Pub Date : 2024-10-01Epub Date: 2024-10-15DOI: 10.1055/s-0044-1788694
Xiaoguang Cheng, Ling Wang, Glen M Blake, Giuseppe Guglielmi
Quantitative computed tomography (QCT) has important technical advantages for the measurement of bone mineral density, and the technique is well suited for both the diagnosis of osteoporosis and the monitoring of treatment. Its use deserves a wider application than at present. The use of QCT in both research and in the clinic has recently garnered increasing attention. In this review, we update the advances and application of QCT in the study of osteoporosis.
{"title":"Update on Quantitative Computed Tomography.","authors":"Xiaoguang Cheng, Ling Wang, Glen M Blake, Giuseppe Guglielmi","doi":"10.1055/s-0044-1788694","DOIUrl":"https://doi.org/10.1055/s-0044-1788694","url":null,"abstract":"<p><p>Quantitative computed tomography (QCT) has important technical advantages for the measurement of bone mineral density, and the technique is well suited for both the diagnosis of osteoporosis and the monitoring of treatment. Its use deserves a wider application than at present. The use of QCT in both research and in the clinic has recently garnered increasing attention. In this review, we update the advances and application of QCT in the study of osteoporosis.</p>","PeriodicalId":49545,"journal":{"name":"Seminars in Musculoskeletal Radiology","volume":"28 5","pages":"557-559"},"PeriodicalIF":0.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-10-15DOI: 10.1055/s-0044-1788886
Guillaume Gatineau, Didier Hans, Karen Hind
The Trabecular Bone Score (TBS), a gray-level textural assessment derived from dual-energy X-ray absorptiometry images, serves as a validated index of trabecular bone microarchitecture. Over the past decade, significant evidence has highlighted the usefulness of TBS in primary and secondary osteoporosis, leading to its integration with the Fracture Risk Assessment Tool (FRAX) and bone mineral density (BMD) T-score adjustments. This review explores the role of TBS in fracture prediction, treatment initiation, and monitoring. Studies confirm that TBS enhances fracture risk prediction in both primary and secondary osteoporosis when combined with BMD and clinical risk factors. Evidence also suggests that including TBS alongside BMD and FRAX offers significant potential for treatment stratification, considering the overall skeletal profile, such as bone mass, bone quality, and clinical risk factors. Consequently, TBS has become a standard part of clinical care worldwide. Future enhancements hope to adjust for soft tissue thickness, broadening the applicability of TBS across diverse body types and pediatric populations.
{"title":"Trabecular Bone Score to Enhance Fracture Risk Prediction and Treatment Strategies in Osteoporosis.","authors":"Guillaume Gatineau, Didier Hans, Karen Hind","doi":"10.1055/s-0044-1788886","DOIUrl":"https://doi.org/10.1055/s-0044-1788886","url":null,"abstract":"<p><p>The Trabecular Bone Score (TBS), a gray-level textural assessment derived from dual-energy X-ray absorptiometry images, serves as a validated index of trabecular bone microarchitecture. Over the past decade, significant evidence has highlighted the usefulness of TBS in primary and secondary osteoporosis, leading to its integration with the Fracture Risk Assessment Tool (FRAX) and bone mineral density (BMD) T-score adjustments. This review explores the role of TBS in fracture prediction, treatment initiation, and monitoring. Studies confirm that TBS enhances fracture risk prediction in both primary and secondary osteoporosis when combined with BMD and clinical risk factors. Evidence also suggests that including TBS alongside BMD and FRAX offers significant potential for treatment stratification, considering the overall skeletal profile, such as bone mass, bone quality, and clinical risk factors. Consequently, TBS has become a standard part of clinical care worldwide. Future enhancements hope to adjust for soft tissue thickness, broadening the applicability of TBS across diverse body types and pediatric populations.</p>","PeriodicalId":49545,"journal":{"name":"Seminars in Musculoskeletal Radiology","volume":"28 5","pages":"539-546"},"PeriodicalIF":0.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-10-15DOI: 10.1055/s-0044-1786536
Filip M Vanhoenacker, Ralph Lachman
This history page is dedicated to the memory and achievements of the pediatric radiologist Hooshang Taybi whose name is associated with the Rubinstein-Taybi syndrome, Taybi syndrome, and Taybi-Linder syndrome.
{"title":"History Page: Leaders in MSK Radiology: Hooshang Taybi, 1919-2006.","authors":"Filip M Vanhoenacker, Ralph Lachman","doi":"10.1055/s-0044-1786536","DOIUrl":"https://doi.org/10.1055/s-0044-1786536","url":null,"abstract":"<p><p>This history page is dedicated to the memory and achievements of the pediatric radiologist Hooshang Taybi whose name is associated with the Rubinstein-Taybi syndrome, Taybi syndrome, and Taybi-Linder syndrome.</p>","PeriodicalId":49545,"journal":{"name":"Seminars in Musculoskeletal Radiology","volume":"28 5","pages":"657-658"},"PeriodicalIF":0.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-10-15DOI: 10.1055/s-0044-1789218
Amanda Isaac, Asli Irmak Akdogan, Danoob Dalili, Nuran Saber, David Drobny, Giuseppe Guglielmi, Marc Modat, Alberto Bazzocchi
Artificial intelligence (AI) has significantly impacted the field of medical imaging, particularly in diagnosing and managing metabolic bone diseases (MBDs) such as osteoporosis and osteopenia, Paget's disease, osteomalacia, and rickets, as well as rare conditions such as osteitis fibrosa cystica and osteogenesis imperfecta. This article provides an in-depth analysis of AI techniques used in imaging these conditions, recent advancements, and their clinical applications. It also explores ethical considerations and future perspectives. Through comprehensive examination and case studies, we highlight the transformative potential of AI in enhancing diagnostic accuracy, improving patient outcomes, and contributing to personalized medicine. By integrating AI with existing imaging techniques, we can significantly enhance the capabilities of medical imaging in diagnosing, monitoring, and treating MBDs. We also provide a comprehensive overview of the current state, challenges, and future prospects of AI applications in this crucial area of health care.
{"title":"Artificial Intelligence Applications for Imaging Metabolic Bone Diseases.","authors":"Amanda Isaac, Asli Irmak Akdogan, Danoob Dalili, Nuran Saber, David Drobny, Giuseppe Guglielmi, Marc Modat, Alberto Bazzocchi","doi":"10.1055/s-0044-1789218","DOIUrl":"https://doi.org/10.1055/s-0044-1789218","url":null,"abstract":"<p><p>Artificial intelligence (AI) has significantly impacted the field of medical imaging, particularly in diagnosing and managing metabolic bone diseases (MBDs) such as osteoporosis and osteopenia, Paget's disease, osteomalacia, and rickets, as well as rare conditions such as osteitis fibrosa cystica and osteogenesis imperfecta. This article provides an in-depth analysis of AI techniques used in imaging these conditions, recent advancements, and their clinical applications. It also explores ethical considerations and future perspectives. Through comprehensive examination and case studies, we highlight the transformative potential of AI in enhancing diagnostic accuracy, improving patient outcomes, and contributing to personalized medicine. By integrating AI with existing imaging techniques, we can significantly enhance the capabilities of medical imaging in diagnosing, monitoring, and treating MBDs. We also provide a comprehensive overview of the current state, challenges, and future prospects of AI applications in this crucial area of health care.</p>","PeriodicalId":49545,"journal":{"name":"Seminars in Musculoskeletal Radiology","volume":"28 5","pages":"610-619"},"PeriodicalIF":0.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-10-15DOI: 10.1055/s-0044-1788887
Silvia Gazzotti, Rebecca Sassi, Maria Pilar Aparisi Gómez, Riccardo Guglielmi, Violeta Vasilevska Nikodinovska, Carmelo Messina, Giuseppe Guglielmi, Alberto Bazzocchi
Body composition is now recognized to have a major impact on health and disease. Imaging enables its analysis in an objective and quantitative way through diverse techniques such as dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging, and ultrasonography. This review article first surveys the methodological aspects underpinning the use of these modalities to assess body composition, highlighting their strengths and limitations as well as the set of parameters that they measure and their clinical relevance. It then provides an update on the main applications of body composition imaging in current practice, with a focus on sarcopenia, obesity, lipodystrophies, cancer, and critical care. We conclude by considering the emerging role of artificial intelligence in the analysis of body composition, enabling the extraction of numerous metrics with the potential to refine prognostication and management across a number of pathologies, paving the way toward personalized medicine.
目前,人们已认识到身体成分对健康和疾病有重大影响。通过双能 X 射线吸收测量法、计算机断层扫描、磁共振成像和超声波成像等多种技术,成像技术可以对身体成分进行客观、定量的分析。这篇综述文章首先探讨了使用这些模式评估身体成分的方法,强调了它们的优势和局限性,以及它们测量的一系列参数及其临床意义。然后,文章介绍了人体成分成像在当前实践中的主要应用,重点关注肌肉疏松症、肥胖症、脂肪营养不良症、癌症和重症监护。最后,我们探讨了人工智能在身体成分分析中的新兴作用,人工智能可以提取多种指标,从而有可能完善多种病症的预后和管理,为实现个性化医疗铺平道路。
{"title":"Imaging of Body Composition.","authors":"Silvia Gazzotti, Rebecca Sassi, Maria Pilar Aparisi Gómez, Riccardo Guglielmi, Violeta Vasilevska Nikodinovska, Carmelo Messina, Giuseppe Guglielmi, Alberto Bazzocchi","doi":"10.1055/s-0044-1788887","DOIUrl":"https://doi.org/10.1055/s-0044-1788887","url":null,"abstract":"<p><p>Body composition is now recognized to have a major impact on health and disease. Imaging enables its analysis in an objective and quantitative way through diverse techniques such as dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging, and ultrasonography. This review article first surveys the methodological aspects underpinning the use of these modalities to assess body composition, highlighting their strengths and limitations as well as the set of parameters that they measure and their clinical relevance. It then provides an update on the main applications of body composition imaging in current practice, with a focus on sarcopenia, obesity, lipodystrophies, cancer, and critical care. We conclude by considering the emerging role of artificial intelligence in the analysis of body composition, enabling the extraction of numerous metrics with the potential to refine prognostication and management across a number of pathologies, paving the way toward personalized medicine.</p>","PeriodicalId":49545,"journal":{"name":"Seminars in Musculoskeletal Radiology","volume":"28 5","pages":"594-609"},"PeriodicalIF":0.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-10-15DOI: 10.1055/s-0044-1788623
Steven K Boyd
Twenty years have passed since the introduction of high-resolution peripheral quantitative computed tomography (HR-pQCT) to assess human bone microarchitecture. During that time, the technique has emerged as an important research tool used by clinicians and scientists to learn about the pathophysiology of bone adaptation in the context of osteoporosis and many other bone-affected conditions. Its rich three-dimensional data is well suited for precise longitudinal monitoring of bone microarchitecture and associated patient-specific estimated bone strength.However, uptake of HR-pQCT as a clinical diagnostic tool has been limited, in part due to challenges such as availability, regulatory approvals, and demonstrated cost effectiveness. New research suggests fracture risk assessment using HR-pQCT is comparable with current standards based on traditional bone densitometry, but its contribution to clinical care is best suited to two areas: (1) leveraging microarchitectural information to assist in treatment decisions for the large subset of patients who lie in the so-called gray zone by current fracture risk assessment, and (2) longitudinal monitoring that establishes highly refined trajectories of bone adaptation and can inform decisions to initiate treatment, monitor treatment effects, and inform cessation.
{"title":"Two Decades of High-Resolution Peripheral Quantitative Computed Tomography: Present and Future Clinical Perspectives.","authors":"Steven K Boyd","doi":"10.1055/s-0044-1788623","DOIUrl":"https://doi.org/10.1055/s-0044-1788623","url":null,"abstract":"<p><p>Twenty years have passed since the introduction of high-resolution peripheral quantitative computed tomography (HR-pQCT) to assess human bone microarchitecture. During that time, the technique has emerged as an important research tool used by clinicians and scientists to learn about the pathophysiology of bone adaptation in the context of osteoporosis and many other bone-affected conditions. Its rich three-dimensional data is well suited for precise longitudinal monitoring of bone microarchitecture and associated patient-specific estimated bone strength.However, uptake of HR-pQCT as a clinical diagnostic tool has been limited, in part due to challenges such as availability, regulatory approvals, and demonstrated cost effectiveness. New research suggests fracture risk assessment using HR-pQCT is comparable with current standards based on traditional bone densitometry, but its contribution to clinical care is best suited to two areas: (1) leveraging microarchitectural information to assist in treatment decisions for the large subset of patients who lie in the so-called gray zone by current fracture risk assessment, and (2) longitudinal monitoring that establishes highly refined trajectories of bone adaptation and can inform decisions to initiate treatment, monitor treatment effects, and inform cessation.</p>","PeriodicalId":49545,"journal":{"name":"Seminars in Musculoskeletal Radiology","volume":"28 5","pages":"560-575"},"PeriodicalIF":0.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-10-15DOI: 10.1055/s-0044-1788579
Irene Carmen Pizza, Alessia Bongiorno, Martina Pedullà, Domenico Albano, Luca Maria Sconfienza, Carmelo Messina
Since its introduction in 1987, dual-energy X-ray absorptiometry (DXA) has revolutionized bone assessment, becoming the gold standard for measuring bone mineral density (BMD). Its low radiation exposure and high accuracy have made it indispensable in diagnosing osteoporosis, aligning with World Health Organization criteria. However, DXA evolution extends beyond BMD measurement, with emerging tools like the Trabecular Bone Score (TBS) and the DXA-based Bone Strain Index (BSI). TBS provides insights into trabecular bone architecture, enhancing the prediction of fracture risk. Despite limitations like body mass index correlation, TBS aids in evaluating patients with conditions such as diabetes and glucocorticoid exposure. BSI, introduced in 2019, evaluates bone strength using finite element analysis, complementing BMD and TBS by assessing bone fatigue.Advancements in DXA-based tools extend to Hip Structural Analysis and three-dimensional DXA software, offering valuable insights into hip fracture risk. Moreover, DXA serves beyond bone assessment, aiding in abdominal aortic calcification assessment, enhancing cardiovascular risk stratification. In summary, the expanding capabilities of DXA promise comprehensive skeletal and cardiovascular health evaluation, contributing significantly to clinical management and prevention strategies.
{"title":"DXA: New Concepts and Tools Beyond Bone Mineral Density.","authors":"Irene Carmen Pizza, Alessia Bongiorno, Martina Pedullà, Domenico Albano, Luca Maria Sconfienza, Carmelo Messina","doi":"10.1055/s-0044-1788579","DOIUrl":"https://doi.org/10.1055/s-0044-1788579","url":null,"abstract":"<p><p>Since its introduction in 1987, dual-energy X-ray absorptiometry (DXA) has revolutionized bone assessment, becoming the gold standard for measuring bone mineral density (BMD). Its low radiation exposure and high accuracy have made it indispensable in diagnosing osteoporosis, aligning with World Health Organization criteria. However, DXA evolution extends beyond BMD measurement, with emerging tools like the Trabecular Bone Score (TBS) and the DXA-based Bone Strain Index (BSI). TBS provides insights into trabecular bone architecture, enhancing the prediction of fracture risk. Despite limitations like body mass index correlation, TBS aids in evaluating patients with conditions such as diabetes and glucocorticoid exposure. BSI, introduced in 2019, evaluates bone strength using finite element analysis, complementing BMD and TBS by assessing bone fatigue.Advancements in DXA-based tools extend to Hip Structural Analysis and three-dimensional DXA software, offering valuable insights into hip fracture risk. Moreover, DXA serves beyond bone assessment, aiding in abdominal aortic calcification assessment, enhancing cardiovascular risk stratification. In summary, the expanding capabilities of DXA promise comprehensive skeletal and cardiovascular health evaluation, contributing significantly to clinical management and prevention strategies.</p>","PeriodicalId":49545,"journal":{"name":"Seminars in Musculoskeletal Radiology","volume":"28 5","pages":"528-538"},"PeriodicalIF":0.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-10-15DOI: 10.1055/s-0044-1788692
Maria Pilar Aparisi Gómez, Alberto Bazzocchi
The bone marrow represents one of the largest organs in the body, with a relevant metabolic role that continues to be investigated. Numerous studies have focused on marrow adipose tissue (MAT). Evidence indicates that the bone marrow adipocytes do not only work as storage tissue but also consist of endocrine and paracrine cells, with the potential to contribute to local and systemic metabolism. MAT plays a role in bone health through its interaction with the other components of bone. Many metabolic disorders (osteoporosis, obesity, diabetes) have a complex and still not well-established or understood relationship with bone health. This article surveys the literature on the relationship of bone marrow and metabolic disorders, and how it is being studied using imaging techniques, with a special focus on bone health.
{"title":"Bone Marrow and Metabolic Bone Disease.","authors":"Maria Pilar Aparisi Gómez, Alberto Bazzocchi","doi":"10.1055/s-0044-1788692","DOIUrl":"https://doi.org/10.1055/s-0044-1788692","url":null,"abstract":"<p><p>The bone marrow represents one of the largest organs in the body, with a relevant metabolic role that continues to be investigated. Numerous studies have focused on marrow adipose tissue (MAT). Evidence indicates that the bone marrow adipocytes do not only work as storage tissue but also consist of endocrine and paracrine cells, with the potential to contribute to local and systemic metabolism. MAT plays a role in bone health through its interaction with the other components of bone. Many metabolic disorders (osteoporosis, obesity, diabetes) have a complex and still not well-established or understood relationship with bone health. This article surveys the literature on the relationship of bone marrow and metabolic disorders, and how it is being studied using imaging techniques, with a special focus on bone health.</p>","PeriodicalId":49545,"journal":{"name":"Seminars in Musculoskeletal Radiology","volume":"28 5","pages":"515-527"},"PeriodicalIF":0.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-10-15DOI: 10.1055/s-0044-1788816
Julian B Herrera Acevedo, Leon Lenchik, Ashley A Weaver, Robert D Boutin, Scott Wuertzer
Opportunistic screening uses existing imaging studies for additional diagnostic insights without imposing further burden on patients. We explore the potential of opportunistic computed tomography (CT) screening for osteoporosis, a condition affecting 500 million people globally and leading to significant health care costs and fragility fractures. Although dual-energy X-ray absorptiometry (DXA) remains the gold standard for diagnosing osteoporosis, > 50% of fractures occur in individuals not screened previously with DXA. With recent advancements in technology, CT has emerged as the most promising tool for opportunistic screening due to its wide use and the ability to provide quantitative measurements of bone attenuation, a surrogate of bone mineral density. This article discusses the technical considerations, calibration methods, and potential benefits of CT for osteoporosis screening. It also explores the role of automation, supervised and unsupervised, in streamlining the diagnostic process, improving accuracy, and potentially developing new biomarkers of bone health. The potential addition of radiomics and genomics is also highlighted, showcasing the synergy between genetic and imaging data for a more comprehensive understanding of osteoporosis pathophysiology and with it possible novel osteoporosis therapies. The future of opportunistic CT screening holds significant promise, with automation and advanced image processing ultimately enhancing patient care, reducing rates of osteoporotic fractures, and improving patient outcomes.
{"title":"Opportunistic Screening of Bone Fragility Using Computed Tomography.","authors":"Julian B Herrera Acevedo, Leon Lenchik, Ashley A Weaver, Robert D Boutin, Scott Wuertzer","doi":"10.1055/s-0044-1788816","DOIUrl":"https://doi.org/10.1055/s-0044-1788816","url":null,"abstract":"<p><p>Opportunistic screening uses existing imaging studies for additional diagnostic insights without imposing further burden on patients. We explore the potential of opportunistic computed tomography (CT) screening for osteoporosis, a condition affecting 500 million people globally and leading to significant health care costs and fragility fractures. Although dual-energy X-ray absorptiometry (DXA) remains the gold standard for diagnosing osteoporosis, > 50% of fractures occur in individuals not screened previously with DXA. With recent advancements in technology, CT has emerged as the most promising tool for opportunistic screening due to its wide use and the ability to provide quantitative measurements of bone attenuation, a surrogate of bone mineral density. This article discusses the technical considerations, calibration methods, and potential benefits of CT for osteoporosis screening. It also explores the role of automation, supervised and unsupervised, in streamlining the diagnostic process, improving accuracy, and potentially developing new biomarkers of bone health. The potential addition of radiomics and genomics is also highlighted, showcasing the synergy between genetic and imaging data for a more comprehensive understanding of osteoporosis pathophysiology and with it possible novel osteoporosis therapies. The future of opportunistic CT screening holds significant promise, with automation and advanced image processing ultimately enhancing patient care, reducing rates of osteoporotic fractures, and improving patient outcomes.</p>","PeriodicalId":49545,"journal":{"name":"Seminars in Musculoskeletal Radiology","volume":"28 5","pages":"620-627"},"PeriodicalIF":0.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-10-15DOI: 10.1055/s-0044-1788578
Eimantas Abelkis, Kirsten van Langevelde, Thom Doeleman, Justus Groen, Ana Navas Cañete
Inflammatory pseudotumor (IPT) of a peripheral nerve is a rare non-neoplastic tumefactive inflammatory condition, often mimicking malignancy. The etiology of this condition is still unknown. Clinically and radiologically, the lesion can mimic a malignant tumor. This case report represents, as far as we know, the first publication describing the ultrasonography findings and the results of advanced dynamic contrast-enhanced magnetic resonance imaging (MRI) and diffusion-weighted MRI of IPT in a peripheral nerve. Suspicion of this entity on imaging can speed up the definitive diagnosis and potentially avoid overly radical treatment.
{"title":"Inflammatory Pseudotumor of the Ulnar Nerve Mimicking a Malignant Peripheral Nerve Sheath Tumor: A Radiologic Puzzle.","authors":"Eimantas Abelkis, Kirsten van Langevelde, Thom Doeleman, Justus Groen, Ana Navas Cañete","doi":"10.1055/s-0044-1788578","DOIUrl":"10.1055/s-0044-1788578","url":null,"abstract":"<p><p>Inflammatory pseudotumor (IPT) of a peripheral nerve is a rare non-neoplastic tumefactive inflammatory condition, often mimicking malignancy. The etiology of this condition is still unknown. Clinically and radiologically, the lesion can mimic a malignant tumor. This case report represents, as far as we know, the first publication describing the ultrasonography findings and the results of advanced dynamic contrast-enhanced magnetic resonance imaging (MRI) and diffusion-weighted MRI of IPT in a peripheral nerve. Suspicion of this entity on imaging can speed up the definitive diagnosis and potentially avoid overly radical treatment.</p>","PeriodicalId":49545,"journal":{"name":"Seminars in Musculoskeletal Radiology","volume":"28 5","pages":"651-656"},"PeriodicalIF":0.9,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}