Pub Date : 2024-11-05DOI: 10.1186/s13068-024-02581-7
Mingxin Liu, Tianshuang Tu, Hui Li, Xin Song
Glycolipid biosurfactant, sophorolipids (SLs) and rhamnolipids (RLs) can be widely used in agriculture, food and chemical industries. The different physicochemical properties of SLs and RLs, such as hydrophilic lipophilic value (HLB) and critical micelle concentration (CMC), determine they have different application focus. Researchers are still hoping to obtain new glycolipid surfactants with unique surface activities. In this study, we successfully transformed two rhamnosyltransferase genes rhlA and rhlB from Pseudomonas aeruginosa to the sophorolipid-producing Starmerella bombicola CGMGG 1576 to obtain a recombinant strain was SbrhlAB. Two novel components with molecular weight of 554 (C26H50O12) and 536 (C26H48O11) were identified with the ASB C18 column from the fermentation broth of SbrhlAB, the former was a non-acetylated acidic C14:0 glycolipid containing one glucose and one rhamnose, and the latter was an acidic C14:1 glycolipid containing two rhamnoses. With the Venusil MP C18 column, one new glycolipid component was identified as an acidic C18:3 glycolipid with one rhamnose (C24H40O7), which has not been reported before. Our present study demonstrated that novel glycolipids can be synthesized in vivo by reasonable genetic engineering. The results will be helpful to engineer sophorolipid-producing yeast to produce some specific SLs or their derivatives in more rational and controllable way.
{"title":"Production and characterization of novel/chimeric sophorose–rhamnose biosurfactants by introducing heterologous rhamnosyltransferase genes into Starmerella bombicola","authors":"Mingxin Liu, Tianshuang Tu, Hui Li, Xin Song","doi":"10.1186/s13068-024-02581-7","DOIUrl":"10.1186/s13068-024-02581-7","url":null,"abstract":"<div><p>Glycolipid biosurfactant, sophorolipids (SLs) and rhamnolipids (RLs) can be widely used in agriculture, food and chemical industries. The different physicochemical properties of SLs and RLs, such as hydrophilic lipophilic value (HLB) and critical micelle concentration (CMC), determine they have different application focus. Researchers are still hoping to obtain new glycolipid surfactants with unique surface activities. In this study, we successfully transformed two rhamnosyltransferase genes <i>rhlA</i> and <i>rhlB</i> from <i>Pseudomonas aeruginosa</i> to the sophorolipid-producing <i>Starmerella bombicola</i> CGMGG 1576 to obtain a recombinant strain was <i>Sb</i><sub><i>rhlAB</i></sub>. Two novel components with molecular weight of 554 (C<sub>26</sub>H<sub>50</sub>O<sub>12</sub>) and 536 (C<sub>26</sub>H<sub>48</sub>O<sub>11</sub>) were identified with the ASB C<sub>18</sub> column from the fermentation broth of <i>Sb</i><sub><i>rhlAB</i></sub>, the former was a non-acetylated acidic C14:0 glycolipid containing one glucose and one rhamnose, and the latter was an acidic C14:1 glycolipid containing two rhamnoses. With the Venusil MP C<sub>18</sub> column, one new glycolipid component was identified as an acidic C18:3 glycolipid with one rhamnose (C<sub>24</sub>H<sub>40</sub>O<sub>7</sub>), which has not been reported before. Our present study demonstrated that novel glycolipids can be synthesized in vivo by reasonable genetic engineering. The results will be helpful to engineer sophorolipid-producing yeast to produce some specific SLs or their derivatives in more rational and controllable way.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02581-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142585205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-02DOI: 10.1186/s13068-024-02579-1
Gilberto Pérez-Morales, Luis Caspeta, Enrique Merino, Miguel A. Cevallos, Guillermo Gosset, Alfredo Martinez
Background
Escherichia coli JU15 is a metabolically engineered strain capable to metabolize C5 and C6 sugars with a high yield of d-lactic acid production at its optimal growth temperature (37 °C). The simultaneous saccharification and fermentation process allow to use lignocellulosic biomass as a cost-effective and high-yield strategy. However, this process requires microorganisms capable of growth at a temperature close to 50 °C, at which the activity of cellulolytic enzymes works efficiently.
Results
The thermotolerant strain GT48 was generated by adaptive laboratory evolution in batch and chemostat cultures under temperature increments until 48 °C. The strain GT48 was able to grow and ferment glucose to d-lactate at 47 °C. It was found that a pH of 6.3 conciliated with GT48 growth and cellulase activity of a commercial cocktail. Hence, this pH was used for the SSF of a diluted acid-pretreated corn stover (DAPCS) at a solid load of 15% (w/w), 15 FPU/g-DAPCS, and 47 °C. Under such conditions, the strain GT48 exhibited remarkable performance, producing d-lactate at a level of 1.41, 1.42, and 1.48-fold higher in titer, productivity, and yield, respectively, compared to parental strain at 45 °C.
Conclusions
In general, our results show for the first time that a thermal-adapted strain of E. coli is capable of being used in the simultaneous saccharification and fermentation process without pre-saccharification stage at high temperatures.
{"title":"Simultaneous saccharification and fermentation for d-lactic acid production using a metabolically engineered Escherichia coli adapted to high temperature","authors":"Gilberto Pérez-Morales, Luis Caspeta, Enrique Merino, Miguel A. Cevallos, Guillermo Gosset, Alfredo Martinez","doi":"10.1186/s13068-024-02579-1","DOIUrl":"10.1186/s13068-024-02579-1","url":null,"abstract":"<div><h3>Background</h3><p><i>Escherichia coli</i> JU15 is a metabolically engineered strain capable to metabolize C5 and C6 sugars with a high yield of <span>d</span>-lactic acid production at its optimal growth temperature (37 °C). The simultaneous saccharification and fermentation process allow to use lignocellulosic biomass as a cost-effective and high-yield strategy. However, this process requires microorganisms capable of growth at a temperature close to 50 °C, at which the activity of cellulolytic enzymes works efficiently.</p><h3>Results</h3><p>The thermotolerant strain GT48 was generated by adaptive laboratory evolution in batch and chemostat cultures under temperature increments until 48 °C. The strain GT48 was able to grow and ferment glucose to<span> d</span>-lactate at 47 °C. It was found that a pH of 6.3 conciliated with GT48 growth and cellulase activity of a commercial cocktail. Hence, this pH was used for the SSF of a diluted acid-pretreated corn stover (DAPCS) at a solid load of 15% (<i>w</i>/<i>w</i>), 15 FPU/g-<sub>DAPCS</sub>, and 47 °C. Under such conditions, the strain GT48 exhibited remarkable performance, producing <span>d</span>-lactate at a level of 1.41, 1.42, and 1.48-fold higher in titer, productivity, and yield, respectively, compared to parental strain at 45 °C.</p><h3>Conclusions</h3><p>In general, our results show for the first time that a thermal-adapted strain of <i>E. coli</i> is capable of being used in the simultaneous saccharification and fermentation process without pre-saccharification stage at high temperatures.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02579-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1186/s13068-024-02578-2
Yu Chyuan Heng, Garrett Wei Jie Wong, Sandra Kittelmann
Background
Hydroxy fatty acids represent an emerging class of compounds with promising applications in the chemical, medicinal and functional food sectors. The challenges associated with their chemical synthesis have spurred exploration of biological synthesis as an alternative route, particularly through the use of fatty acid hydratases. Fatty acid hydratases catalyse the regioselective addition of a hydrogen atom and a hydroxyl group from a water molecule to the carbon–carbon cis-double bond of unsaturated fatty acids to form hydroxy fatty acids. Despite having been discovered in the early 1960s, previous research has primarily focused on characterizing single fatty acid hydratase variants with a limited range of substrates. Comprehensive studies that systematically examine and compare the characteristics of multiple variants of fatty acid hydratases are still lacking.
Results
In this study, we employed an integrated bioinformatics workflow to identify 23 fatty acid hydratases and characterized their activities against nine unsaturated fatty acid substrates using whole-cell biotransformation assays. Additionally, we tested a dual-protein system involving two fatty acid hydratases of distinct regioselectivity and demonstrated its suitability in enhancing the biosynthesis of di-hydroxy fatty acids.
Conclusions
Our study demonstrates that fatty acid hydratases can be classified into three subtypes based on their regioselectivity and provides insights into their preferred substrate structures. These understandings pave ways for the design of optimal fatty acid hydratase variants and bioprocesses for the cost-efficient biosynthesis of hydroxy fatty acids.
{"title":"Expanding the biosynthesis spectrum of hydroxy fatty acids: unleashing the potential of novel bacterial fatty acid hydratases","authors":"Yu Chyuan Heng, Garrett Wei Jie Wong, Sandra Kittelmann","doi":"10.1186/s13068-024-02578-2","DOIUrl":"10.1186/s13068-024-02578-2","url":null,"abstract":"<div><h3>Background</h3><p>Hydroxy fatty acids represent an emerging class of compounds with promising applications in the chemical, medicinal and functional food sectors. The challenges associated with their chemical synthesis have spurred exploration of biological synthesis as an alternative route, particularly through the use of fatty acid hydratases. Fatty acid hydratases catalyse the regioselective addition of a hydrogen atom and a hydroxyl group from a water molecule to the carbon–carbon <i>cis</i>-double bond of unsaturated fatty acids to form hydroxy fatty acids. Despite having been discovered in the early 1960s, previous research has primarily focused on characterizing single fatty acid hydratase variants with a limited range of substrates. Comprehensive studies that systematically examine and compare the characteristics of multiple variants of fatty acid hydratases are still lacking.</p><h3>Results</h3><p>In this study, we employed an integrated bioinformatics workflow to identify 23 fatty acid hydratases and characterized their activities against nine unsaturated fatty acid substrates using whole-cell biotransformation assays. Additionally, we tested a dual-protein system involving two fatty acid hydratases of distinct regioselectivity and demonstrated its suitability in enhancing the biosynthesis of di-hydroxy fatty acids.</p><h3>Conclusions</h3><p>Our study demonstrates that fatty acid hydratases can be classified into three subtypes based on their regioselectivity and provides insights into their preferred substrate structures. These understandings pave ways for the design of optimal fatty acid hydratase variants and bioprocesses for the cost-efficient biosynthesis of hydroxy fatty acids.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02578-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tryptophol (IET) is a metabolite derived from L-tryptophan that can be isolated from plants, bacteria, and fungi and has a wide range of biological activities in living systems. Despite the fact that IET biosynthesis pathways exist naturally in living organisms, industrial-scale production of IET and its derivatives is solely based on environmentally unfriendly chemical conversion. With diminishing petroleum reserves and a significant increase in global demand in all major commercial segments, it becomes essential to develop new technologies to produce chemicals from renewable resources and under mild conditions, such as microbial fermentation. Here we characterized and engineered the less-studied L-tryptophan pathway and IET biosynthesis in the baker’s yeast Saccharomyces cerevisiae, with the goal of investigating microbial fermentation as an alternative/green strategy to produce IET. In detail, we divided the aromatic amino acids (AAAs) metabolism related to IET synthesis into the shikimate pathway, the L-tryptophan pathway, the competing L-tyrosine/L-phenylalanine pathways, and the Ehrlich pathway based on a modular engineering concept. Through stepwise engineering of these modules, we obtained a yeast mutant capable of producing IET up to 1.04 g/L through fed-batch fermentation, a ~ 650-fold improvement over the wild-type strain. Besides, our engineering process also revealed many insights about the regulation of AAAs metabolism in S. cerevisiae. Finally, during our engineering process, we also discovered yeast mutants that accumulate anthranilate and L-tryptophan, both of which are precursors of various valuable secondary metabolites from fungi and plants. These strains could be developed to the chassis for natural product biosynthesis upon introducing heterologous pathways.
色醇(IET)是从 L-色氨酸中提取的一种代谢物,可从植物、细菌和真菌中分离出来,在生命系统中具有广泛的生物活性。尽管生物体内存在天然的 IET 生物合成途径,但 IET 及其衍生物的工业化生产却完全依赖于对环境不友好的化学转化。随着石油储量的减少和全球各主要商业领域需求的大幅增长,开发新技术以利用可再生资源并在微生物发酵等温和条件下生产化学品变得至关重要。在这里,我们对研究较少的 L-色氨酸途径和 IET 在面包酵母酿酒酵母中的生物合成进行了表征和工程化,目的是研究微生物发酵作为生产 IET 的替代/绿色战略。具体而言,我们根据模块化工程概念,将与 IET 合成相关的芳香族氨基酸(AAA)代谢分为莽草酸途径、L-色氨酸途径、L-酪氨酸/L-苯丙氨酸竞争途径和艾氏途径。通过对这些模块的逐步工程化,我们获得了一种酵母突变体,它能通过饲料批量发酵产生高达 1.04 克/升的 IET,比野生型菌株提高了约 650 倍。此外,我们在工程化过程中还发现了许多关于 S. cerevisiae 中 AAAs 代谢调控的见解。最后,在工程化过程中,我们还发现了能积累蒽酸和 L-色氨酸的酵母突变体,这两种物质都是真菌和植物中各种有价值的次级代谢产物的前体。在引入异源途径后,这些菌株可发展成为天然产物生物合成的底盘。
{"title":"Engineering the L-tryptophan metabolism for efficient de novo biosynthesis of tryptophol in Saccharomyces cerevisiae","authors":"Ye Li, Jingzhen Sun, Zhenhao Fu, Yubing He, Xiaorui Chen, Shijie Wang, Lele Zhang, Jiansheng Jian, Weihua Yang, Chunli Liu, Xiuxia Liu, Yankun Yang, Zhonghu Bai","doi":"10.1186/s13068-024-02576-4","DOIUrl":"10.1186/s13068-024-02576-4","url":null,"abstract":"<div><p>Tryptophol (IET) is a metabolite derived from L-tryptophan that can be isolated from plants, bacteria, and fungi and has a wide range of biological activities in living systems. Despite the fact that IET biosynthesis pathways exist naturally in living organisms, industrial-scale production of IET and its derivatives is solely based on environmentally unfriendly chemical conversion. With diminishing petroleum reserves and a significant increase in global demand in all major commercial segments, it becomes essential to develop new technologies to produce chemicals from renewable resources and under mild conditions, such as microbial fermentation. Here we characterized and engineered the less-studied L-tryptophan pathway and IET biosynthesis in the baker’s yeast <i>Saccharomyces cerevisiae</i>, with the goal of investigating microbial fermentation as an alternative/green strategy to produce IET. In detail, we divided the aromatic amino acids (AAAs) metabolism related to IET synthesis into the shikimate pathway, the L-tryptophan pathway, the competing L-tyrosine/L-phenylalanine pathways, and the Ehrlich pathway based on a modular engineering concept. Through stepwise engineering of these modules, we obtained a yeast mutant capable of producing IET up to 1.04 g/L through fed-batch fermentation, a ~ 650-fold improvement over the wild-type strain. Besides, our engineering process also revealed many insights about the regulation of AAAs metabolism in <i>S. cerevisiae</i>. Finally, during our engineering process, we also discovered yeast mutants that accumulate anthranilate and L-tryptophan, both of which are precursors of various valuable secondary metabolites from fungi and plants. These strains could be developed to the chassis for natural product biosynthesis upon introducing heterologous pathways.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02576-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1186/s13068-024-02572-8
Yang Tian, Yu Gao, Halbay Turumtay, Emine Akyuz Turumtay, Yen Ning Chai, Hemant Choudhary, Joon-Hyun Park, Chuan-Yin Wu, Christopher M. De Ben, Jutta Dalton, Katherine B. Louie, Thomas Harwood, Dylan Chin, Khanh M. Vuu, Benjamin P. Bowen, Patrick M. Shih, Edward E. K. Baidoo, Trent R. Northen, Blake A. Simmons, Robert Hutmacher, Jackie Atim, Daniel H. Putnam, Corinne D. Scown, Jenny C. Mortimer, Henrik V. Scheller, Aymerick Eudes
Background
Lignin is an aromatic polymer deposited in secondary cell walls of higher plants to provide strength, rigidity, and hydrophobicity to vascular tissues. Due to its interconnections with cell wall polysaccharides, lignin plays important roles during plant growth and defense, but also has a negative impact on industrial processes aimed at obtaining monosaccharides from plant biomass. Engineering lignin offers a solution to this issue. For example, previous work showed that heterologous expression of a coliphage S-adenosylmethionine hydrolase (AdoMetase) was an effective approach to reduce lignin in the model plant Arabidopsis. The efficacy of this engineering strategy remains to be evaluated in bioenergy crops.
Results
We studied the impact of expressing AdoMetase on lignin synthesis in sorghum (Sorghum bicolor L. Moench). Lignin content, monomer composition, and size, as well as biomass saccharification efficiency were determined in transgenic sorghum lines. The transcriptome and metabolome were analyzed in stems at three developmental stages. Plant growth and biomass composition was further evaluated under field conditions. Results evidenced that lignin was reduced by 18% in the best transgenic line, presumably due to reduced activity of the S-adenosylmethionine-dependent O-methyltransferases involved in lignin synthesis. The modified sorghum features altered lignin monomer composition and increased lignin molecular weights. The degree of methylation of glucuronic acid on xylan was reduced. These changes enabled a ~20% increase in glucose yield after biomass pretreatment and saccharification compared to wild type. RNA-seq and untargeted metabolomic analyses evidenced some pleiotropic effects associated with AdoMetase expression. The transgenic sorghum showed developmental delay and reduced biomass yields at harvest, especially under field growing conditions.
Conclusions
The expression of AdoMetase represents an effective lignin engineering approach in sorghum. However, considering that this strategy potentially impacts multiple S-adenosylmethionine-dependent methyltransferases, adequate promoters for fine-tuning AdoMetase expression will be needed to mitigate yield penalty.
{"title":"Engineered reduction of S-adenosylmethionine alters lignin in sorghum","authors":"Yang Tian, Yu Gao, Halbay Turumtay, Emine Akyuz Turumtay, Yen Ning Chai, Hemant Choudhary, Joon-Hyun Park, Chuan-Yin Wu, Christopher M. De Ben, Jutta Dalton, Katherine B. Louie, Thomas Harwood, Dylan Chin, Khanh M. Vuu, Benjamin P. Bowen, Patrick M. Shih, Edward E. K. Baidoo, Trent R. Northen, Blake A. Simmons, Robert Hutmacher, Jackie Atim, Daniel H. Putnam, Corinne D. Scown, Jenny C. Mortimer, Henrik V. Scheller, Aymerick Eudes","doi":"10.1186/s13068-024-02572-8","DOIUrl":"10.1186/s13068-024-02572-8","url":null,"abstract":"<div><h3>Background</h3><p>Lignin is an aromatic polymer deposited in secondary cell walls of higher plants to provide strength, rigidity, and hydrophobicity to vascular tissues. Due to its interconnections with cell wall polysaccharides, lignin plays important roles during plant growth and defense, but also has a negative impact on industrial processes aimed at obtaining monosaccharides from plant biomass. Engineering lignin offers a solution to this issue. For example, previous work showed that heterologous expression of a coliphage <i>S</i>-adenosylmethionine hydrolase (AdoMetase) was an effective approach to reduce lignin in the model plant Arabidopsis. The efficacy of this engineering strategy remains to be evaluated in bioenergy crops.</p><h3>Results</h3><p>We studied the impact of expressing AdoMetase on lignin synthesis in sorghum (<i>Sorghum bicolor</i> L. Moench). Lignin content, monomer composition, and size, as well as biomass saccharification efficiency were determined in transgenic sorghum lines. The transcriptome and metabolome were analyzed in stems at three developmental stages. Plant growth and biomass composition was further evaluated under field conditions. Results evidenced that lignin was reduced by 18% in the best transgenic line, presumably due to reduced activity of the <i>S</i>-adenosylmethionine-dependent <i>O</i>-methyltransferases involved in lignin synthesis. The modified sorghum features altered lignin monomer composition and increased lignin molecular weights. The degree of methylation of glucuronic acid on xylan was reduced. These changes enabled a ~20% increase in glucose yield after biomass pretreatment and saccharification compared to wild type. RNA-seq and untargeted metabolomic analyses evidenced some pleiotropic effects associated with <i>AdoMetase</i> expression. The transgenic sorghum showed developmental delay and reduced biomass yields at harvest, especially under field growing conditions.</p><h3>Conclusions</h3><p>The expression of <i>AdoMetase</i> represents an effective lignin engineering approach in sorghum. However, considering that this strategy potentially impacts multiple <i>S</i>-adenosylmethionine-dependent methyltransferases, adequate promoters for fine-tuning <i>AdoMetase</i> expression will be needed to mitigate yield penalty.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02572-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1186/s13068-024-02571-9
R. El-Araby
Biofuel production has emerged as a leading contender in the quest for renewable energy solutions, offering a promising path toward a greener future. This comprehensive state-of-the-art review delves into the current landscape of biofuel production, exploring its potential as a viable alternative to conventional fossil fuels. This study extensively examines various feedstock options, encompassing diverse sources such as plants, algae, and agricultural waste, and investigates the technological advancements driving biofuel production processes. This review highlights the environmental benefits of biofuels, emphasizing their capacity to significantly reduce greenhouse gas emissions compared to those of fossil fuels. Additionally, this study elucidates the role of biofuels in enhancing energy security by decreasing reliance on finite fossil fuel reserves, thereby mitigating vulnerabilities to geopolitical tensions and price fluctuations. The economic prospects associated with biofuel production are also elucidated, encompassing job creation, rural development, and the potential for additional revenue streams for farmers and landowners engaged in biofuel feedstock cultivation. While highlighting the promise of biofuels, the review also addresses the challenges and considerations surrounding their production. Potential issues such as land use competition, resource availability, and sustainability implications are critically evaluated. Responsible implementation, including proper land-use planning, resource management, and adherence to sustainability criteria, is emphasized as critical for the long-term viability of biofuel production. Moreover, the review underscores the importance of ongoing research and development efforts aimed at enhancing biofuel production efficiency, feedstock productivity, and conversion processes. Technological advancements hold the key to increasing biofuel yields, reducing production costs, and improving overall sustainability. This review uniquely synthesizes the latest advancements across the entire spectrum of biofuel production, from feedstock selection to end-use applications. It addresses critical research gaps by providing a comprehensive analysis of emerging technologies, sustainability metrics, and economic viability of various biofuel pathways. Unlike previous reviews, this work offers an integrated perspective on the interplay between technological innovation, environmental impact, and socio-economic factors in biofuel development, thereby providing a holistic framework for future research and policy directions in renewable energy.
{"title":"Biofuel production: exploring renewable energy solutions for a greener future","authors":"R. El-Araby","doi":"10.1186/s13068-024-02571-9","DOIUrl":"10.1186/s13068-024-02571-9","url":null,"abstract":"<div><p>Biofuel production has emerged as a leading contender in the quest for renewable energy solutions, offering a promising path toward a greener future. This comprehensive state-of-the-art review delves into the current landscape of biofuel production, exploring its potential as a viable alternative to conventional fossil fuels. This study extensively examines various feedstock options, encompassing diverse sources such as plants, algae, and agricultural waste, and investigates the technological advancements driving biofuel production processes. This review highlights the environmental benefits of biofuels, emphasizing their capacity to significantly reduce greenhouse gas emissions compared to those of fossil fuels. Additionally, this study elucidates the role of biofuels in enhancing energy security by decreasing reliance on finite fossil fuel reserves, thereby mitigating vulnerabilities to geopolitical tensions and price fluctuations. The economic prospects associated with biofuel production are also elucidated, encompassing job creation, rural development, and the potential for additional revenue streams for farmers and landowners engaged in biofuel feedstock cultivation. While highlighting the promise of biofuels, the review also addresses the challenges and considerations surrounding their production. Potential issues such as land use competition, resource availability, and sustainability implications are critically evaluated. Responsible implementation, including proper land-use planning, resource management, and adherence to sustainability criteria, is emphasized as critical for the long-term viability of biofuel production. Moreover, the review underscores the importance of ongoing research and development efforts aimed at enhancing biofuel production efficiency, feedstock productivity, and conversion processes. Technological advancements hold the key to increasing biofuel yields, reducing production costs, and improving overall sustainability. This review uniquely synthesizes the latest advancements across the entire spectrum of biofuel production, from feedstock selection to end-use applications. It addresses critical research gaps by providing a comprehensive analysis of emerging technologies, sustainability metrics, and economic viability of various biofuel pathways. Unlike previous reviews, this work offers an integrated perspective on the interplay between technological innovation, environmental impact, and socio-economic factors in biofuel development, thereby providing a holistic framework for future research and policy directions in renewable energy.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02571-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-05DOI: 10.1186/s13068-024-02569-3
Fabio Caputo, Romanos Siaperas, Camila Dias, Efstratios Nikolaivits, Lisbeth Olsson
Background
The efficient use of softwood in biorefineries is hampered by its recalcitrance to enzymatic saccharification. In the present study, the fungus Thermothielavioides terrestris LPH172 was cultivated on three steam-pretreated spruce materials (STEX180°C/auto, STEX210°C/auto, and STEX210°C/H2SO4), characterized by different hemicellulose content and structure, as well as on untreated biomass. The aim of the study was to map substrate-induced changes in the secretome of T. terrestris grown on differently treated spruce materials and to evaluate the hydrolytic efficiency of the secretome as supplement for a commercial enzyme mixture.
Results
The cultivation of T. terrestris was monitored by endo-cellulase, endo-xylanase, endo-mannanase, laccase, and peroxidase activity measurements. Proteomic analysis was performed on the secretomes induced by the spruce materials to map the differences in enzyme production. Growth of T. terrestris on STEX180°C/auto and STEX210°C/auto induced higher expression level of mannanases and mannosidases of the GH5_7 CAZy family compared to cultivation on the other materials. Cultivation on untreated biomass led to overexpression of GH47, GH76, and several hemicellulose debranching enzymes compared to the cultivation on the pretreated materials. T. terrestris grown on untreated, STEX180°C/auto and STEX210°C/auto induced three arabinofuranosidases of the GH43 and GH62 families; while growth on STEX210°C/H2SO4 induced a GH51 arabinofuranosidase and a GH115 glucuronidase. All secretomes contained five lytic polysaccharide monooxygenases of the AA9 family. Supplementation of Celluclast® + Novozym188 with the secretome obtained by growing the fungus grown on STEX180°C/auto achieved a twofold higher release of mannose from spruce steam-pretreated with acetic acid as catalyst, compared to the commercial enzyme cocktail alone.
Conclusions
Minor changes in the structure and composition of spruce affect the composition of fungal secretomes, with differences in some classes explaining an increased hydrolytic efficiency. As demonstrated here, saccharification of spruce biomass with commercial enzyme cocktails can be further enhanced by supplementation with tailor-made secretomes.
{"title":"Elucidating Thermothielavioides terrestris secretome changes for improved saccharification of mild steam-pretreated spruce","authors":"Fabio Caputo, Romanos Siaperas, Camila Dias, Efstratios Nikolaivits, Lisbeth Olsson","doi":"10.1186/s13068-024-02569-3","DOIUrl":"10.1186/s13068-024-02569-3","url":null,"abstract":"<div><h3>Background</h3><p>The efficient use of softwood in biorefineries is hampered by its recalcitrance to enzymatic saccharification. In the present study, the fungus <i>Thermothielavioides terrestris</i> LPH172 was cultivated on three steam-pretreated spruce materials (STEX<sub>180°C/auto</sub>, STEX<sub>210°C/auto</sub>, and STEX<sub>210°C/H2SO4</sub>), characterized by different hemicellulose content and structure, as well as on untreated biomass. The aim of the study was to map substrate-induced changes in the secretome of <i>T. terrestris</i> grown on differently treated spruce materials and to evaluate the hydrolytic efficiency of the secretome as supplement for a commercial enzyme mixture.</p><h3>Results</h3><p>The cultivation of <i>T. terrestris</i> was monitored by endo-cellulase, endo-xylanase, endo-mannanase, laccase, and peroxidase activity measurements. Proteomic analysis was performed on the secretomes induced by the spruce materials to map the differences in enzyme production. Growth of <i>T. terrestris</i> on STEX<sub>180°C/auto</sub> and STEX<sub>210°C/auto</sub> induced higher expression level of mannanases and mannosidases of the GH5_7 CAZy family compared to cultivation on the other materials. Cultivation on untreated biomass led to overexpression of GH47, GH76, and several hemicellulose debranching enzymes compared to the cultivation on the pretreated materials. <i>T. terrestris</i> grown on untreated, STEX<sub>180°C/auto</sub> and STEX<sub>210°C/auto</sub> induced three arabinofuranosidases of the GH43 and GH62 families; while growth on STEX<sub>210°C/H2SO4</sub> induced a GH51 arabinofuranosidase and a GH115 glucuronidase. All secretomes contained five lytic polysaccharide monooxygenases of the AA9 family. Supplementation of Celluclast® + Novozym188 with the secretome obtained by growing the fungus grown on STEX<sub>180°C/auto</sub> achieved a twofold higher release of mannose from spruce steam-pretreated with acetic acid as catalyst, compared to the commercial enzyme cocktail alone.</p><h3>Conclusions</h3><p>Minor changes in the structure and composition of spruce affect the composition of fungal secretomes, with differences in some classes explaining an increased hydrolytic efficiency. As demonstrated here, saccharification of spruce biomass with commercial enzyme cocktails can be further enhanced by supplementation with tailor-made secretomes.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02569-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Switchgrass (Panicum virgatum L.) is a perennial C4 warm-season grass known for its high-biomass yield and wide environmental adaptability, making it an ideal bioenergy crop. Despite its potential, switchgrass seedlings grow slowly, often losing out to weeds in field conditions and producing limited biomass in the first year of planting. Furthermore, during the reproductive growth stage, the above-ground biomass rapidly increases in lignin content, creating a significant saccharification barrier. Previous studies have identified rhythm-related genes TOC1 and LHY as crucial to the slow seedling development in switchgrass, yet the precise regulatory functions of these genes remain largely unexplored. In this study, the genes TOC1 and LHY were characterized within the tetraploid genome of switchgrass. Gene expression analysis revealed that PvTOC1 and PvLHY exhibit circadian patterns under normal growth conditions, with opposing expression levels over time. PvTOC1 genes were predominantly expressed in florets, vascular bundles, and seeds, while PvLHY genes showed higher expression in stems, leaf sheaths, and nodes. Overexpression of PvTOC1 from the N chromosome group (PvTOC1-N) or PvLHY from the K chromosome group (PvLHY-K) in Arabidopsis thaliana led to alterations in circadian rhythm and hormone metabolism, resulting in shorter roots, delayed flowering, and decreased resistance to oxidative stress. These transgenic lines exhibited reduced sensitivity to hormones and hormone inhibitors, and displayed altered gene expression in the biosynthesis and signal transduction pathways of abscisic acid (ABA), gibberellin (GA), 3-indoleacetic acid (IAA), and strigolactone (SL). These findings highlight roles of PvTOC1-N and PvLHY-K in plant development and offer a theoretical foundation for genetic improvements in switchgrass and other crops.
{"title":"The overexpression of the switchgrass (Panicum virgatum L.) genes PvTOC1-N or PvLHY-K affects circadian rhythm and hormone metabolism in transgenic Arabidopsis seedlings","authors":"Shumeng Zhang, Jiayang Ma, Weiwei Wang, Chao Zhang, Fengli Sun, Yajun Xi","doi":"10.1186/s13068-024-02574-6","DOIUrl":"10.1186/s13068-024-02574-6","url":null,"abstract":"<div><p>Switchgrass (<i>Panicum virgatum</i> L.) is a perennial C4 warm-season grass known for its high-biomass yield and wide environmental adaptability, making it an ideal bioenergy crop. Despite its potential, switchgrass seedlings grow slowly, often losing out to weeds in field conditions and producing limited biomass in the first year of planting. Furthermore, during the reproductive growth stage, the above-ground biomass rapidly increases in lignin content, creating a significant saccharification barrier. Previous studies have identified rhythm-related genes <i>TOC1</i> and <i>LHY</i> as crucial to the slow seedling development in switchgrass, yet the precise regulatory functions of these genes remain largely unexplored. In this study, the genes <i>TOC1</i> and <i>LHY</i> were characterized within the tetraploid genome of switchgrass. Gene expression analysis revealed that <i>PvTOC1</i> and <i>PvLHY</i> exhibit circadian patterns under normal growth conditions, with opposing expression levels over time. <i>PvTOC1</i> genes were predominantly expressed in florets, vascular bundles, and seeds, while <i>PvLHY</i> genes showed higher expression in stems, leaf sheaths, and nodes. Overexpression of <i>PvTOC1</i> from the N chromosome group (<i>PvTOC1-N</i>) or <i>PvLHY</i> from the K chromosome group (<i>PvLHY-K</i>) in <i>Arabidopsis thaliana</i> led to alterations in circadian rhythm and hormone metabolism, resulting in shorter roots, delayed flowering, and decreased resistance to oxidative stress. These transgenic lines exhibited reduced sensitivity to hormones and hormone inhibitors, and displayed altered gene expression in the biosynthesis and signal transduction pathways of abscisic acid (ABA), gibberellin (GA), 3-indoleacetic acid (IAA), and strigolactone (SL). These findings highlight roles of <i>PvTOC1-N</i> and <i>PvLHY-K</i> in plant development and offer a theoretical foundation for genetic improvements in switchgrass and other crops.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02574-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1186/s13068-024-02575-5
Shubham Kumar Dubey, Seung Sik Lee, Jin-Hong Kim
Background
Ionizing radiation has been used for mutagenesis or material modification. The potential to use microalgae as a platform for antimicrobial production has been reported, but little work has been done to advance it beyond characterization to biotechnology. This study explored two different applications of ionizing radiation as a metabolic remodeler and a molecular modifier to enhance the antimicrobial activity of total protein and solvent extracts of Chlamydomonas reinhardtii cells.
Results
First, highly efficient transgenic C. reinhardtii strains expressing the plant-derived antimicrobial peptides, AtPR1 or AtTHI2.1, were developed using the radiation-inducible promoter, CrRPA70Ap. Low transgene expression was significantly improved through X-irradiation (12–50 Gy), with peak activity observed within 2 h. Protein extracts from these strains after X-irradiation showed enhanced antimicrobial activity against the prokaryotic bacterium, Pseudomonas syringae, and the eukaryotic fungus, Cryptococcus neoformans. In addition, X-irradiation (12 Gy) increased the growth and biomass of the transgenic strains. Second, C. reinhardtii cell extracts in ethanol were γ-irradiated (5–20 kGy), leading to molecular modifications and increased antimicrobial activity against the phytopathogenic bacteria, P. syringae and Burkholderia glumae, in a dose-dependent manner. These changes were associated with alterations in fatty acid composition. When both transgenic expression of antimicrobial peptides and molecular modification of bioactive substances were applied, the antimicrobial activity of C. reinhardtii cell extracts was further enhanced to some extent.
Conclusion
Overall, these findings suggest that ionizing radiation can significantly enhance the antimicrobial potential of C. reinhardtii through efficient transgene expression and molecular modification of bioactive substances, making it a valuable source of natural antimicrobial agents. Ionizing radiation can act not only as a metabolic remodeler of transgene expression in microalgae but also as a molecular modifier of the bioactive substances.
背景电离辐射已被用于诱变或材料改性。利用微藻作为抗菌剂生产平台的潜力已有报道,但将其从特征描述推进到生物技术方面的工作还很少。本研究探索了电离辐射作为新陈代谢重塑剂和分子修饰剂的两种不同应用,以增强莱茵衣藻细胞总蛋白和溶剂提取物的抗菌活性。经过 X 射线照射(12-50 Gy)后,低转基因表达得到明显改善,在 2 小时内观察到峰值活性。X 射线照射后,这些菌株的蛋白质提取物对原核细菌丁香假单胞菌和真菌隐球菌的抗菌活性增强。此外,X-辐照(12 Gy)也增加了转基因菌株的生长和生物量。其次,对乙醇中的 C. reinhardtii 细胞提取物进行γ-辐照(5-20 kGy),可导致分子改变,并以剂量依赖的方式提高对植物病原菌 P. syringae 和 Burkholderia glumae 的抗菌活性。这些变化与脂肪酸组成的改变有关。总之,这些研究结果表明,电离辐射可以通过高效的转基因表达和生物活性物质的分子修饰显著提高 C. reinhardtii 的抗菌潜力,使其成为天然抗菌剂的重要来源。电离辐射不仅可以作为微藻转基因表达的代谢重塑剂,还可以作为生物活性物质的分子修饰剂。
{"title":"Efficient enhancement of the antimicrobial activity of Chlamydomonas reinhardtii extract by transgene expression and molecular modification using ionizing radiation","authors":"Shubham Kumar Dubey, Seung Sik Lee, Jin-Hong Kim","doi":"10.1186/s13068-024-02575-5","DOIUrl":"10.1186/s13068-024-02575-5","url":null,"abstract":"<div><h3>Background</h3><p>Ionizing radiation has been used for mutagenesis or material modification. The potential to use microalgae as a platform for antimicrobial production has been reported, but little work has been done to advance it beyond characterization to biotechnology. This study explored two different applications of ionizing radiation as a metabolic remodeler and a molecular modifier to enhance the antimicrobial activity of total protein and solvent extracts of <i>Chlamydomonas reinhardtii</i> cells.</p><h3>Results</h3><p>First, highly efficient transgenic <i>C. reinhardtii</i> strains expressing the plant-derived antimicrobial peptides, AtPR1 or AtTHI2.1, were developed using the radiation-inducible promoter, <i>CrRPA70Ap</i>. Low transgene expression was significantly improved through X-irradiation (12–50 Gy), with peak activity observed within 2 h. Protein extracts from these strains after X-irradiation showed enhanced antimicrobial activity against the prokaryotic bacterium, <i>Pseudomonas syringae</i>, and the eukaryotic fungus, <i>Cryptococcus neoformans</i>. In addition, X-irradiation (12 Gy) increased the growth and biomass of the transgenic strains. Second, <i>C. reinhardtii</i> cell extracts in ethanol were γ-irradiated (5–20 kGy), leading to molecular modifications and increased antimicrobial activity against the phytopathogenic bacteria, <i>P. syringae</i> and <i>Burkholderia glumae</i>, in a dose-dependent manner. These changes were associated with alterations in fatty acid composition. When both transgenic expression of antimicrobial peptides and molecular modification of bioactive substances were applied, the antimicrobial activity of <i>C. reinhardtii</i> cell extracts was further enhanced to some extent.</p><h3>Conclusion</h3><p>Overall, these findings suggest that ionizing radiation can significantly enhance the antimicrobial potential of <i>C. reinhardtii</i> through efficient transgene expression and molecular modification of bioactive substances, making it a valuable source of natural antimicrobial agents. Ionizing radiation can act not only as a metabolic remodeler of transgene expression in microalgae but also as a molecular modifier of the bioactive substances.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02575-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Production of cheese whey in the EU exceeded 55 million tons in 2022, resulting in lactose-rich effluents that pose significant environmental challenges. To address this issue, the present study investigated cheese-whey treatment via membrane filtration and the utilization of its components as fermentation feedstock. A simulation model was developed for an industrial-scale facility located in Italy’s Apulia region, designed to process 539 m3/day of untreated cheese-whey. The model integrated experimental data from ethanolic fermentation using a selected strain of Kluyveromyces marxianus in lactose-supplemented media, along with relevant published data.
Results
The simulation was divided into three different sections. The first section focused on cheese-whey pretreatment through membrane filtration, enabling the recovery of 56%w/w whey protein concentrate, process water recirculation, and lactose concentration. In the second section, the recovered lactose was directed towards fermentation and downstream anhydrous ethanol production. The third section encompassed anaerobic digestion of organic residue, sludge handling, and combined heat and power production. Moreover, three different scenarios were produced based on ethanol yield on lactose (YE/L), biomass yield on lactose, and final lactose concentration in the medium. A techno-economic assessment based on the collected data was performed as well as a sensitivity analysis focused on economic parameters, encompassing considerations on cheese-whey by assessing its economical impact as a credit for the simulated facility, dictated by a gate fee, or as a cost by considering it a raw material. The techno-economic analysis revealed different minimum ethanol selling prices across the three scenarios. The best performance was obtained in the scenario presenting a YE/L = 0.45 g/g, with a minimum selling price of 1.43 €/kg. Finally, sensitivity analysis highlighted the model’s dependence on the price or credit associated with cheese-whey handling.
Conclusions
This work highlighted the importance of policy implementation in this kind of study, demonstrating how a gate fee approach applied to cheese-whey procurement positively impacted the final minimum selling price for ethanol across all scenarios. Additionally, considerations should be made about the implementation of the simulated process as a plug-in addition in to existing processes dealing with dairy products or handling multiple biomasses to produce ethanol.
{"title":"Process scale-up simulation and techno-economic assessment of ethanol fermentation from cheese whey","authors":"Mattia Colacicco, Claudia De Micco, Stefano Macrelli, Gennaro Agrimi, Matty Janssen, Maurizio Bettiga, Isabella Pisano","doi":"10.1186/s13068-024-02567-5","DOIUrl":"10.1186/s13068-024-02567-5","url":null,"abstract":"<div><h3>Background</h3><p>Production of cheese whey in the EU exceeded 55 million tons in 2022, resulting in lactose-rich effluents that pose significant environmental challenges. To address this issue, the present study investigated cheese-whey treatment via membrane filtration and the utilization of its components as fermentation feedstock. A simulation model was developed for an industrial-scale facility located in Italy’s Apulia region, designed to process 539 m<sup>3</sup>/day of untreated cheese-whey. The model integrated experimental data from ethanolic fermentation using a selected strain of <i>Kluyveromyces marxianus</i> in lactose-supplemented media, along with relevant published data.</p><h3>Results</h3><p>The simulation was divided into three different sections. The first section focused on cheese-whey pretreatment through membrane filtration, enabling the recovery of 56%<sub>w/w</sub> whey protein concentrate, process water recirculation, and lactose concentration. In the second section, the recovered lactose was directed towards fermentation and downstream anhydrous ethanol production. The third section encompassed anaerobic digestion of organic residue, sludge handling, and combined heat and power production. Moreover, three different scenarios were produced based on ethanol yield on lactose (Y<sub>E/L</sub>), biomass yield on lactose, and final lactose concentration in the medium. A techno-economic assessment based on the collected data was performed as well as a sensitivity analysis focused on economic parameters, encompassing considerations on cheese-whey by assessing its economical impact as a credit for the simulated facility, dictated by a gate fee, or as a cost by considering it a raw material. The techno-economic analysis revealed different minimum ethanol selling prices across the three scenarios. The best performance was obtained in the scenario presenting a Y<sub>E/L</sub> = 0.45 g/g, with a minimum selling price of 1.43 €/kg. Finally, sensitivity analysis highlighted the model’s dependence on the price or credit associated with cheese-whey handling.</p><h3>Conclusions</h3><p>This work highlighted the importance of policy implementation in this kind of study, demonstrating how a gate fee approach applied to cheese-whey procurement positively impacted the final minimum selling price for ethanol across all scenarios. Additionally, considerations should be made about the implementation of the simulated process as a plug-in addition in to existing processes dealing with dairy products or handling multiple biomasses to produce ethanol.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02567-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}