首页 > 最新文献

Space Weather-The International Journal of Research and Applications最新文献

英文 中文
Bayesian Inference and Global Sensitivity Analysis for Ambient Solar Wind Prediction 环境太阳风预测的贝叶斯推理和全局敏感性分析
2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-09-01 DOI: 10.1029/2023sw003555
Opal Issan, Pete Riley, Enrico Camporeale, Boris Kramer
Abstract The ambient solar wind plays a significant role in propagating interplanetary coronal mass ejections and is an important driver of space weather geomagnetic storms. A computationally efficient and widely used method to predict the ambient solar wind radial velocity near Earth involves coupling three models: Potential Field Source Surface, Wang‐Sheeley‐Arge (WSA), and Heliospheric Upwind eXtrapolation. However, the model chain has 11 uncertain parameters that are mainly non‐physical due to empirical relations and simplified physics assumptions. We, therefore, propose a comprehensive uncertainty quantification (UQ) framework that is able to successfully quantify and reduce parametric uncertainties in the model chain. The UQ framework utilizes variance‐based global sensitivity analysis followed by Bayesian inference via Markov chain Monte Carlo to learn the posterior densities of the most influential parameters. The sensitivity analysis results indicate that the five most influential parameters are all WSA parameters. Additionally, we show that the posterior densities of such influential parameters vary greatly from one Carrington rotation to the next. The influential parameters are trying to overcompensate for the missing physics in the model chain, highlighting the need to enhance the robustness of the model chain to the choice of WSA parameters. The ensemble predictions generated from the learned posterior densities significantly reduce the uncertainty in solar wind velocity predictions near Earth.
环境太阳风在传播行星际日冕物质抛射中起着重要作用,是空间天气地磁风暴的重要驱动因素。一种计算效率高且被广泛使用的预测地球附近环境太阳风径向速度的方法涉及三种模型的耦合:势场源面、Wang - Sheeley - Arge (WSA)和日球逆风外推。然而,模型链有11个不确定参数,由于经验关系和简化的物理假设,这些参数主要是非物理的。因此,我们提出了一个全面的不确定性量化(UQ)框架,能够成功地量化和减少模型链中的参数不确定性。UQ框架利用基于方差的全局灵敏度分析,然后通过马尔可夫链蒙特卡罗进行贝叶斯推理,以学习最具影响力参数的后验密度。灵敏度分析结果表明,影响最大的5个参数均为WSA参数。此外,我们表明,这种影响参数的后验密度从一个卡灵顿旋转到下一个变化很大。有影响的参数试图过度补偿模型链中缺失的物理,突出了增强模型链对WSA参数选择的鲁棒性的必要性。由学习后验密度产生的集合预测显著降低了近地太阳风速度预测的不确定性。
{"title":"Bayesian Inference and Global Sensitivity Analysis for Ambient Solar Wind Prediction","authors":"Opal Issan, Pete Riley, Enrico Camporeale, Boris Kramer","doi":"10.1029/2023sw003555","DOIUrl":"https://doi.org/10.1029/2023sw003555","url":null,"abstract":"Abstract The ambient solar wind plays a significant role in propagating interplanetary coronal mass ejections and is an important driver of space weather geomagnetic storms. A computationally efficient and widely used method to predict the ambient solar wind radial velocity near Earth involves coupling three models: Potential Field Source Surface, Wang‐Sheeley‐Arge (WSA), and Heliospheric Upwind eXtrapolation. However, the model chain has 11 uncertain parameters that are mainly non‐physical due to empirical relations and simplified physics assumptions. We, therefore, propose a comprehensive uncertainty quantification (UQ) framework that is able to successfully quantify and reduce parametric uncertainties in the model chain. The UQ framework utilizes variance‐based global sensitivity analysis followed by Bayesian inference via Markov chain Monte Carlo to learn the posterior densities of the most influential parameters. The sensitivity analysis results indicate that the five most influential parameters are all WSA parameters. Additionally, we show that the posterior densities of such influential parameters vary greatly from one Carrington rotation to the next. The influential parameters are trying to overcompensate for the missing physics in the model chain, highlighting the need to enhance the robustness of the model chain to the choice of WSA parameters. The ensemble predictions generated from the learned posterior densities significantly reduce the uncertainty in solar wind velocity predictions near Earth.","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135248443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Prediction of Proton Pressure in the Outer Part of the Inner Magnetosphere Using Machine Learning 利用机器学习预测内磁层外层的质子压力
2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-09-01 DOI: 10.1029/2022sw003387
S. Y. Li, E. A. Kronberg, C. G. Mouikis, H. Luo, Y. S. Ge, A. M. Du
Abstract The information on plasma pressure in the outer part of the inner magnetosphere is important for simulations of the inner magnetosphere and a better understanding of its dynamics. Based on 17‐year observations from both Cluster Ion Spectrometry and Research with Adaptive Particle Imaging Detector instruments onboard the Cluster mission, we used machine‐learning‐based models to predict proton plasma pressure at energies from ∼40 eV to 4 MeV in the outer part of the inner magnetosphere ( = 5–9). Proton pressure distributions are assumed to be isotropic. The location in the magnetosphere, the property of stably trapped particles, and parameters of solar, solar wind, and geomagnetic activity from the OMNI database are used as predictors. We trained several different machine‐learning‐based models and compared their performances with observations. The results demonstrate that the Extra‐Trees Regressor has the best predicting performance. The Spearman correlation between the observations and predictions by the model is about 70%. The most important parameter for predicting proton pressure in our model is the value, which relates to the property of stably trapped particles. The most important predictor of solar and geomagnetic activity is F 10.7 index. Based on the observations and predictions by our model, we find that no matter under quiet or disturbed geomagnetic conditions, both the dusk‐dawn asymmetry at the dayside with higher pressure at the duskside and the day‐night asymmetry with higher pressure at the nightside occur. Our results have direct practical applications, for instance, inputs for simulations of the inner magnetosphere or the reconstruction of the 3‐D magnetospheric electric current system based on the magnetostatic equilibrium.
内磁层外层等离子体压力的信息对于内磁层的模拟和更好地理解其动力学是非常重要的。基于17年的集群离子光谱观测和集群任务上的自适应粒子成像探测器的研究,我们使用基于机器学习的模型来预测内磁层外层能量从~ 40 eV到4 MeV的质子等离子体压力(= 5-9)。假设质子压力分布是各向同性的。利用OMNI数据库中的磁层位置、稳定捕获粒子的性质以及太阳、太阳风和地磁活动参数作为预测因子。我们训练了几个不同的基于机器学习的模型,并将它们的表现与观察结果进行了比较。结果表明,Extra‐Trees回归器具有最佳的预测性能。观测和模型预测之间的斯皮尔曼相关性约为70%。在我们的模型中,预测质子压力最重要的参数是值,它关系到稳定捕获粒子的性质。太阳和地磁活动最重要的预测指标是f10.7指数。根据我们的模型的观测和预测,我们发现无论在安静的地磁条件下还是在扰动的地磁条件下,白天侧的黄昏-黎明不对称和夜晚侧的白天-黎明不对称都存在,黄昏侧的压力较高,夜晚侧的压力较高。我们的结果有直接的实际应用,例如,输入模拟内磁层或三维磁层电流系统的重建基于静磁平衡。
{"title":"Prediction of Proton Pressure in the Outer Part of the Inner Magnetosphere Using Machine Learning","authors":"S. Y. Li, E. A. Kronberg, C. G. Mouikis, H. Luo, Y. S. Ge, A. M. Du","doi":"10.1029/2022sw003387","DOIUrl":"https://doi.org/10.1029/2022sw003387","url":null,"abstract":"Abstract The information on plasma pressure in the outer part of the inner magnetosphere is important for simulations of the inner magnetosphere and a better understanding of its dynamics. Based on 17‐year observations from both Cluster Ion Spectrometry and Research with Adaptive Particle Imaging Detector instruments onboard the Cluster mission, we used machine‐learning‐based models to predict proton plasma pressure at energies from ∼40 eV to 4 MeV in the outer part of the inner magnetosphere ( = 5–9). Proton pressure distributions are assumed to be isotropic. The location in the magnetosphere, the property of stably trapped particles, and parameters of solar, solar wind, and geomagnetic activity from the OMNI database are used as predictors. We trained several different machine‐learning‐based models and compared their performances with observations. The results demonstrate that the Extra‐Trees Regressor has the best predicting performance. The Spearman correlation between the observations and predictions by the model is about 70%. The most important parameter for predicting proton pressure in our model is the value, which relates to the property of stably trapped particles. The most important predictor of solar and geomagnetic activity is F 10.7 index. Based on the observations and predictions by our model, we find that no matter under quiet or disturbed geomagnetic conditions, both the dusk‐dawn asymmetry at the dayside with higher pressure at the duskside and the day‐night asymmetry with higher pressure at the nightside occur. Our results have direct practical applications, for instance, inputs for simulations of the inner magnetosphere or the reconstruction of the 3‐D magnetospheric electric current system based on the magnetostatic equilibrium.","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135349548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Index to Characterize Ionospheric Irregularity Distribution 表征电离层不规则分布的新指标
2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2023-09-01 DOI: 10.1029/2023sw003469
Endawoke Yizengaw
Abstract Characterization of the global ionospheric irregularities as a function of local time, longitude, altitude, and magnetic activities is still a challenge for radio frequency operations, especially at the low‐latitude region. One of the main reasons is lack of observations due to the unevenly distributed instruments. To overcome this constraint, we developed a new spatial density gradient index (DGRI) at two different scale sizes: small scale and medium/large scale. The DGRI is derived from in situ density measurements onboard recently launched constellation of low‐Earth‐orbiting satellites (COSMIC‐2 and ICON) at the rate of 1 Hz. Hence, the DGRI appeared to be suitable parameter that can be used as a proxy to describe the essential features of ionospheric disturbances that may critically affect our radio wave application as well as to identify the “ all clear ” zone as a function of longitude, latitude, and local time—at a refreshment rate of 30 min or less.
将全球电离层不规则性表征为当地时间、经度、海拔和磁活动的函数仍然是射频操作的一个挑战,特别是在低纬度地区。其中一个主要原因是由于仪器分布不均导致观测不足。为了克服这一限制,我们在两个不同尺度下开发了新的空间密度梯度指数(DGRI):小尺度和中/大尺度。DGRI是根据最近发射的低地球轨道卫星星座(COSMIC - 2和ICON)以1hz的速率进行的原位密度测量得出的。因此,DGRI似乎是一个合适的参数,可以作为一个代理来描述电离层干扰的基本特征,这些干扰可能严重影响我们的无线电波应用,并确定“所有清除”区域作为经度、纬度和当地时间的函数,在30分钟或更短的恢复速率下。
{"title":"New Index to Characterize Ionospheric Irregularity Distribution","authors":"Endawoke Yizengaw","doi":"10.1029/2023sw003469","DOIUrl":"https://doi.org/10.1029/2023sw003469","url":null,"abstract":"Abstract Characterization of the global ionospheric irregularities as a function of local time, longitude, altitude, and magnetic activities is still a challenge for radio frequency operations, especially at the low‐latitude region. One of the main reasons is lack of observations due to the unevenly distributed instruments. To overcome this constraint, we developed a new spatial density gradient index (DGRI) at two different scale sizes: small scale and medium/large scale. The DGRI is derived from in situ density measurements onboard recently launched constellation of low‐Earth‐orbiting satellites (COSMIC‐2 and ICON) at the rate of 1 Hz. Hence, the DGRI appeared to be suitable parameter that can be used as a proxy to describe the essential features of ionospheric disturbances that may critically affect our radio wave application as well as to identify the “ all clear ” zone as a function of longitude, latitude, and local time—at a refreshment rate of 30 min or less.","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"31 8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134993669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Space-Based Sentinels for Measurement of Infrared Cooling in the Thermosphere for Space Weather Nowcasting and Forecasting. 用于测量热层红外冷却的天基哨兵,用于空间天气预报和预报。
IF 3.7 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2018-04-01 DOI: 10.1002/2017SW001757
Martin G Mlynczak, Delores J Knipp, Linda A Hunt, John Gaebler, Tomoko Matsuo, Liam M Kilcommons, Cindy L Young

Infrared radiative cooling by nitric oxide (NO) and carbon dioxide (CO2) modulates the thermosphere's density and thermal response to geomagnetic storms. Satellite tracking and collision avoidance planning require accurate density forecasts during these events. Over the past several years, failed density forecasts have been tied to the onset of rapid and significant cooling due to production of NO and its associated radiative cooling via emission of infrared radiation at 5.3 μm. These results have been diagnosed, after the fact, through analyses of measurements of infrared cooling made by the Sounding of the Atmosphere using Broadband Emission Radiometry instrument now in orbit over 16 years on the National Aeronautics and Space Administration Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics satellite. Radiative cooling rates for NO and CO2 have been further shown to be directly correlated with composition and exospheric temperature changes during geomagnetic storms. These results strongly suggest that a network of smallsats observing the infrared radiative cooling of the thermosphere could serve as space weather sentinels. These sentinels would observe and provide radiative cooling rate data in real time to generate nowcasts of density and aerodynamic drag on space vehicles. Currently, radiative cooling is not directly considered in operational space weather forecast models. In addition, recent research has shown that different geomagnetic storm types generate substantially different infrared radiative response, and hence, substantially different thermospheric density response. The ability to identify these storms, and to measure and predict the Earth's response to them, should enable substantial improvement in thermospheric density forecasts.

一氧化氮(NO)和二氧化碳(CO2)的红外辐射冷却调节了热层的密度和对地磁风暴的热响应。卫星跟踪和防撞规划需要在这些事件期间进行准确的密度预测。在过去的几年里,失败的密度预测与NO的产生及其通过5.3μm红外辐射的相关辐射冷却导致的快速显著冷却的开始有关。这些结果是在事后通过分析利用美国国家航空航天局热球、电离层、中圈能量学和动力学卫星上的宽带发射辐射测量仪探测大气层所进行的红外冷却测量而得到诊断的。NO和CO2的辐射冷却速率已被进一步证明与地磁风暴期间的成分和外层温度变化直接相关。这些结果有力地表明,观测热层红外辐射冷却的小型卫星网络可以作为空间天气哨兵。这些哨兵将实时观测并提供辐射冷却率数据,以生成航天器密度和空气动力学阻力的实时预报。目前,在运行的空间天气预报模型中没有直接考虑辐射冷却。此外,最近的研究表明,不同的地磁暴类型产生了显著不同的红外辐射响应,因此产生了明显不同的热层密度响应。能够识别这些风暴,并测量和预测地球对它们的反应,应该能够大大改进热层密度预测。
{"title":"Space-Based Sentinels for Measurement of Infrared Cooling in the Thermosphere for Space Weather Nowcasting and Forecasting.","authors":"Martin G Mlynczak,&nbsp;Delores J Knipp,&nbsp;Linda A Hunt,&nbsp;John Gaebler,&nbsp;Tomoko Matsuo,&nbsp;Liam M Kilcommons,&nbsp;Cindy L Young","doi":"10.1002/2017SW001757","DOIUrl":"https://doi.org/10.1002/2017SW001757","url":null,"abstract":"<p><p>Infrared radiative cooling by nitric oxide (NO) and carbon dioxide (CO<sub>2</sub>) modulates the thermosphere's density and thermal response to geomagnetic storms. Satellite tracking and collision avoidance planning require accurate density forecasts during these events. Over the past several years, failed density forecasts have been tied to the onset of rapid and significant cooling due to production of NO and its associated radiative cooling via emission of infrared radiation at 5.3 μm. These results have been diagnosed, after the fact, through analyses of measurements of infrared cooling made by the Sounding of the Atmosphere using Broadband Emission Radiometry instrument now in orbit over 16 years on the National Aeronautics and Space Administration Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics satellite. Radiative cooling rates for NO and CO<sub>2</sub> have been further shown to be directly correlated with composition and exospheric temperature changes during geomagnetic storms. These results strongly suggest that a network of smallsats observing the infrared radiative cooling of the thermosphere could serve as space weather sentinels. These sentinels would observe and provide radiative cooling rate data in real time to generate nowcasts of density and aerodynamic drag on space vehicles. Currently, radiative cooling is not directly considered in operational space weather forecast models. In addition, recent research has shown that different geomagnetic storm types generate substantially different infrared radiative response, and hence, substantially different thermospheric density response. The ability to identify these storms, and to measure and predict the Earth's response to them, should enable substantial improvement in thermospheric density forecasts.</p>","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"16 4","pages":"363-375"},"PeriodicalIF":3.7,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/2017SW001757","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41217786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Seps: Space Weather Hazard in Interplanetary Space 第二章:行星际空间的空间天气危害
IF 3.7 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2013-03-19 DOI: 10.1029/GM125P0101
D. Reames
In the largest and most hazardous of solar energetic particle (SEP) events, acceleration takes place at shock waves driven out from the Sun by fast CMEs. Multi-spacecraft studies show that the particles from the largest events span more than 180 degrees in solar longitude; the events can last for several days. Protons streaming away from the shock generate waves that trap particles in the acceleration region, limiting outflowing intensities but increasing the efficiency of acceleration to higher energies. Thus, early intensities are bounded, but at the time of shock passage, they can suddenly rise to a peak. These shock peaks extend to >500 MeV in the largest events, creating a serious 'delayed' radiation hazard. At high energies, spectra steepen to form a 'knee.' This spectral knee can vary from ∼10 MeV to ∼1 GeV depending on shock conditions, greatly affecting the radiation hazard. Elements with different charge-to-mass ratios differentially probe the wave spectra near shocks, producing abundance ratios that vary in space and time. These abundance ratios are a tool that can foretell conditions at an oncoming shock.
在最大和最危险的太阳高能粒子(SEP)事件中,加速发生在由快速日冕物质抛射(cme)从太阳发出的冲击波上。多个航天器的研究表明,最大事件产生的粒子在太阳经度上跨越了180度以上;这些事件可能会持续数天。从激波中流出的质子产生的波将粒子困在加速区域,限制了流出的强度,但提高了加速到更高能量的效率。因此,早期的强度是有限的,但在激波通过时,它们可以突然上升到一个峰值。在最大的事件中,这些冲击峰值扩展到>500兆电子伏特,造成严重的“延迟”辐射危害。在高能量下,光谱变陡形成一个“膝盖”。根据冲击条件的不同,该光谱膝盖可以在~ 10 MeV到~ 1 GeV之间变化,极大地影响了辐射危害。具有不同电荷质量比的元素以不同的方式探测冲击附近的波谱,产生在空间和时间上变化的丰度比。这些丰度比是一种工具,可以预测即将到来的冲击的情况。
{"title":"Seps: Space Weather Hazard in Interplanetary Space","authors":"D. Reames","doi":"10.1029/GM125P0101","DOIUrl":"https://doi.org/10.1029/GM125P0101","url":null,"abstract":"In the largest and most hazardous of solar energetic particle (SEP) events, acceleration takes place at shock waves driven out from the Sun by fast CMEs. Multi-spacecraft studies show that the particles from the largest events span more than 180 degrees in solar longitude; the events can last for several days. Protons streaming away from the shock generate waves that trap particles in the acceleration region, limiting outflowing intensities but increasing the efficiency of acceleration to higher energies. Thus, early intensities are bounded, but at the time of shock passage, they can suddenly rise to a peak. These shock peaks extend to >500 MeV in the largest events, creating a serious 'delayed' radiation hazard. At high energies, spectra steepen to form a 'knee.' This spectral knee can vary from ∼10 MeV to ∼1 GeV depending on shock conditions, greatly affecting the radiation hazard. Elements with different charge-to-mass ratios differentially probe the wave spectra near shocks, producing abundance ratios that vary in space and time. These abundance ratios are a tool that can foretell conditions at an oncoming shock.","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"2 1","pages":"101-107"},"PeriodicalIF":3.7,"publicationDate":"2013-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86939186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Space Weather and the Changing Sun 太空天气和变化的太阳
IF 3.7 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2013-03-19 DOI: 10.1029/GM125P0091
E. Parker
The free energy that drives space weather is created in the convective zone of the Sun with the generation and convective distortion of magnetic fields. The fields rise to the surface where they provide the vigorous suprathermal activity that is the direct parent of space weather. Some aspects of the hydrodynamics and magnetic field generation are understood, while there remains much that is mysterious. An important part of the mystery centers around the complex hydrodynamics of the convective zone and the dominating micro-scale magnetic fibril structure, motion, and interactions at the surface. The next generation Advanced Solar Telescope-the solar microscope- is intended to open up this basic small-scale world to direct observational study. The other major mystery lies in the long- term variations in the general level of solar activity, with the associated variations in space weather and terrestrial climate. Unfortunately long-term variation can be studied only in the long term, although monitoring other solar-type stars has been helpful so far in suggesting the extreme possibilities.
驱动太空天气的自由能是在太阳的对流区产生的,伴随着磁场的产生和对流扭曲。这些磁场上升到地表,在那里它们提供了强烈的超热活动,这是太空天气的直接来源。流体力学和磁场产生的某些方面已被理解,但仍有许多是神秘的。这个谜团的一个重要部分是围绕着对流区复杂的流体动力学和主要的微尺度磁纤维结构、运动和表面的相互作用。下一代先进太阳望远镜——太阳显微镜——旨在打开这个基本的小规模世界,进行直接观测研究。另一个主要的谜团在于太阳活动总体水平的长期变化,以及与之相关的空间天气和陆地气候的变化。不幸的是,长期变化只能在长期内进行研究,尽管迄今为止对其他类太阳恒星的监测有助于提出极端的可能性。
{"title":"Space Weather and the Changing Sun","authors":"E. Parker","doi":"10.1029/GM125P0091","DOIUrl":"https://doi.org/10.1029/GM125P0091","url":null,"abstract":"The free energy that drives space weather is created in the convective zone of the Sun with the generation and convective distortion of magnetic fields. The fields rise to the surface where they provide the vigorous suprathermal activity that is the direct parent of space weather. Some aspects of the hydrodynamics and magnetic field generation are understood, while there remains much that is mysterious. An important part of the mystery centers around the complex hydrodynamics of the convective zone and the dominating micro-scale magnetic fibril structure, motion, and interactions at the surface. The next generation Advanced Solar Telescope-the solar microscope- is intended to open up this basic small-scale world to direct observational study. The other major mystery lies in the long- term variations in the general level of solar activity, with the associated variations in space weather and terrestrial climate. Unfortunately long-term variation can be studied only in the long term, although monitoring other solar-type stars has been helpful so far in suggesting the extreme possibilities.","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"40 1","pages":"91-99"},"PeriodicalIF":3.7,"publicationDate":"2013-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86276351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Status of Cycle 23 Forecasts 第23周期天气预报现况
IF 3.7 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2000-01-01 DOI: 10.1029/GM125P0195
D. Hathaway, R. Wilson, E. Reichmann
A number of techniques for predicting solar activity on a solar cycle time scale are identified, described, and tested with historical data. Some techniques, e.g,, regression and curve-fitting, work well as solar activity approaches maximum and provide a month- by-month description of future activity, while others, e.g., geomagnetic precursors, work well near solar minimum but provide an estimate only of the amplitude of the cycle. A synthesis of different techniques is shown to provide a more accurate and useful forecast of solar cycle activity levels. A combination of two uncorrelated geomagnetic precursor techniques provides the most accurate prediction for the amplitude of a solar activity cycle at a time well before activity minimum. This precursor method gave a smoothed sunspot number maximum of 154+21 for cycle 23. A mathematical function dependent upon the time of cycle initiation and the cycle amplitude then describes the level of solar activity for the complete cycle. As the time of cycle maximum approaches a better estimate of the cycle activity is obtained by including the fit between recent activity levels and this function. This Combined Solar Cycle Activity Forecast now gives a smoothed sunspot maximum of 140+20 for cycle 23. The success of the geomagnetic precursors in predicting future solar activity suggests that solar magnetic phenomena at latitudes above the sunspot activity belts are linked to solar activity, which occurs many years later in the lower latitudes.
在太阳活动周期时间尺度上预测太阳活动的许多技术被确定、描述和用历史数据进行测试。一些技术,例如回归和曲线拟合,在太阳活动接近极大值时工作得很好,并提供对未来活动逐月的描述,而另一些技术,例如地磁前兆,在太阳活动接近极小值时工作得很好,但只提供周期幅度的估计。综合不同的技术可以提供更准确和有用的太阳周期活动水平预报。结合两种不相关的地磁前体技术,可以在太阳活动极小期之前的某一时刻,对太阳活动周期的振幅作出最准确的预测。这种前体方法给出了第23周期的平滑太阳黑子数最大值为154+21。依赖于周期起始时间和周期振幅的数学函数描述了整个周期的太阳活动水平。当周期最大值时间接近时,通过将近期活动水平与该函数的拟合包括在内,可以更好地估计周期活动。综合太阳周期活动预报现在给出了第23周期的太阳黑子最大值140+20。地磁前兆在预测未来太阳活动方面的成功表明,太阳黑子活动带以上纬度地区的太阳磁现象与太阳活动有关,而太阳活动发生在许多年后的低纬度地区。
{"title":"Status of Cycle 23 Forecasts","authors":"D. Hathaway, R. Wilson, E. Reichmann","doi":"10.1029/GM125P0195","DOIUrl":"https://doi.org/10.1029/GM125P0195","url":null,"abstract":"A number of techniques for predicting solar activity on a solar cycle time scale are identified, described, and tested with historical data. Some techniques, e.g,, regression and curve-fitting, work well as solar activity approaches maximum and provide a month- by-month description of future activity, while others, e.g., geomagnetic precursors, work well near solar minimum but provide an estimate only of the amplitude of the cycle. A synthesis of different techniques is shown to provide a more accurate and useful forecast of solar cycle activity levels. A combination of two uncorrelated geomagnetic precursor techniques provides the most accurate prediction for the amplitude of a solar activity cycle at a time well before activity minimum. This precursor method gave a smoothed sunspot number maximum of 154+21 for cycle 23. A mathematical function dependent upon the time of cycle initiation and the cycle amplitude then describes the level of solar activity for the complete cycle. As the time of cycle maximum approaches a better estimate of the cycle activity is obtained by including the fit between recent activity levels and this function. This Combined Solar Cycle Activity Forecast now gives a smoothed sunspot maximum of 140+20 for cycle 23. The success of the geomagnetic precursors in predicting future solar activity suggests that solar magnetic phenomena at latitudes above the sunspot activity belts are linked to solar activity, which occurs many years later in the lower latitudes.","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"123 3 1","pages":"195-200"},"PeriodicalIF":3.7,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80603025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
期刊
Space Weather-The International Journal of Research and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1