首页 > 最新文献

Russian Journal of Numerical Analysis and Mathematical Modelling最新文献

英文 中文
Mathematical modelling for spatial optimization of irradiation during proton radiotherapy with nanosensitizers 纳米致敏剂质子放射治疗中辐照空间优化的数学建模
4区 数学 Q2 Mathematics Pub Date : 2023-10-01 DOI: 10.1515/rnam-2023-0023
Maxim Kuznetsov, Andrey Kolobov
Abstract A spatially distributed mathematical model is presented that simulates the growth of a non-invasive tumour undergoing treatment by fractionated proton therapy with the use of non-radioactive tumour-specific nanosensitizers. Nanosensitizers are injected intravenously before each irradiation to increase the locally deposited dose via a chain of reactions with therapeutic protons. Modelling simulations show that the use of nanosensitizers allows increasing treatment efficacy. However, their effect is restricted by the necessity of decreasing the energy deposited in tumour in order to comply to the normal damage restrictions. Normalization of tumour microvasculature that accompanies the treatment, also compromises nanosensitizers effect as it impairs their inflow in tumour. It is shown that spatial optimization of irradiation, with conservation of total dose deposited in tumour, can increase tumour cell damage for each single irradiation. However, eventually it may not lead to the overall increase of treatment efficacy, in terms of minimization of the number of remaining viable tumour cells, due to the influence of tumour cell repopulation between irradiations. It is suggested that an efficient way towards minimization of tumour cell repopulation may be the faster suppression of angiogenesis by eradication of metabolically deprived tumour cells. This method can be efficient even despite the fact that it would also cause the decrease of supply of nanosensitizers into the tumour.
摘要:本文提出了一个空间分布的数学模型,模拟了非侵袭性肿瘤在使用非放射性肿瘤特异性纳米增敏剂的分形质子治疗下的生长过程。每次照射前静脉注射纳米增敏剂,通过与治疗性质子的连锁反应增加局部沉积剂量。模型模拟表明,使用纳米增敏剂可以提高治疗效果。然而,为了符合正常的损伤限制,必须减少肿瘤中沉积的能量,因此它们的效果受到限制。伴随治疗的肿瘤微血管的正常化也损害了纳米致敏剂的作用,因为它损害了纳米致敏剂在肿瘤中的流入。结果表明,在保证肿瘤内总剂量不变的情况下,照射空间优化可增加肿瘤细胞的单次照射损伤。然而,由于两次照射之间肿瘤细胞再生的影响,最终可能不会导致治疗效果的整体提高,就剩余活肿瘤细胞数量的最小化而言。因此,通过清除代谢被剥夺的肿瘤细胞来更快地抑制血管生成可能是使肿瘤细胞再生最小化的有效方法。这种方法是有效的,尽管它也会导致纳米致敏剂进入肿瘤的供应减少。
{"title":"Mathematical modelling for spatial optimization of irradiation during proton radiotherapy with nanosensitizers","authors":"Maxim Kuznetsov, Andrey Kolobov","doi":"10.1515/rnam-2023-0023","DOIUrl":"https://doi.org/10.1515/rnam-2023-0023","url":null,"abstract":"Abstract A spatially distributed mathematical model is presented that simulates the growth of a non-invasive tumour undergoing treatment by fractionated proton therapy with the use of non-radioactive tumour-specific nanosensitizers. Nanosensitizers are injected intravenously before each irradiation to increase the locally deposited dose via a chain of reactions with therapeutic protons. Modelling simulations show that the use of nanosensitizers allows increasing treatment efficacy. However, their effect is restricted by the necessity of decreasing the energy deposited in tumour in order to comply to the normal damage restrictions. Normalization of tumour microvasculature that accompanies the treatment, also compromises nanosensitizers effect as it impairs their inflow in tumour. It is shown that spatial optimization of irradiation, with conservation of total dose deposited in tumour, can increase tumour cell damage for each single irradiation. However, eventually it may not lead to the overall increase of treatment efficacy, in terms of minimization of the number of remaining viable tumour cells, due to the influence of tumour cell repopulation between irradiations. It is suggested that an efficient way towards minimization of tumour cell repopulation may be the faster suppression of angiogenesis by eradication of metabolically deprived tumour cells. This method can be efficient even despite the fact that it would also cause the decrease of supply of nanosensitizers into the tumour.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136198949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pressure-correction projection method for modelling the incompressible fluid flow in porous media 多孔介质中不可压缩流体流动模型的压力修正投影法
IF 0.6 4区 数学 Q2 Mathematics Pub Date : 2023-08-01 DOI: 10.1515/rnam-2023-0019
K. Terekhov
Abstract This work is dedicated to the pressure-correction projection method for the volume-averaged Navier–Stokes system for porous media. A set of parameters controlling the presence of inertia and viscosity is introduced into the system. Switching parameters allows us to reduce the system to either the Brinkman system or the Darcy equation. Considering the jump in the parameters between mesh cells allows capturing the contact of media of different types, such as free-flow and porous media flow. We apply Chorin’s projection method to decouple the system. The splitting of the system yields a momentum conservation equation and an anisotropic pressure correction equation. We propose a combination of collocated finite-volume methods to solve the problem.
摘要这项工作致力于多孔介质体积平均Navier-Stokes系统的压力校正投影方法。在系统中引入了一组控制惯性和粘度存在的参数。通过切换参数,我们可以将系统简化为Brinkman系统或Darcy方程。考虑到网格单元之间参数的跳跃,可以捕捉不同类型介质的接触,如自由流和多孔介质流。我们应用Chorin的投影方法对系统进行解耦。系统的分裂产生了动量守恒方程和各向异性压力校正方程。我们提出了一种并置有限体积方法的组合来解决这个问题。
{"title":"Pressure-correction projection method for modelling the incompressible fluid flow in porous media","authors":"K. Terekhov","doi":"10.1515/rnam-2023-0019","DOIUrl":"https://doi.org/10.1515/rnam-2023-0019","url":null,"abstract":"Abstract This work is dedicated to the pressure-correction projection method for the volume-averaged Navier–Stokes system for porous media. A set of parameters controlling the presence of inertia and viscosity is introduced into the system. Switching parameters allows us to reduce the system to either the Brinkman system or the Darcy equation. Considering the jump in the parameters between mesh cells allows capturing the contact of media of different types, such as free-flow and porous media flow. We apply Chorin’s projection method to decouple the system. The splitting of the system yields a momentum conservation equation and an anisotropic pressure correction equation. We propose a combination of collocated finite-volume methods to solve the problem.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46895771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multicontinuum homogenization for Richards’ equation: The derivation and numerical experiments 理查兹方程的多连续统均匀化:推导与数值实验
IF 0.6 4区 数学 Q2 Mathematics Pub Date : 2023-08-01 DOI: 10.1515/rnam-2023-0016
D. Ammosov, S. Stepanov, D. Spiridonov, Wenyuan Li
Abstract In the present paper, the authors rigorously derive Richards’ multicontinuum model using the multicontinuum homogenization approach. This approach is based on formulating constraint cell problems and a homogenization-like expansion. We present numerical results for the two continua case with separable coefficients. First, we explore the relationships between the effective coefficients and the hydraulic conductivity. Then, we solve test problems with different contrasts to study the developed multicontinuum model.
摘要在本文中,作者使用多连续谱均匀化方法严格推导了Richards的多连续谱模型。这种方法基于公式化约束单元问题和类均匀化展开。我们给出了具有可分离系数的两个连续情形的数值结果。首先,我们探讨了有效系数与导水率之间的关系。然后,我们解决了不同对比度的测试问题,研究了所开发的多连续谱模型。
{"title":"Multicontinuum homogenization for Richards’ equation: The derivation and numerical experiments","authors":"D. Ammosov, S. Stepanov, D. Spiridonov, Wenyuan Li","doi":"10.1515/rnam-2023-0016","DOIUrl":"https://doi.org/10.1515/rnam-2023-0016","url":null,"abstract":"Abstract In the present paper, the authors rigorously derive Richards’ multicontinuum model using the multicontinuum homogenization approach. This approach is based on formulating constraint cell problems and a homogenization-like expansion. We present numerical results for the two continua case with separable coefficients. First, we explore the relationships between the effective coefficients and the hydraulic conductivity. Then, we solve test problems with different contrasts to study the developed multicontinuum model.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47603539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frontmatter 头版头条
4区 数学 Q2 Mathematics Pub Date : 2023-08-01 DOI: 10.1515/rnam-2023-frontmatter4
{"title":"Frontmatter","authors":"","doi":"10.1515/rnam-2023-frontmatter4","DOIUrl":"https://doi.org/10.1515/rnam-2023-frontmatter4","url":null,"abstract":"","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136106839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Operator-difference schemes on non-uniform grids for second-order evolutionary equations 二阶演化方程非均匀网格上的算子差分格式
4区 数学 Q2 Mathematics Pub Date : 2023-08-01 DOI: 10.1515/rnam-2023-0020
Petr N. Vabishchevich
Abstract The approximate solution of the Cauchy problem for second-order evolution equations is performed, first of all, using three-level time approximations. Such approximations are easily constructed and relatively uncomplicated to investigate when using uniform time grids. When solving applied problems numerically, we should focus on approximations with variable time steps. When using multilevel schemes on non-uniform grids, we should maintain accuracy by choosing appropriate approximations and ensuring stability of the approximate solution. In this paper, we construct unconditionally stable schemes of the first- and second-order accuracy on a non-uniform time grid for the approximate solution of the Cauchy problem for a second-order evolutionary equation. The novelty of the paper consists in the fact that these stability estimates are obtained without any restrictions on the magnitude of the step change and on the number of step changes. We use a special transformation of the original second-order differential-operator equation to a system of first-order equations. For the system of first-order equations, we apply standard two-level time approximations. We obtained stability estimates for the initial data and the right-hand side in finite-dimensional Hilbert space. Eliminating auxiliary variables leads to three-level schemes for the initial second-order evolution equation. Numerical experiments were performed for the test problem for a one-dimensional in space bi-parabolic equation. The accuracy and stability properties of the constructed schemes are demonstrated on non-uniform grids with randomly varying grid steps.
摘要本文首先利用三阶时间逼近求解二阶演化方程的Cauchy问题。当使用均匀的时间网格时,这种近似很容易构造并且相对不复杂。在数值求解应用问题时,我们应该关注可变时间步长的近似。在非均匀网格上使用多层格式时,应通过选择适当的近似和保证近似解的稳定性来保持精度。本文构造了一类二阶演化方程Cauchy问题近似解的非均匀时间网格上一阶和二阶精度的无条件稳定格式。本文的新颖之处在于,这些稳定性估计是在不受阶跃变化幅度和阶跃变化次数限制的情况下得到的。我们用一个特殊的变换将原来的二阶微分算子方程转化为一阶方程组。对于一阶方程组,我们采用标准的两级时间近似。我们得到了有限维Hilbert空间中初始数据和右侧数据的稳定性估计。消去辅助变量,得到初始二阶演化方程的三级格式。对一维空间双抛物型方程的测试问题进行了数值实验。在具有随机变化网格步长的非均匀网格上,验证了所构造格式的准确性和稳定性。
{"title":"Operator-difference schemes on non-uniform grids for second-order evolutionary equations","authors":"Petr N. Vabishchevich","doi":"10.1515/rnam-2023-0020","DOIUrl":"https://doi.org/10.1515/rnam-2023-0020","url":null,"abstract":"Abstract The approximate solution of the Cauchy problem for second-order evolution equations is performed, first of all, using three-level time approximations. Such approximations are easily constructed and relatively uncomplicated to investigate when using uniform time grids. When solving applied problems numerically, we should focus on approximations with variable time steps. When using multilevel schemes on non-uniform grids, we should maintain accuracy by choosing appropriate approximations and ensuring stability of the approximate solution. In this paper, we construct unconditionally stable schemes of the first- and second-order accuracy on a non-uniform time grid for the approximate solution of the Cauchy problem for a second-order evolutionary equation. The novelty of the paper consists in the fact that these stability estimates are obtained without any restrictions on the magnitude of the step change and on the number of step changes. We use a special transformation of the original second-order differential-operator equation to a system of first-order equations. For the system of first-order equations, we apply standard two-level time approximations. We obtained stability estimates for the initial data and the right-hand side in finite-dimensional Hilbert space. Eliminating auxiliary variables leads to three-level schemes for the initial second-order evolution equation. Numerical experiments were performed for the test problem for a one-dimensional in space bi-parabolic equation. The accuracy and stability properties of the constructed schemes are demonstrated on non-uniform grids with randomly varying grid steps.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136106961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The group behaviour modelling of workers in the labor market 劳动力市场中工人的群体行为模型
IF 0.6 4区 数学 Q2 Mathematics Pub Date : 2023-08-01 DOI: 10.1515/rnam-2023-0017
A. Shananin, N. Trusov
Abstract We describe the mathematical modelling of the group behaviour of workers in the labor market. The worker receives the salary and seeks to improve his qualifications in order to receive higher wages. The worker enlarges his qualification by the investments in human capital. At a random moment of time, a vacancy appears that provides a jump in the worker’s salary. The mathematical model of the worker’s behaviour in the labor market is presented as an optimal control problem on an infinite time horizon. The paper presents the derivation of the Kolmogorov–Fokker–Planck equation for the Lévy process, which describes the behaviour of a large amount of workers within a social layer. The numerical solution of the Kolmogorov–Fokker–Planck equation and the calculation results are presented.
摘要本文描述了劳动力市场中工人群体行为的数学模型。工人收到工资后,为了获得更高的工资,他寻求提高自己的资格。工人通过人力资本投资来提高自己的素质。在一个随机的时刻,出现了一个空缺,使工人的工资大幅上涨。在劳动力市场中,工人行为的数学模型表现为一个无限时间范围内的最优控制问题。本文提出了lsamvy过程的Kolmogorov-Fokker-Planck方程的推导,该方程描述了社会层内大量工人的行为。给出了Kolmogorov-Fokker-Planck方程的数值解和计算结果。
{"title":"The group behaviour modelling of workers in the labor market","authors":"A. Shananin, N. Trusov","doi":"10.1515/rnam-2023-0017","DOIUrl":"https://doi.org/10.1515/rnam-2023-0017","url":null,"abstract":"Abstract We describe the mathematical modelling of the group behaviour of workers in the labor market. The worker receives the salary and seeks to improve his qualifications in order to receive higher wages. The worker enlarges his qualification by the investments in human capital. At a random moment of time, a vacancy appears that provides a jump in the worker’s salary. The mathematical model of the worker’s behaviour in the labor market is presented as an optimal control problem on an infinite time horizon. The paper presents the derivation of the Kolmogorov–Fokker–Planck equation for the Lévy process, which describes the behaviour of a large amount of workers within a social layer. The numerical solution of the Kolmogorov–Fokker–Planck equation and the calculation results are presented.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46830594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of performance of low-rank nonnegative tensor factorization methods 低秩非负张量分解方法的性能研究
IF 0.6 4区 数学 Q2 Mathematics Pub Date : 2023-08-01 DOI: 10.1515/rnam-2023-0018
E. Shcherbakova, S. Matveev, A. Smirnov, E. Tyrtyshnikov
Abstract In the present paper we compare two different iterative approaches to constructing nonnegative tensor train and Tucker decompositions. The first approach is based on idea of alternating projections and randomized sketching for factorization of tensors with nonnegative elements. This approach can be useful for both TT and Tucker formats. The second approach consists of two stages. At the first stage we find the unconstrained tensor train decomposition for the target array. At the second stage we use this initial approximation in order to fix it within moderate number of operations and obtain the factorization with nonnegative factors either in tensor train or Tucker model. We study the performance of these methods for both synthetic data and hyper-spectral image and demonstrate the clear advantage of the latter technique in terms of computational time and wider range of possible applications.
摘要本文比较了构造非负张量序列和Tucker分解的两种不同的迭代方法。第一种方法是基于交替投影和随机素描的思想来分解非负元素张量。这种方法对TT和Tucker格式都很有用。第二种方法包括两个阶段。在第一阶段,我们找到目标阵列的无约束张量序列分解。在第二阶段,我们使用这个初始近似,以便将其固定在适度的操作次数内,并在张量序列或塔克模型中获得非负因子的分解。我们研究了这些方法在合成数据和高光谱图像上的性能,并证明了后者在计算时间和更广泛的应用范围方面的明显优势。
{"title":"Study of performance of low-rank nonnegative tensor factorization methods","authors":"E. Shcherbakova, S. Matveev, A. Smirnov, E. Tyrtyshnikov","doi":"10.1515/rnam-2023-0018","DOIUrl":"https://doi.org/10.1515/rnam-2023-0018","url":null,"abstract":"Abstract In the present paper we compare two different iterative approaches to constructing nonnegative tensor train and Tucker decompositions. The first approach is based on idea of alternating projections and randomized sketching for factorization of tensors with nonnegative elements. This approach can be useful for both TT and Tucker formats. The second approach consists of two stages. At the first stage we find the unconstrained tensor train decomposition for the target array. At the second stage we use this initial approximation in order to fix it within moderate number of operations and obtain the factorization with nonnegative factors either in tensor train or Tucker model. We study the performance of these methods for both synthetic data and hyper-spectral image and demonstrate the clear advantage of the latter technique in terms of computational time and wider range of possible applications.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46211072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Particle tracking for face-based flux data on general polyhedral grids with applications to groundwater flow modelling 一般多面体网格上基于人脸流量数据的粒子跟踪及其在地下水流动建模中的应用
IF 0.6 4区 数学 Q2 Mathematics Pub Date : 2023-06-01 DOI: 10.1515/rnam-2023-0010
I. Kapyrin
Abstract A particle tracking method based on face fluxes data calculated using finite volume methods is developed for unstructured three-dimensional polyhedral grids. The flow velocity field reconstruction on grid cells using a mixed finite element method is proposed. Cases of sinks and sources in cells as well as different cell partitionings are considered. Algorithms for streamlines and time of flight calculation are provided. Performance and convergence of the method are demonstrated on a set of reference problems.
摘要针对非结构化三维多面体网格,提出了一种基于有限体积法计算的面通量数据的粒子跟踪方法。提出了用混合有限元方法重建网格单元上的流速场。考虑了细胞中汇和源以及不同细胞划分的情况。提供了流线和飞行时间计算的算法。在一组参考问题上证明了该方法的性能和收敛性。
{"title":"Particle tracking for face-based flux data on general polyhedral grids with applications to groundwater flow modelling","authors":"I. Kapyrin","doi":"10.1515/rnam-2023-0010","DOIUrl":"https://doi.org/10.1515/rnam-2023-0010","url":null,"abstract":"Abstract A particle tracking method based on face fluxes data calculated using finite volume methods is developed for unstructured three-dimensional polyhedral grids. The flow velocity field reconstruction on grid cells using a mixed finite element method is proposed. Cases of sinks and sources in cells as well as different cell partitionings are considered. Algorithms for streamlines and time of flight calculation are provided. Performance and convergence of the method are demonstrated on a set of reference problems.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49449819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CarNum: parallel numerical framework for computational cardiac electromechanics CarNum:计算心脏机电学的并行数值框架
IF 0.6 4区 数学 Q2 Mathematics Pub Date : 2023-06-01 DOI: 10.1515/rnam-2023-0011
A. Liogky, A. Chernyshenko, A. Danilov, Fyodor A. Syomin
Abstract A new parallel numerical framework CarNum is presented for efficient coupling of mathematical models in multiphysics problems such as computational cardiac electromechanics. This framework is based on open source projects, which provide the core functionality of the platform. Computational cardiac electromechanics requires a complex pipeline of solving different types of ordinary and partial differential equations. Our framework allows one to implement different numerical schemes and provides more control in multiphysics coupling. This paper outlines a concept of the new platform and details of numerical modelling of cardiac electromechanics. First experiments with well-known cardiac electromechanics benchmarks show good agreement with other groups and decent parallel scalability.
摘要提出了一种新的并行数值框架CarNum,用于计算心脏机电等多物理问题中数学模型的有效耦合。该框架基于开源项目,这些项目提供了平台的核心功能。计算心脏机电学需要一个复杂的管道来求解不同类型的常微分方程和偏微分方程。我们的框架允许实现不同的数值方案,并在多物理耦合中提供更多的控制。本文概述了新平台的概念以及心脏生物力学数值建模的细节。用著名的心脏机电基准进行的首次实验显示,与其他组的实验结果一致,并具有良好的并行可扩展性。
{"title":"CarNum: parallel numerical framework for computational cardiac electromechanics","authors":"A. Liogky, A. Chernyshenko, A. Danilov, Fyodor A. Syomin","doi":"10.1515/rnam-2023-0011","DOIUrl":"https://doi.org/10.1515/rnam-2023-0011","url":null,"abstract":"Abstract A new parallel numerical framework CarNum is presented for efficient coupling of mathematical models in multiphysics problems such as computational cardiac electromechanics. This framework is based on open source projects, which provide the core functionality of the platform. Computational cardiac electromechanics requires a complex pipeline of solving different types of ordinary and partial differential equations. Our framework allows one to implement different numerical schemes and provides more control in multiphysics coupling. This paper outlines a concept of the new platform and details of numerical modelling of cardiac electromechanics. First experiments with well-known cardiac electromechanics benchmarks show good agreement with other groups and decent parallel scalability.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47658149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SIMUG – finite element model of sea ice dynamics on triangular grid in local Cartesian basis SIMUG–基于局部笛卡尔坐标的三角形网格上的海冰动力学有限元模型
IF 0.6 4区 数学 Q2 Mathematics Pub Date : 2023-06-01 DOI: 10.1515/rnam-2023-0012
Sergey S. Petrov, N. Iakovlev
Abstract The paper presents the dynamical core of the new sea ice model SIMUG (Sea Ice Model on Unstructured Grid) on the A- and CD-types of unstructured triangular grids in the local-element basis on sphere. Three standardized box tests to reproduce the Linear Kinematic Features (LKFs), and the short-term forecast in the real Arctic Ocean geometry with the realistic atmosphere and ocean forcing demonstrate the model quality compared to other sea ice models like CICE, FESOM, MITgcm, and ICON-O. The distinctive features of the model presented are a wide choice of transport schemes, and the new numerical implementation with the serial and parallel C++ coding and INMOST, Ani2D, and Ani3D packages to deal with unstructured grids. Code profiling and scalability assessment are carried out. In general, the A-version of the ice drift model works faster, but has fewer degrees of freedom on the same grid. Due to the increase in the degrees of freedom, the model on the CD grid gives ultra-resolution of LKFs, but requires more strict conditions for stability.
提出了基于球面局部元的A型和cd型非结构化三角形网格海冰模型SIMUG (sea ice model on Unstructured Grid)的动力学核心。与CICE、FESOM、MITgcm和ICON-O等其他海冰模式相比,模拟线性运动特征(LKFs)的三个标准化箱试验和具有真实大气和海洋强迫的真实北冰洋几何形状的短期预报证明了模式的质量。该模型的显著特点是具有广泛的传输方案选择,以及采用串行和并行c++编码和INMOST、Ani2D和Ani3D软件包处理非结构化网格的新数值实现。进行了代码分析和可伸缩性评估。一般来说,a版本的冰漂移模型工作得更快,但在同一网格上的自由度更少。由于自由度的增加,CD网格上的模型给出了LKFs的超分辨率,但对稳定性的要求更严格。
{"title":"SIMUG – finite element model of sea ice dynamics on triangular grid in local Cartesian basis","authors":"Sergey S. Petrov, N. Iakovlev","doi":"10.1515/rnam-2023-0012","DOIUrl":"https://doi.org/10.1515/rnam-2023-0012","url":null,"abstract":"Abstract The paper presents the dynamical core of the new sea ice model SIMUG (Sea Ice Model on Unstructured Grid) on the A- and CD-types of unstructured triangular grids in the local-element basis on sphere. Three standardized box tests to reproduce the Linear Kinematic Features (LKFs), and the short-term forecast in the real Arctic Ocean geometry with the realistic atmosphere and ocean forcing demonstrate the model quality compared to other sea ice models like CICE, FESOM, MITgcm, and ICON-O. The distinctive features of the model presented are a wide choice of transport schemes, and the new numerical implementation with the serial and parallel C++ coding and INMOST, Ani2D, and Ani3D packages to deal with unstructured grids. Code profiling and scalability assessment are carried out. In general, the A-version of the ice drift model works faster, but has fewer degrees of freedom on the same grid. Due to the increase in the degrees of freedom, the model on the CD grid gives ultra-resolution of LKFs, but requires more strict conditions for stability.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47707361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Russian Journal of Numerical Analysis and Mathematical Modelling
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1