metrics are 15.86, 11.03 km, 4.76%, and 0.93 in the test set. Compared to IRI, GRU, and LSTM models, taking RMSE as an example, the forecasting accuracy of the models increased by 65.24%, 29.89%, and 29.60%, respectively. In multi‐step forecasting, the proposed model is better at forecasting the changing trend of hmF2, and the forecasting accuracies are significantly better than the IRI model. The data from multiple stations also verified the applicability of the proposed model for hmF2 forecasting. The above results indicate that the hybrid model has high accuracy in hmF2 short‐term forecasting and good applicability in multiple multi‐step forecasting, which can further improve the accurate forecasting of space weather.
摘要为了实现对电离层F2层(hmF2)峰高的准确预测,提出了一种基于自适应噪声(CEEMDAN)理论的全综经验模态分解的改进海鸥优化算法(ISOA)优化长短期记忆(LSTM)模型的混合深度学习模型。该混合模型通过CEEMDAN将hmF2时间数据分解为多个子序列,并通过样本熵和相关系数将子序列重构为高频和低频序列,有效缩短了模型的计算时间。然后,我们通过ISOA确定LSTM模型的最优超参数,实现对hmF2的高精度预测。在单步预报中,混合模型对日变化和季节变化的预测值与观测值高度一致,能较好地捕捉hmF2的剧烈变化。模型的RMSE、MAE、MAPE和CC评价指标在测试集中分别为15.86、11.03 km、4.76%和0.93。与IRI、GRU和LSTM模型相比,以RMSE为例,模型的预测准确率分别提高了65.24%、29.89%和29.60%。在多步预测中,该模型能较好地预测hmF2的变化趋势,预测精度明显优于IRI模型。多个台站的数据也验证了该模型对hmF2预报的适用性。上述结果表明,该混合模型在hmF2短期预报中具有较高的精度,在多个多步预报中具有较好的适用性,可进一步提高空间天气预报的准确性。
{"title":"A Hybrid Deep Learning‐Based Forecasting Model for the Peak Height of Ionospheric F2 Layer","authors":"Ya‐fei Shi, Cheng Yang, Jian Wang, Yu Zheng, Fan‐yi Meng, Leonid F. Chernogor","doi":"10.1029/2023sw003581","DOIUrl":"https://doi.org/10.1029/2023sw003581","url":null,"abstract":"Abstract To achieve accurate forecasting of the peak height of the ionospheric F2 layer (hmF2), we propose a hybrid deep learning model of improved seagull optimization algorithm (ISOA) optimized long short‐term memory (LSTM) model based on a complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) theory. The hybrid model decomposes the hmF2 time data into multiple subsequences through CEEMDAN and reconstructs the subsequences by sample entropy and correlation coefficient into high and low‐frequency sequences, which effectively shortens the calculation time of the model. Then, we determine the optimal hyperparameters of the LSTM models through ISOA, achieving high‐precision forecasting of the hmF2. In single‐step forecasting, the forecasting values of the hybrid model in diurnal and seasonal changes are highly consistent with the observation, which can better capture the severe changes in the hmF2. The model's RMSE, MAE, MAPE, and CC evaluation metrics are 15.86, 11.03 km, 4.76%, and 0.93 in the test set. Compared to IRI, GRU, and LSTM models, taking RMSE as an example, the forecasting accuracy of the models increased by 65.24%, 29.89%, and 29.60%, respectively. In multi‐step forecasting, the proposed model is better at forecasting the changing trend of hmF2, and the forecasting accuracies are significantly better than the IRI model. The data from multiple stations also verified the applicability of the proposed model for hmF2 forecasting. The above results indicate that the hybrid model has high accuracy in hmF2 short‐term forecasting and good applicability in multiple multi‐step forecasting, which can further improve the accurate forecasting of space weather.","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135849004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
New Space Companies Meet a “Normal” Solar Maximum 新的太空公司遇到了一个“正常的”太阳极大期
2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-09-01 DOI: 10.1029/2023sw003702
Noé Lugaz, Huixin Liu, Brett A. Carter, Jennifer Gannon, Shasha Zou, Steven K. Morley
Abstract The monthly mean sunspot number has been larger in June–July 2023 than the double peak of solar cycle 24 (146 in February 2014 and 139 in November 2011) and brings us back to the sunspot level of solar cycle 23. However, the number of rocket launches, satellites in orbit and private space companies has increased dramatically in the past 20 years. Additionally, there is a growing interest for space exploration beyond Earth's orbit, to the Moon and beyond, which comes with higher risk of being affected by space weather. Here, we discuss some of these trends and the role of the journal to improve awareness of space weather impacts.
2023年6 - 7月的月平均黑子数已经超过了第24太阳周期的双峰(2014年2月为146个,2011年11月为139个),回到了第23太阳周期的黑子水平。然而,在过去的20年里,火箭发射、在轨卫星和私人太空公司的数量急剧增加。此外,人们对地球轨道以外的太空探索越来越感兴趣,前往月球和更远的地方,这带来了受太空天气影响的更高风险。在这里,我们讨论了其中的一些趋势,以及该杂志在提高人们对太空天气影响的认识方面的作用。
{"title":"New Space Companies Meet a “Normal” Solar Maximum","authors":"Noé Lugaz, Huixin Liu, Brett A. Carter, Jennifer Gannon, Shasha Zou, Steven K. Morley","doi":"10.1029/2023sw003702","DOIUrl":"https://doi.org/10.1029/2023sw003702","url":null,"abstract":"Abstract The monthly mean sunspot number has been larger in June–July 2023 than the double peak of solar cycle 24 (146 in February 2014 and 139 in November 2011) and brings us back to the sunspot level of solar cycle 23. However, the number of rocket launches, satellites in orbit and private space companies has increased dramatically in the past 20 years. Additionally, there is a growing interest for space exploration beyond Earth's orbit, to the Moon and beyond, which comes with higher risk of being affected by space weather. Here, we discuss some of these trends and the role of the journal to improve awareness of space weather impacts.","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135388038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Response of Ionospheric Currents to External Drivers Investigated Using a Neural Network‐Based Model 利用基于神经网络的模型研究电离层电流对外部驱动的响应
2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-09-01 DOI: 10.1029/2023sw003506
Xin Cao, Xiangning Chu, Jacob Bortnik, James M. Weygand, Jinxing Li, Homayon Aryan, Donglai Ma
Abstract A predictive model for the variation of ionospheric currents is of great scientific and practical importance to our modern industrial society. To study the response of ionospheric currents to external drivers including geomagnetic indices and solar radiation, we developed a feedforward neural network model trained on the Equivalent Ionospheric Current (EIC) data from 1st January 2007 to 31st December 2019. Due to the highly imbalanced nature of the ionospheric currents data, which means that the data of extreme events are much less than those of quiet times, we utilized different loss functions to improve the model performance. Our model demonstrates the potential to predict the active events of ionospheric currents reasonably well (e.g., EICs during substorms) within a timescale of a few minutes. Although the data used for training are measurements over the North American and Greenland sectors, our model is not only able to predict EICs within this region, but is also able to provide a promising out‐of‐sample prediction on a global scale.
摘要建立电离层电流变化的预测模型对现代工业社会具有重要的科学意义和现实意义。为了研究电离层电流对地磁指数和太阳辐射等外部驱动因素的响应,基于2007年1月1日至2019年12月31日的等效电离层电流(EIC)数据,建立了一个前馈神经网络模型。由于电离层电流数据具有高度的不平衡性,即极端事件的数据远少于平静时间的数据,我们使用不同的损失函数来提高模型的性能。我们的模型展示了在几分钟的时间尺度内相当好地预测电离层电流活动事件(例如,亚暴期间的EICs)的潜力。虽然用于训练的数据是北美和格陵兰地区的测量数据,但我们的模型不仅能够预测该地区的eic,而且还能够在全球范围内提供有希望的样本外预测。
{"title":"The Response of Ionospheric Currents to External Drivers Investigated Using a Neural Network‐Based Model","authors":"Xin Cao, Xiangning Chu, Jacob Bortnik, James M. Weygand, Jinxing Li, Homayon Aryan, Donglai Ma","doi":"10.1029/2023sw003506","DOIUrl":"https://doi.org/10.1029/2023sw003506","url":null,"abstract":"Abstract A predictive model for the variation of ionospheric currents is of great scientific and practical importance to our modern industrial society. To study the response of ionospheric currents to external drivers including geomagnetic indices and solar radiation, we developed a feedforward neural network model trained on the Equivalent Ionospheric Current (EIC) data from 1st January 2007 to 31st December 2019. Due to the highly imbalanced nature of the ionospheric currents data, which means that the data of extreme events are much less than those of quiet times, we utilized different loss functions to improve the model performance. Our model demonstrates the potential to predict the active events of ionospheric currents reasonably well (e.g., EICs during substorms) within a timescale of a few minutes. Although the data used for training are measurements over the North American and Greenland sectors, our model is not only able to predict EICs within this region, but is also able to provide a promising out‐of‐sample prediction on a global scale.","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135394140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of Empirical and Theoretical Models of the Thermospheric Density Enhancement During the 3–4 February 2022 Geomagnetic Storm 2022年2月3-4日地磁风暴期间热层密度增强的经验和理论模型比较
2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-09-01 DOI: 10.1029/2023sw003521
Jianhui He, Elvira Astafyeva, Xinan Yue, Nicholas M. Pedatella, Dong Lin, Timothy J. Fuller‐Rowell, Mariangel Fedrizzi, Mihail Codrescu, Eelco Doornbos, Christian Siemes, Sean Bruinsma, Frederic Pitout, Adam Kubaryk
Abstract On 3 February 2022, at 18:13 UTC, SpaceX launched and a short time later deployed 49 Starlink satellites at an orbit altitude between 210 and 320 km. The satellites were meant to be further raised to 550 km. However, the deployment took place during the main phase of a moderate geomagnetic storm, and another moderate storm occurred on the next day. The resulting increase in atmospheric drag led to 38 out of the 49 satellites reentering the atmosphere in the following days. In this work, we use both observations and simulations to perform a detailed investigation of the thermospheric conditions during this storm. Observations at higher altitudes, by Swarm‐A (∼438 km, 09/21 Local Time [LT]) and the Gravity Recovery and Climate Experiment Follow‐On (∼505 km, 06/18 LT) missions show that during the main phase of the storms the neutral mass density increased by 110% and 120%, respectively. The storm‐time enhancement extended to middle and low latitudes and was stronger in the northern hemisphere. To further investigate the thermospheric variations, we used six empirical and first‐principle numerical models. We found the models captured the upper and lower thermosphere changes, however, their simulated density enhancements differ by up to 70%. Further, the models showed that at the low orbital altitudes of the Starlink satellites (i.e., 200–300 km) the global averaged storm‐time density enhancement reached up to ∼35%–60%. Although such storm effects are far from the largest, they seem to be responsible for the reentry of the 38 satellites.
2022年2月3日,UTC时间18:13,SpaceX发射并在短时间内部署了49颗星链卫星,轨道高度在210至320公里之间。这些卫星本应进一步提高到550公里的高度。然而,这次部署发生在一次中等地磁风暴的主要阶段,第二天又发生了一次中等地磁风暴。由此造成的大气阻力增加导致49颗卫星中的38颗在随后几天内重新进入大气层。在这项工作中,我们使用观测和模拟来对这次风暴期间的热层条件进行详细的调查。Swarm - A(当地时间09/21 ~ 438 km)和重力恢复和气候实验后续(06/18 LT ~ 505 km)任务在更高海拔的观测表明,在风暴的主要阶段,中性质量密度分别增加了110%和120%。风暴时间增强扩展到中低纬度地区,北半球增强。为了进一步研究热层的变化,我们使用了六个经验和第一性原理数值模型。我们发现模型捕获了上层和下层热层的变化,然而,它们模拟的密度增强差异高达70%。此外,模型显示,在Starlink卫星的低轨道高度(即200-300 km),全球平均风暴时间密度增强高达35%-60%。虽然这种风暴的影响远远不是最大的,但它们似乎是38颗卫星重返大气层的原因。
{"title":"Comparison of Empirical and Theoretical Models of the Thermospheric Density Enhancement During the 3–4 February 2022 Geomagnetic Storm","authors":"Jianhui He, Elvira Astafyeva, Xinan Yue, Nicholas M. Pedatella, Dong Lin, Timothy J. Fuller‐Rowell, Mariangel Fedrizzi, Mihail Codrescu, Eelco Doornbos, Christian Siemes, Sean Bruinsma, Frederic Pitout, Adam Kubaryk","doi":"10.1029/2023sw003521","DOIUrl":"https://doi.org/10.1029/2023sw003521","url":null,"abstract":"Abstract On 3 February 2022, at 18:13 UTC, SpaceX launched and a short time later deployed 49 Starlink satellites at an orbit altitude between 210 and 320 km. The satellites were meant to be further raised to 550 km. However, the deployment took place during the main phase of a moderate geomagnetic storm, and another moderate storm occurred on the next day. The resulting increase in atmospheric drag led to 38 out of the 49 satellites reentering the atmosphere in the following days. In this work, we use both observations and simulations to perform a detailed investigation of the thermospheric conditions during this storm. Observations at higher altitudes, by Swarm‐A (∼438 km, 09/21 Local Time [LT]) and the Gravity Recovery and Climate Experiment Follow‐On (∼505 km, 06/18 LT) missions show that during the main phase of the storms the neutral mass density increased by 110% and 120%, respectively. The storm‐time enhancement extended to middle and low latitudes and was stronger in the northern hemisphere. To further investigate the thermospheric variations, we used six empirical and first‐principle numerical models. We found the models captured the upper and lower thermosphere changes, however, their simulated density enhancements differ by up to 70%. Further, the models showed that at the low orbital altitudes of the Starlink satellites (i.e., 200–300 km) the global averaged storm‐time density enhancement reached up to ∼35%–60%. Although such storm effects are far from the largest, they seem to be responsible for the reentry of the 38 satellites.","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135434340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three‐Dimensional Modeling of the Ground Electric Field in Fennoscandia During the Halloween Geomagnetic Storm 万圣节地磁风暴期间芬诺斯坎迪亚地电场的三维模拟
2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-09-01 DOI: 10.1029/2022sw003370
Elena Marshalko, Mikhail Kruglyakov, Alexey Kuvshinov, Ari Viljanen
Abstract In this study, we perform three‐dimensional (3‐D) ground electric field (GEF) modeling in Fennoscandia for three days of the Halloween geomagnetic storm (29–31 October 2003) using magnetic field data from the International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometer network and a 3‐D conductivity model of the region. To explore the influence of the inducing source model on 3‐D GEF simulations, we consider three different approaches to source approximation. Within the first two approaches, the source varies laterally, whereas in the third method, the GEF is calculated by implementing the time‐domain realization of the magnetotelluric intersite impedance method. We then compare GEF‐based geomagnetically induced current (GIC) with observations at the Mäntsälä natural gas pipeline recording point. We conclude that a high correlation between modeled and recorded GIC is observed for all considered approaches. The highest correlation is achieved when performing a 3‐D GEF simulation using a “conductivity‐based” laterally nonuniform inducing source. Our results also highlight the strong dependence of the GEF on the earth's conductivity distribution.
在本研究中,我们利用国际极光地磁效应监测(IMAGE)磁力计网络的磁场数据和该地区的三维电导率模型,在Fennoscandia进行了万圣节地磁风暴(2003年10月29日至31日)三天的三维地电场(GEF)建模。为了探讨诱导源模型对三维GEF模拟的影响,我们考虑了三种不同的源近似方法。在前两种方法中,源是横向变化的,而在第三种方法中,GEF是通过实现大地电磁场间阻抗法的时域实现来计算的。然后,我们将基于GEF的地磁感应电流(GIC)与Mäntsälä天然气管道记录点的观测结果进行比较。我们得出结论,在所有考虑的方法中,模型和记录的GIC之间存在高度相关性。当使用“基于电导率”的横向非均匀诱导源进行三维GEF模拟时,实现了最高的相关性。我们的结果也强调了GEF对地球电导率分布的强烈依赖。
{"title":"Three‐Dimensional Modeling of the Ground Electric Field in Fennoscandia During the Halloween Geomagnetic Storm","authors":"Elena Marshalko, Mikhail Kruglyakov, Alexey Kuvshinov, Ari Viljanen","doi":"10.1029/2022sw003370","DOIUrl":"https://doi.org/10.1029/2022sw003370","url":null,"abstract":"Abstract In this study, we perform three‐dimensional (3‐D) ground electric field (GEF) modeling in Fennoscandia for three days of the Halloween geomagnetic storm (29–31 October 2003) using magnetic field data from the International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometer network and a 3‐D conductivity model of the region. To explore the influence of the inducing source model on 3‐D GEF simulations, we consider three different approaches to source approximation. Within the first two approaches, the source varies laterally, whereas in the third method, the GEF is calculated by implementing the time‐domain realization of the magnetotelluric intersite impedance method. We then compare GEF‐based geomagnetically induced current (GIC) with observations at the Mäntsälä natural gas pipeline recording point. We conclude that a high correlation between modeled and recorded GIC is observed for all considered approaches. The highest correlation is achieved when performing a 3‐D GEF simulation using a “conductivity‐based” laterally nonuniform inducing source. Our results also highlight the strong dependence of the GEF on the earth's conductivity distribution.","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135889102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Numerical Modeling and GNSS Observations of Ionospheric Depletions Due To a Small‐Lift Launch Vehicle 小升力运载火箭造成电离层耗损的数值模拟和GNSS观测
2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-09-01 DOI: 10.1029/2023sw003563
G. W. Bowden, M. Brown
Abstract Space launches produce ionospheric disturbances which can be observed through measurements such as Global Navigation Satellite System signal delays. Here we report observations and numerical simulations of the ionospheric depletion due to a Small‐Lift Launch Vehicle. The case examined was the launch of a Rocket Lab Electron at 22:30 UTC on 22 March 2021. Despite the very small launch vehicle, ground stations in the Chatham Islands measured decreases in slant total electron content for navigation satellite signals following the launch. Global Ionosphere Thermosphere Model results indicated ionospheric depletions which were comparable with these measurements. Measurements indicated a maximum decrease of 2.7 TECU in vertical total electron content, compared with a simulated decrease of 2.6 TECU. Advection of the exhaust plume due to its initial velocity and subsequent effects of neutral winds are identified as some remaining challenges for this form of modeling.
空间发射产生的电离层扰动可以通过测量如全球导航卫星系统信号延迟来观察。在这里,我们报告了由小升力运载火箭引起的电离层损耗的观测和数值模拟。审查的案例是2021年3月22日22:30 UTC发射的火箭实验室电子。尽管运载火箭非常小,查塔姆群岛的地面站测量到发射后导航卫星信号的倾斜总电子含量减少。全球电离层热层模式的结果表明电离层消耗与这些测量结果相当。测量结果表明,垂直总电子含量最大减少2.7 TECU,而模拟减少2.6 TECU。由于其初始速度和中性风的后续影响,排气羽流的平流被确定为这种形式的建模的一些剩余挑战。
{"title":"Numerical Modeling and GNSS Observations of Ionospheric Depletions Due To a Small‐Lift Launch Vehicle","authors":"G. W. Bowden, M. Brown","doi":"10.1029/2023sw003563","DOIUrl":"https://doi.org/10.1029/2023sw003563","url":null,"abstract":"Abstract Space launches produce ionospheric disturbances which can be observed through measurements such as Global Navigation Satellite System signal delays. Here we report observations and numerical simulations of the ionospheric depletion due to a Small‐Lift Launch Vehicle. The case examined was the launch of a Rocket Lab Electron at 22:30 UTC on 22 March 2021. Despite the very small launch vehicle, ground stations in the Chatham Islands measured decreases in slant total electron content for navigation satellite signals following the launch. Global Ionosphere Thermosphere Model results indicated ionospheric depletions which were comparable with these measurements. Measurements indicated a maximum decrease of 2.7 TECU in vertical total electron content, compared with a simulated decrease of 2.6 TECU. Advection of the exhaust plume due to its initial velocity and subsequent effects of neutral winds are identified as some remaining challenges for this form of modeling.","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135299035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probabilistic Solar Proxy Forecasting With Neural Network Ensembles 基于神经网络集成的概率太阳代理预报
2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-09-01 DOI: 10.1029/2023sw003675
Joshua D. Daniell, Piyush M. Mehta
Abstract Space weather indices are used commonly to drive forecasts of thermosphere density, which affects objects in low‐Earth orbit (LEO) through atmospheric drag. One commonly used space weather proxy, F 10.7cm , correlates well with solar extreme ultra‐violet (EUV) energy deposition into the thermosphere. Currently, the USAF contracts Space Environment Technologies (SET), which uses a linear algorithm to forecast F 10.7cm . In this work, we introduce methods using neural network ensembles with multi‐layer perceptrons (MLPs) and long‐short term memory (LSTMs) to improve on the SET predictions. We make predictions only from historical F 10.7cm values. We investigate data manipulation methods (backwards averaging and lookback) as well as multi step and dynamic forecasting. This work shows an improvement over the popular persistence and the operational SET model when using ensemble methods. The best models found in this work are ensemble approaches using multi step or a combination of multi step and dynamic predictions. Nearly all approaches offer an improvement, with the best models improving between 48% and 59% on relative MSE with respect to persistence. Other relative error metrics were shown to improve greatly when ensembles methods were used. We were also able to leverage the ensemble approach to provide a distribution of predicted values; allowing an investigation into forecast uncertainty. Our work found models that produced less biased predictions at elevated and high solar activity levels. Uncertainty was also investigated through the use of a calibration error score metric (CES), our best ensemble reached similar CES as other work.
空间天气指数通常用于驱动热层密度的预报,热层密度通过大气阻力影响低地球轨道(LEO)上的物体。一个常用的空间天气指标,f10.7 cm,与太阳极紫外线(EUV)能量沉积到热层有很好的相关性。目前,美国空军与空间环境技术公司(SET)签订合同,该公司使用线性算法预测f10.7 cm。在这项工作中,我们介绍了使用多层感知器(mlp)和长短期记忆(lstm)的神经网络集成来改进SET预测的方法。我们仅根据历史f10.7 cm值进行预测。我们研究了数据处理方法(向后平均和回顾)以及多步和动态预测。在使用集成方法时,这项工作显示了对流行的持久性和操作性SET模型的改进。在这项工作中发现的最好的模型是使用多步骤或多步骤和动态预测的组合的集成方法。几乎所有的方法都提供了改进,最好的模型在持久性方面的相对MSE上提高了48%到59%。当采用集成方法时,其他相对误差指标得到了很大的改善。我们还能够利用集合方法来提供预测值的分布;允许对预测的不确定性进行调查。我们的研究发现,在太阳活动水平较高和较高的情况下,模型产生的预测偏差较小。不确定度还通过使用校准误差评分度量(CES)进行了调查,我们的最佳集合达到了与其他工作相似的CES。
{"title":"Probabilistic Solar Proxy Forecasting With Neural Network Ensembles","authors":"Joshua D. Daniell, Piyush M. Mehta","doi":"10.1029/2023sw003675","DOIUrl":"https://doi.org/10.1029/2023sw003675","url":null,"abstract":"Abstract Space weather indices are used commonly to drive forecasts of thermosphere density, which affects objects in low‐Earth orbit (LEO) through atmospheric drag. One commonly used space weather proxy, F 10.7cm , correlates well with solar extreme ultra‐violet (EUV) energy deposition into the thermosphere. Currently, the USAF contracts Space Environment Technologies (SET), which uses a linear algorithm to forecast F 10.7cm . In this work, we introduce methods using neural network ensembles with multi‐layer perceptrons (MLPs) and long‐short term memory (LSTMs) to improve on the SET predictions. We make predictions only from historical F 10.7cm values. We investigate data manipulation methods (backwards averaging and lookback) as well as multi step and dynamic forecasting. This work shows an improvement over the popular persistence and the operational SET model when using ensemble methods. The best models found in this work are ensemble approaches using multi step or a combination of multi step and dynamic predictions. Nearly all approaches offer an improvement, with the best models improving between 48% and 59% on relative MSE with respect to persistence. Other relative error metrics were shown to improve greatly when ensembles methods were used. We were also able to leverage the ensemble approach to provide a distribution of predicted values; allowing an investigation into forecast uncertainty. Our work found models that produced less biased predictions at elevated and high solar activity levels. Uncertainty was also investigated through the use of a calibration error score metric (CES), our best ensemble reached similar CES as other work.","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"192 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135149912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Space Weather-The International Journal of Research and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1