Pub Date : 2023-05-01DOI: 10.1016/j.smim.2023.101756
Rachel Newsome , Ye Yang , Christian Jobin
The intestinal microbiota composition and associated bioactivities are sensitive to various modifier cues such as stress, inflammation, age, life-style and nutrition, which in turn are associated with susceptibility to developing cancer. Among these modifiers, diet has been shown to influence both microbiota composition as well as being an important source of microbial-derived compounds impacting the immunological, neurological and hormonal systems. Thus, it is necessary to take a holistic view when considering effect of diet on health and diseases. In this review, we focus on the interplay between western diet, the microbiota and cancer development by dissecting key components of the diet and leveraging data from human interventions and pre-clinical studies to better understand this relationship. We highlight key progress as well as stressing limitations in this field of research.
{"title":"Western diet influences on microbiome and carcinogenesis","authors":"Rachel Newsome , Ye Yang , Christian Jobin","doi":"10.1016/j.smim.2023.101756","DOIUrl":"10.1016/j.smim.2023.101756","url":null,"abstract":"<div><p>The intestinal microbiota composition and associated bioactivities are sensitive to various modifier cues such as stress, inflammation, age, life-style and nutrition, which in turn are associated with susceptibility to developing cancer. Among these modifiers, diet has been shown to influence both microbiota composition as well as being an important source of microbial-derived compounds impacting the immunological, neurological and hormonal systems. Thus, it is necessary to take a holistic view when considering effect of diet on health and diseases. In this review, we focus on the interplay between western diet, the microbiota and cancer development by dissecting key components of the diet and leveraging data from human interventions and pre-clinical studies to better understand this relationship. We highlight key progress as well as stressing limitations in this field of research.</p></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"67 ","pages":"Article 101756"},"PeriodicalIF":7.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9547461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1016/j.smim.2023.101763
Hamoud Al-Mousa , Mohamed-Ridha Barbouche
Consanguineous marriages in Middle Eastern and North African (MENA) countries are deeply-rooted tradition and highly prevalent resulting into increased prevalence of autosomal recessive diseases including Inborn Errors of Immunity (IEIs). Molecular genetic testing is an important diagnostic tool for IEIs since it provides a definite diagnosis, genotype-phenotype correlation, and guide therapy. In this review, we will discuss the current state and challenges of genomic and variome studies in MENA region populations, as well as the importance of funding advanced genome projects. In addition, we will review the MENA underlying molecular genetic defects of over 2457 patients published with the common IEIs, where autosomal recessive mode of inheritance accounts for 76% of cases with increased prevalence of combined immunodeficiency diseases (50%). The efforts made in the last three decades in terms of international collaboration and of in situ capacity building in MENA region countries led to the discovery of more than 150 novel genes involved in IEIs. Expanding sequencing studies within the MENA will undoubtedly be a unique asset for the IEI genetics which can advance research, and support precise genomic diagnostics and therapeutics.
{"title":"Genetics of Inborn Errors of Immunity in highly consanguineous Middle Eastern and North African populations","authors":"Hamoud Al-Mousa , Mohamed-Ridha Barbouche","doi":"10.1016/j.smim.2023.101763","DOIUrl":"10.1016/j.smim.2023.101763","url":null,"abstract":"<div><p>Consanguineous marriages in Middle Eastern and North African (MENA) countries are deeply-rooted tradition and highly prevalent resulting into increased prevalence of autosomal recessive diseases including Inborn Errors of Immunity (IEIs). Molecular genetic testing is an important diagnostic tool for IEIs since it provides a definite diagnosis, genotype-phenotype correlation, and guide therapy. In this review, we will discuss the current state and challenges of genomic and variome studies in MENA region populations, as well as the importance of funding advanced genome projects. In addition, we will review the MENA underlying molecular genetic defects of over 2457 patients published with the common IEIs, where autosomal recessive mode of inheritance accounts for 76% of cases with increased prevalence of combined immunodeficiency diseases (50%). The efforts made in the last three decades in terms of international collaboration and of in situ capacity building in MENA region countries led to the discovery of more than 150 novel genes involved in IEIs. Expanding sequencing studies within the MENA will undoubtedly be a unique asset for the IEI genetics which can advance research, and support precise genomic diagnostics and therapeutics.</p></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"67 ","pages":"Article 101763"},"PeriodicalIF":7.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9547948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1016/j.smim.2023.101753
Serena Abbondante , Sixto M. Leal , Heather L. Clark , Bridget Ratitong , Yan Sun , Li-Jun Ma , Eric Pearlman
Fusarium, Aspergillus and Candida are important fungal pathogens that cause visual impairment and blindness in the USA and worldwide. This review will summarize the epidemiology and clinical features of corneal infections and discuss the immune and inflammatory responses that play an important role in clinical disease. In addition, we describe fungal virulence factors that are required for survival in infected corneas, and the activities of neutrophils in fungal killing, tissue damage and cytokine production.
{"title":"Immunity to pathogenic fungi in the eye","authors":"Serena Abbondante , Sixto M. Leal , Heather L. Clark , Bridget Ratitong , Yan Sun , Li-Jun Ma , Eric Pearlman","doi":"10.1016/j.smim.2023.101753","DOIUrl":"10.1016/j.smim.2023.101753","url":null,"abstract":"<div><p><em>Fusarium, Aspergillus</em> and <em>Candida</em> are important fungal pathogens that cause visual impairment and blindness in the USA and worldwide. This review will summarize the epidemiology and clinical features of corneal infections and discuss the immune and inflammatory responses that play an important role in clinical disease. In addition, we describe fungal virulence factors that are required for survival in infected corneas, and the activities of neutrophils in fungal killing, tissue damage and cytokine production.</p></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"67 ","pages":"Article 101753"},"PeriodicalIF":7.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508057/pdf/nihms-1931041.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9596449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1016/j.smim.2023.101766
Arie Admon
The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.
{"title":"The biogenesis of the immunopeptidome","authors":"Arie Admon","doi":"10.1016/j.smim.2023.101766","DOIUrl":"10.1016/j.smim.2023.101766","url":null,"abstract":"<div><p>The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.</p></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"67 ","pages":"Article 101766"},"PeriodicalIF":7.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9914955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1016/j.smim.2023.101765
Vanitha Sampath , Juan Aguilera , Mary Prunicki , Kari C. Nadeau
Climate change is considered the greatest threat to global health. Greenhouse gases as well as global surface temperatures have increased causing more frequent and intense heat and cold waves, wildfires, floods, drought, altered rainfall patterns, hurricanes, thunderstorms, air pollution, and windstorms. These extreme weather events have direct and indirect effects on the immune system, leading to allergic disease due to exposure to pollen, molds, and other environmental pollutants. In this review, we will focus on immune mechanisms associated with allergy and asthma-related health risks induced by climate change events. We will review current understanding of the molecular and cellular mechanisms by which the changing environment mediates these effects.
{"title":"Mechanisms of climate change and related air pollution on the immune system leading to allergic disease and asthma","authors":"Vanitha Sampath , Juan Aguilera , Mary Prunicki , Kari C. Nadeau","doi":"10.1016/j.smim.2023.101765","DOIUrl":"10.1016/j.smim.2023.101765","url":null,"abstract":"<div><p>Climate change is considered the greatest threat to global health. Greenhouse gases as well as global surface temperatures have increased causing more frequent and intense heat and cold waves, wildfires, floods, drought, altered rainfall patterns, hurricanes, thunderstorms, air pollution, and windstorms. These extreme weather events have direct and indirect effects on the immune system, leading to allergic disease due to exposure to pollen, molds, and other environmental pollutants. In this review, we will focus on immune mechanisms associated with allergy and asthma-related health risks induced by climate change events. We will review current understanding of the molecular and cellular mechanisms by which the changing environment mediates these effects.</p></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"67 ","pages":"Article 101765"},"PeriodicalIF":7.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10275624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9649636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1016/j.smim.2023.101749
Jianhua Yu , Michael A. Caligiuri
When we can understand what natural killer (NK) cells recognize during an encounter with an infectious pathogen or a tumor cell, and when we can understand how the NK cell responds to that encounter, we can then begin to understand the role of NK cells in human health and how to improve upon their role for the prevention and treatment of human disease. In the quest to understand how these cells function in antiviral and antitumoral immunity, there have been previously described mechanisms established for NK cells to participate in clearing viral infections and tumors, including classical NK cell antibody dependent cellular cytotoxicity (ADCC) as well as recognition and elimination of transformed malignant cells through direct ligand interactions. However, it is now clear that there are additional mechanisms by which NK cells can participate in these critical immune tasks. Here we review two recently described types of NK cell recognition and response: the first is to primary infection with herpes virus, recognized and responded to by non-specific Fc bridged cellular cytotoxicity (FcBCC), and the second describes a novel phenotypic and functional response when a subset of NK cells recognize myeloid leukemia.
{"title":"Viral- and tumor-reactive natural killer cells","authors":"Jianhua Yu , Michael A. Caligiuri","doi":"10.1016/j.smim.2023.101749","DOIUrl":"10.1016/j.smim.2023.101749","url":null,"abstract":"<div><p>When we can understand what natural killer (NK) cells recognize during an encounter with an infectious pathogen or a tumor cell, and when we can understand how the NK cell responds to that encounter, we can then begin to understand the role of NK cells in human health and how to improve upon their role for the prevention and treatment of human disease. In the quest to understand how these cells function in antiviral and antitumoral immunity, there have been previously described mechanisms established for NK cells to participate in clearing viral infections and tumors, including classical NK cell antibody dependent cellular cytotoxicity (ADCC) as well as recognition and elimination of transformed malignant cells through direct ligand interactions. However, it is now clear that there are additional mechanisms by which NK cells can participate in these critical immune tasks. Here we review two recently described types of NK cell recognition and response: the first is to primary infection with herpes virus, recognized and responded to by non-specific Fc bridged cellular cytotoxicity (FcBCC), and the second describes a novel phenotypic and functional response when a subset of NK cells recognize myeloid leukemia.</p></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"67 ","pages":"Article 101749"},"PeriodicalIF":7.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192023/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9547443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1016/j.smim.2023.101739
Martina Molgora, Yizhou A. Liu, Marco Colonna, Marina Cella
TREM2 is a myeloid cell receptor that has been extensively described in the context of neuroinflammation and neurodegenerative diseases. Recently, TREM2 emerged as a crucial regulator of macrophage function in tumors. TREM2-deficiency or blockade provide protection and promote the response to anti-PD1 in different murine models. In human tumors, TREM2-expressing macrophages are present in numerous cohorts and tumor types and are generally associated with immunosuppression and poor prognosis. Here, we provide an overview of the impact of TREM2 in tumors considering current literature, with a focus on both murine models and human cancer.
{"title":"TREM2: A new player in the tumor microenvironment","authors":"Martina Molgora, Yizhou A. Liu, Marco Colonna, Marina Cella","doi":"10.1016/j.smim.2023.101739","DOIUrl":"10.1016/j.smim.2023.101739","url":null,"abstract":"<div><p>TREM2 is a myeloid cell receptor that has been extensively described in the context of neuroinflammation and neurodegenerative diseases. Recently, TREM2 emerged as a crucial regulator of macrophage function in tumors. TREM2-deficiency or blockade provide protection and promote the response to anti-PD1 in different murine models. In human tumors, TREM2-expressing macrophages are present in numerous cohorts and tumor types and are generally associated with immunosuppression and poor prognosis. Here, we provide an overview of the impact of TREM2 in tumors considering current literature, with a focus on both murine models and human cancer.</p></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"67 ","pages":"Article 101739"},"PeriodicalIF":7.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9536215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1016/j.smim.2023.101764
François-Xavier Mauvais , Peter van Endert
The critical role of conventional dendritic cells in physiological cross-priming of immune responses to tumors and pathogens is widely documented and beyond doubt. However, there is ample evidence that a wide range of other cell types can also acquire the capacity to cross-present. These include not only other myeloid cells such as plasmacytoid dendritic cells, macrophages and neutrophils, but also lymphoid populations, endothelial and epithelial cells and stromal cells including fibroblasts. The aim of this review is to provide an overview of the relevant literature that analyzes each report cited for the antigens and readouts used, mechanistic insight and in vivo experimentation addressing physiological relevance. As this analysis shows, many reports rely on the exceptionally sensitive recognition of an ovalbumin peptide by a transgenic T cell receptor, with results that therefore cannot always be extrapolated to physiological settings. Mechanistic studies remain basic in most cases but reveal that the cytosolic pathway is dominant across many cell types, while vacuolar processing is most encountered in macrophages. Studies addressing physiological relevance rigorously remain exceptional but suggest that cross-presentation by non-dendritic cells may have significant impact in anti-tumor immunity and autoimmunity.
{"title":"Cross-presentation by the others","authors":"François-Xavier Mauvais , Peter van Endert","doi":"10.1016/j.smim.2023.101764","DOIUrl":"10.1016/j.smim.2023.101764","url":null,"abstract":"<div><p>The critical role of conventional dendritic cells in physiological cross-priming of immune responses to tumors and pathogens is widely documented and beyond doubt. However, there is ample evidence that a wide range of other cell types can also acquire the capacity to cross-present. These include not only other myeloid cells such as plasmacytoid dendritic cells, macrophages and neutrophils, but also lymphoid populations, endothelial and epithelial cells and stromal cells including fibroblasts. The aim of this review is to provide an overview of the relevant literature that analyzes each report cited for the antigens and readouts used, mechanistic insight and <em>in vivo</em> experimentation addressing physiological relevance. As this analysis shows, many reports rely on the exceptionally sensitive recognition of an ovalbumin peptide by a transgenic T cell receptor, with results that therefore cannot always be extrapolated to physiological settings. Mechanistic studies remain basic in most cases but reveal that the cytosolic pathway is dominant across many cell types, while vacuolar processing is most encountered in macrophages. Studies addressing physiological relevance rigorously remain exceptional but suggest that cross-presentation by non-dendritic cells may have significant impact in anti-tumor immunity and autoimmunity.</p></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"67 ","pages":"Article 101764"},"PeriodicalIF":7.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9536696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1016/j.smim.2023.101755
Larisa V. Kovtonyuk, Kathy D. McCoy
Our microbiota has a critical role in shaping host immunity. Microbes that reside in the gut harbor a large metabolic arsenal to aid in physiological functions of the host. Microbial metabolites, which are products of microbial metabolism, such as short chain fatty acids (SCFA), purine metabolites, cyclic dinucleotides, tryptophan derivatives, and secondary bile acids, can tailor the host immune cell landscape in homeostasis and during cancer immunotherapy. The critical role of the microbiome in aiding immune checkpoint blockade therapies has become clearer over the past few years, with the most recent studies providing more detailed mechanistic insight on how microbes and their metabolites control the outcome of immunotherapy. This review summarizes recent studies on how microbial metabolites orchestrate immune responses during cancer immunotherapies.
{"title":"Microbial metabolites and immunotherapy: Basic rationale and clinical indications","authors":"Larisa V. Kovtonyuk, Kathy D. McCoy","doi":"10.1016/j.smim.2023.101755","DOIUrl":"10.1016/j.smim.2023.101755","url":null,"abstract":"<div><p>Our microbiota has a critical role in shaping host immunity. Microbes that reside in the gut harbor a large metabolic arsenal to aid in physiological functions of the host. Microbial metabolites, which are products of microbial metabolism, such as short chain fatty acids (SCFA), purine metabolites, cyclic dinucleotides, tryptophan derivatives, and secondary bile acids, can tailor the host immune cell landscape in homeostasis and during cancer immunotherapy. The critical role of the microbiome in aiding immune checkpoint blockade therapies has become clearer over the past few years, with the most recent studies providing more detailed mechanistic insight on how microbes and their metabolites control the outcome of immunotherapy. This review summarizes recent studies on how microbial metabolites orchestrate immune responses during cancer immunotherapies.</p></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"67 ","pages":"Article 101755"},"PeriodicalIF":7.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9542089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1016/j.smim.2023.101767
Laurence Zitvogel , Guido Kroemer
{"title":"Introduction to the Special Issue: Nutrition, microbiota and immunity","authors":"Laurence Zitvogel , Guido Kroemer","doi":"10.1016/j.smim.2023.101767","DOIUrl":"10.1016/j.smim.2023.101767","url":null,"abstract":"","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":"67 ","pages":"Article 101767"},"PeriodicalIF":7.8,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9914953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}