S. Leshchinskiy, V. N. Zenin, E. M. Burkanova, Y. Kuzmin
Abstract In 2020, a unique bone assemblage was found at the Late Paleolithic site Volchia Griva. Its base is made of a distal mammoth femur minus epiphysis, in which a cavity has been hollowed out. Impact notches along the edges of the cavity and holes in the metaphysis prove the human-made nature of this specimen. A portion of a polar fox cranium, half of a fox hemimandible, a fox tooth, and a large mammal rib fragment were enclosed in the cavity. The mammoth femur was previously used as a retoucher, as evinced by the impressions and cut marks. Incisions were detected on the polar fox cranium, indicating skinning. According to two 14C dates, the age of the remains is 19.3–19.1 ka BP. Palynological analysis of the cavity fill shows a forb-grass steppe at that time. The assemblage, which has no known analogues, is a reflection of prehistoric culture. This extraordinary find most likely is evidence of the ritual behavior of people who lived in the south of Western Siberia during the last glacial maximum. The assemblage was accompanied by a large number of fox remains, and lithic artifacts identical to bladelet-based Late Paleolithic industries of Siberia and the Middle Urals.
2020年,在旧石器时代晚期的Volchia Griva遗址发现了一种独特的骨骼组合。它的基部由一根远端猛犸股骨减去骨骺组成,骨骺中有一个空腔。沿空腔边缘的撞击痕和干骺端上的洞证明了这个标本是人造的。在洞穴中还发现了北极狐头盖骨的一部分、半食性狐狸的一半、一颗狐狸牙齿和一大块哺乳动物的肋骨碎片。猛犸象股骨之前被用作修图工具,这可以从印痕和切割痕迹上看出来。在北极狐头盖骨上发现了切口,表明是剥皮。根据2个14C测年,确定其年龄为19.3 ~ 19.1 ka BP。对空腔填充物的孢粉学分析表明,当时是一个杂草草原。这一组合,没有已知的类似物,是史前文化的反映。这一非凡的发现很可能是最后一次冰川高峰时期居住在西伯利亚西部南部的人们仪式行为的证据。这一组合伴随着大量的狐狸遗骸,以及与西伯利亚和乌拉尔中部旧石器时代晚期以刀片为基础的石器制品。
{"title":"The unique Late Paleolithic artifactual bone assemblage from the Volchia Griva site, Western Siberia","authors":"S. Leshchinskiy, V. N. Zenin, E. M. Burkanova, Y. Kuzmin","doi":"10.1017/qua.2023.4","DOIUrl":"https://doi.org/10.1017/qua.2023.4","url":null,"abstract":"Abstract In 2020, a unique bone assemblage was found at the Late Paleolithic site Volchia Griva. Its base is made of a distal mammoth femur minus epiphysis, in which a cavity has been hollowed out. Impact notches along the edges of the cavity and holes in the metaphysis prove the human-made nature of this specimen. A portion of a polar fox cranium, half of a fox hemimandible, a fox tooth, and a large mammal rib fragment were enclosed in the cavity. The mammoth femur was previously used as a retoucher, as evinced by the impressions and cut marks. Incisions were detected on the polar fox cranium, indicating skinning. According to two 14C dates, the age of the remains is 19.3–19.1 ka BP. Palynological analysis of the cavity fill shows a forb-grass steppe at that time. The assemblage, which has no known analogues, is a reflection of prehistoric culture. This extraordinary find most likely is evidence of the ritual behavior of people who lived in the south of Western Siberia during the last glacial maximum. The assemblage was accompanied by a large number of fox remains, and lithic artifacts identical to bladelet-based Late Paleolithic industries of Siberia and the Middle Urals.","PeriodicalId":49643,"journal":{"name":"Quaternary Research","volume":"114 1","pages":"93 - 113"},"PeriodicalIF":2.3,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48405081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yong Zheng, Haibing Li, J. Pan, Z. Gong, Ping Wang, Ya Lai, Zhongbao Zhao, Fucai Liu
Abstract The rearrangement of drainage basins provides critical insight into crustal deformation and geodynamic mechanisms. Near the southeastern boundary of the Tibetan Plateau, the Dadu River abruptly shifts from south- to east-flowing, providing important implications for regional tectonogeomorphic development since the mid-Pleistocene. South of the bend, the headwaters of the Anning River occupy an unusually wide valley. Field investigations show that large quantities of fluvial/lacustrine sediments are widespread along the Dadu and Anning rivers and are exposed at their drainage divide. Detrital zircon U-Pb age patterns confirm that these fluvial/lacustrine sediments are the remnants of the paleo-Dadu River, which strongly suggests that the paleo-Dadu River originally flowed southward into the Anning River. The cosmogenic nuclide burial ages of the lacustrine sediments along the Dadu and Anning rivers suggest deposition of these sediments from separate dammed lakes ca. 1.2 Ma ago, ca. 0.6 Ma ago, and ca. 0.9 Ma ago from north to south, respectively. Provenance and burial-age studies indicate that reorganization of the Dadu drainage occurred within the last 0.6 Ma. We propose that this drainage reorganization in southeastern Tibet resulted from progressive convergence between the India and Eurasian plates during the Pleistocene.
{"title":"Mid-Pleistocene drainage rearrangement of the Dadu River in response to plate convergence in southeastern Tibet","authors":"Yong Zheng, Haibing Li, J. Pan, Z. Gong, Ping Wang, Ya Lai, Zhongbao Zhao, Fucai Liu","doi":"10.1017/qua.2022.71","DOIUrl":"https://doi.org/10.1017/qua.2022.71","url":null,"abstract":"Abstract The rearrangement of drainage basins provides critical insight into crustal deformation and geodynamic mechanisms. Near the southeastern boundary of the Tibetan Plateau, the Dadu River abruptly shifts from south- to east-flowing, providing important implications for regional tectonogeomorphic development since the mid-Pleistocene. South of the bend, the headwaters of the Anning River occupy an unusually wide valley. Field investigations show that large quantities of fluvial/lacustrine sediments are widespread along the Dadu and Anning rivers and are exposed at their drainage divide. Detrital zircon U-Pb age patterns confirm that these fluvial/lacustrine sediments are the remnants of the paleo-Dadu River, which strongly suggests that the paleo-Dadu River originally flowed southward into the Anning River. The cosmogenic nuclide burial ages of the lacustrine sediments along the Dadu and Anning rivers suggest deposition of these sediments from separate dammed lakes ca. 1.2 Ma ago, ca. 0.6 Ma ago, and ca. 0.9 Ma ago from north to south, respectively. Provenance and burial-age studies indicate that reorganization of the Dadu drainage occurred within the last 0.6 Ma. We propose that this drainage reorganization in southeastern Tibet resulted from progressive convergence between the India and Eurasian plates during the Pleistocene.","PeriodicalId":49643,"journal":{"name":"Quaternary Research","volume":"114 1","pages":"130 - 147"},"PeriodicalIF":2.3,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47352147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xun Yang, F. Becker, Moritz Nykamp, B. Ludwig, M. Doğan, T. Doğan, Daniel Knitter, B. Schütt
Abstract From 300 BC to AD 300, the city of Pergamon underwent a profound transformation that impacted the rural settlement patterns and the concomitant geomorphodynamics. We present a geoarchaeological study in a long-term settled catchment in the Pergamon micro-region to disentangle the Holocene geomorphodynamics and triggering factors, for example, climate change and human activity. The analyses of eight radiocarbon-dated sediment profiles from the Tekkedere alluvial fan and its catchment indicate four principal sedimentation phases. Phase 1 (ca. 6.2 to 5–4 ka) is dominated by the floodplain aggradation of the receiving Bakırçay River, which is followed by the formation of floodplain soils (phase 2). Substantial geomorphodynamic changes occurred around 4 ka (phase 3), when the edge of the floodplain was buried by fan sediments of the tributary Tekkedere creek. This is attributed to supraregional aridization and rapid climate change events, superimposed by the onset of local human activities. Repeated cycles of coarse- and fine-textured fan sediments with age inversions after ca. 3.8 ka and valley infills younger than 1300 yr BP indicate the strong erosion and redeposition of sediments in phase 4. These increased geomorphodynamics may coincide with the changing settlement pattern and thus reflect human–environment interactions.
{"title":"Mid- to Late Holocene geomorphodynamics in a long-term settled mountain catchment in the Pergamon micro-region, western Turkey","authors":"Xun Yang, F. Becker, Moritz Nykamp, B. Ludwig, M. Doğan, T. Doğan, Daniel Knitter, B. Schütt","doi":"10.1017/qua.2022.73","DOIUrl":"https://doi.org/10.1017/qua.2022.73","url":null,"abstract":"Abstract From 300 BC to AD 300, the city of Pergamon underwent a profound transformation that impacted the rural settlement patterns and the concomitant geomorphodynamics. We present a geoarchaeological study in a long-term settled catchment in the Pergamon micro-region to disentangle the Holocene geomorphodynamics and triggering factors, for example, climate change and human activity. The analyses of eight radiocarbon-dated sediment profiles from the Tekkedere alluvial fan and its catchment indicate four principal sedimentation phases. Phase 1 (ca. 6.2 to 5–4 ka) is dominated by the floodplain aggradation of the receiving Bakırçay River, which is followed by the formation of floodplain soils (phase 2). Substantial geomorphodynamic changes occurred around 4 ka (phase 3), when the edge of the floodplain was buried by fan sediments of the tributary Tekkedere creek. This is attributed to supraregional aridization and rapid climate change events, superimposed by the onset of local human activities. Repeated cycles of coarse- and fine-textured fan sediments with age inversions after ca. 3.8 ka and valley infills younger than 1300 yr BP indicate the strong erosion and redeposition of sediments in phase 4. These increased geomorphodynamics may coincide with the changing settlement pattern and thus reflect human–environment interactions.","PeriodicalId":49643,"journal":{"name":"Quaternary Research","volume":"114 1","pages":"69 - 92"},"PeriodicalIF":2.3,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42175399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adam J. Benfield, S. Ivory, B. Hodelka, S. Zimmerman, M. McGlue
Abstract We examine major reorganizations of the terrestrial ecosystem around Mono Lake, California during the last deglacial period from 16,000–9,000 cal yr BP using pollen, microcharcoal, and coprophilous fungal spores (Sporormiella) from a deep-water sediment core. The pollen results record the assemblage, decline, and replacement of a mixed wooded community of Sierran and Great Basin taxa with Alkali Sink and Sagebrush Steppe biomes around Mono Lake. In particular, the enigmatic presence of Sequoiadendron-type pollen and its extirpation during the early Holocene hint at substantial biogeographic reorganizations on the Sierran-Great Basin ecotone during deglaciation. Rapid regional hydroclimate changes produced structural alterations in pine–juniper woodlands facilitated by increases in wildfires at 14,800 cal yr BP, 13,900 cal yr BP, and 12,800 cal yr BP. The rapid canopy changes altered the availability of herbaceous understory plants, likely putting pressure on megafauna populations, which declined in a stepwise fashion at 15,000 cal yr BP and 12,700 cal yr BP before final extirpation from Mono Basin at 11,500 cal yr BP. However, wooded vegetation communities overall remained resistant to abrupt hydroclimate changes during the late Pleistocene; instead, they gradually declined and were replaced by Alkali Sink communities in the lowlands as temperature increased into the Early Holocene, and Mono Lake regressed.
本文利用深海沉积物岩心的花粉、微炭和亲真菌孢子(Sporormiella)研究了16000 - 9000 calyr BP末次冰期加利福尼亚Mono湖周围陆地生态系统的主要重组。花粉研究结果记录了Mono湖周围高山和大盆地混合群落的组成、衰落和被碱池和山艾草草原生物群落取代的过程。特别是全新世早期红杉型花粉的神秘存在及其消失,暗示了冰川消退期间,喜马拉雅—大盆地过渡带发生了大规模的生物地理重组。在14,800 cal yr BP、13,900 cal yr BP和12,800 cal yr BP,快速的区域水文气候变化导致了松柏林地的结构变化。冠层的快速变化改变了草本林下植物的可用性,可能对巨型动物种群造成压力,在15,000 cal - yr BP和12,700 cal - yr BP时,巨型动物种群逐渐减少,最终在11,500 cal - yr BP时从Mono盆地灭绝。然而,在晚更新世期间,树木植被群落总体上对水文气候突变保持抗性;在全新世早期,随着气温的升高,它们逐渐减少,被低地的碱汇群落所取代,Mono湖逐渐退化。
{"title":"Terrestrial ecosystem transformations in response to rapid climate change during the last deglaciation around Mono Lake, California, USA","authors":"Adam J. Benfield, S. Ivory, B. Hodelka, S. Zimmerman, M. McGlue","doi":"10.1017/qua.2022.70","DOIUrl":"https://doi.org/10.1017/qua.2022.70","url":null,"abstract":"Abstract We examine major reorganizations of the terrestrial ecosystem around Mono Lake, California during the last deglacial period from 16,000–9,000 cal yr BP using pollen, microcharcoal, and coprophilous fungal spores (Sporormiella) from a deep-water sediment core. The pollen results record the assemblage, decline, and replacement of a mixed wooded community of Sierran and Great Basin taxa with Alkali Sink and Sagebrush Steppe biomes around Mono Lake. In particular, the enigmatic presence of Sequoiadendron-type pollen and its extirpation during the early Holocene hint at substantial biogeographic reorganizations on the Sierran-Great Basin ecotone during deglaciation. Rapid regional hydroclimate changes produced structural alterations in pine–juniper woodlands facilitated by increases in wildfires at 14,800 cal yr BP, 13,900 cal yr BP, and 12,800 cal yr BP. The rapid canopy changes altered the availability of herbaceous understory plants, likely putting pressure on megafauna populations, which declined in a stepwise fashion at 15,000 cal yr BP and 12,700 cal yr BP before final extirpation from Mono Basin at 11,500 cal yr BP. However, wooded vegetation communities overall remained resistant to abrupt hydroclimate changes during the late Pleistocene; instead, they gradually declined and were replaced by Alkali Sink communities in the lowlands as temperature increased into the Early Holocene, and Mono Lake regressed.","PeriodicalId":49643,"journal":{"name":"Quaternary Research","volume":"113 1","pages":"87 - 104"},"PeriodicalIF":2.3,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47407024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher I. Roos, Nicholas C. Laluk, William T. Reitze, O. Davis
{"title":"Stratigraphic evidence for culturally variable Indigenous fire regimes in ponderosa pine forests of the Mogollon Rim area, east-central Arizona – CORRIGENDUM","authors":"Christopher I. Roos, Nicholas C. Laluk, William T. Reitze, O. Davis","doi":"10.1017/qua.2023.3","DOIUrl":"https://doi.org/10.1017/qua.2023.3","url":null,"abstract":"","PeriodicalId":49643,"journal":{"name":"Quaternary Research","volume":"114 1","pages":"207 - 207"},"PeriodicalIF":2.3,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45603817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charles W. Helm, A. Carr, H. Cawthra, Jan C. de Vynck, M. Dixon, Pieter-Jan Gräbe, Guy H. H. Thesen, J. Venter
Abstract The giant Cape zebra (Equus capensis) is one of the extinct Quaternary large mammal species of southern Africa, and the largest equid from the Quaternary of Africa. Twenty-six Pleistocene equid tracksites have been identified in aeolianites on the Cape south coast of South Africa. An age range of 161 ± 12 ka to 43 ± 4 ka has been established through Optically Stimulated Luminescence. More than half of the sites contain large-equid tracks, representing the first ichnosites attributed to E. capensis. Smaller equid tracks may have been registered by the quagga (E. quagga quagga). The abundance of E. capensis tracksites on the Cape south coast contrasts with the paucity of body fossils of the species from the region, contrasting with the impression obtained from the body fossil record that E. capensis was predominantly a west coast species in the region. The new data illustrate the capacity of the body fossil and trace fossil records to complement each other. The loss of suitable habitat provided by the Palaeo-Agulhas Plain was probably a contributing factor in the extinction of this large-bodied grazer. A long trackway at Driefontein, attributed to E. capensis, adds to a sparse global record of fossil horse trackways.
{"title":"Tracking the extinct giant Cape zebra (Equus capensis) on the Cape south coast of South Africa","authors":"Charles W. Helm, A. Carr, H. Cawthra, Jan C. de Vynck, M. Dixon, Pieter-Jan Gräbe, Guy H. H. Thesen, J. Venter","doi":"10.1017/qua.2023.1","DOIUrl":"https://doi.org/10.1017/qua.2023.1","url":null,"abstract":"Abstract The giant Cape zebra (Equus capensis) is one of the extinct Quaternary large mammal species of southern Africa, and the largest equid from the Quaternary of Africa. Twenty-six Pleistocene equid tracksites have been identified in aeolianites on the Cape south coast of South Africa. An age range of 161 ± 12 ka to 43 ± 4 ka has been established through Optically Stimulated Luminescence. More than half of the sites contain large-equid tracks, representing the first ichnosites attributed to E. capensis. Smaller equid tracks may have been registered by the quagga (E. quagga quagga). The abundance of E. capensis tracksites on the Cape south coast contrasts with the paucity of body fossils of the species from the region, contrasting with the impression obtained from the body fossil record that E. capensis was predominantly a west coast species in the region. The new data illustrate the capacity of the body fossil and trace fossil records to complement each other. The loss of suitable habitat provided by the Palaeo-Agulhas Plain was probably a contributing factor in the extinction of this large-bodied grazer. A long trackway at Driefontein, attributed to E. capensis, adds to a sparse global record of fossil horse trackways.","PeriodicalId":49643,"journal":{"name":"Quaternary Research","volume":"114 1","pages":"178 - 190"},"PeriodicalIF":2.3,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48764517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Lacustrine carbonates in a 12.4-m-long core from Lower Pahranagat Lake (LPAH), southern Nevada, indicate that radiogenic isotopes of Sr and U (87Sr/86Sr and 234U/238U) preserve evidence of past variations in water sources and evolving hydrologic conditions. Sr and U isotope compositions in LPAH carbonates fall within the range defined by the three primary groundwater sources in Pahranagat Valley and reflect variable mixtures of those sources since the mid-Holocene. Compositions in the oldest sample (5.78 ka) closely match modern compositions of modern discharge from nearby springs, indicating that LPAH water was derived almost exclusively from the local volcanic aquifer. By ca. 5.3–5.2 ka, LPAH water compositions shifted sharply towards isotopic compositions observed in groundwater from the regional carbonate aquifer, indicating a marked increase in surface flow from high-volume springs discharging from the carbonate aquifer to the north. Sediments deposited between 3.08–1.06 ka indicate reduced contributions from the regional aquifer. A comparison of uranium- and oxygen-isotope values in LPAH carbonates suggests that wetter climate conditions favor increased supply from deeper, regional carbonate aquifers compared to drier conditions when contributions from shallower, local volcanic aquifers were more important.
{"title":"Climate-driven mid- to late Holocene hydrologic evolution of arid wetlands documented by strontium, uranium, and oxygen isotopes from Lower Pahranagat Lake, southern Nevada, USA","authors":"K. Theissen, J. Paces","doi":"10.1017/qua.2022.72","DOIUrl":"https://doi.org/10.1017/qua.2022.72","url":null,"abstract":"Abstract Lacustrine carbonates in a 12.4-m-long core from Lower Pahranagat Lake (LPAH), southern Nevada, indicate that radiogenic isotopes of Sr and U (87Sr/86Sr and 234U/238U) preserve evidence of past variations in water sources and evolving hydrologic conditions. Sr and U isotope compositions in LPAH carbonates fall within the range defined by the three primary groundwater sources in Pahranagat Valley and reflect variable mixtures of those sources since the mid-Holocene. Compositions in the oldest sample (5.78 ka) closely match modern compositions of modern discharge from nearby springs, indicating that LPAH water was derived almost exclusively from the local volcanic aquifer. By ca. 5.3–5.2 ka, LPAH water compositions shifted sharply towards isotopic compositions observed in groundwater from the regional carbonate aquifer, indicating a marked increase in surface flow from high-volume springs discharging from the carbonate aquifer to the north. Sediments deposited between 3.08–1.06 ka indicate reduced contributions from the regional aquifer. A comparison of uranium- and oxygen-isotope values in LPAH carbonates suggests that wetter climate conditions favor increased supply from deeper, regional carbonate aquifers compared to drier conditions when contributions from shallower, local volcanic aquifers were more important.","PeriodicalId":49643,"journal":{"name":"Quaternary Research","volume":"113 1","pages":"52 - 68"},"PeriodicalIF":2.3,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44453384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Baldauf, G. Baker, Maraina Miles, Patrick A. Burkhart, A. Gontz, Madelyn Rinka, M. Levenson
Abstract The White River Badlands (WRB) of South Dakota record eolian activity spanning the late Pleistocene through the latest Holocene (21 ka to modern), reflecting the effects of the last glacial period and Holocene climate fluctuations (Holocene Thermal Maximum, Medieval Climate Anomaly, and Little Ice Age). The WRB dune fields are important paleoclimate indicators in an area of the Great Plains with few climate proxies. The goal of this study is to use 1 m/pixel-resolution digital elevation models from drone imagery to distinguish Early to Middle Holocene parabolic dunes from Late Holocene parabolic dunes. Results indicate that relative ages of dunes are distinguished by slope and roughness (terrain ruggedness index). Morphological differences are attributed to postdepositional wind erosion, soil formation, and mass wasting. Early to Middle Holocene and Late Holocene paleowind directions, 324°± 13.1° (N = 7) and 323° ± 3.0° (N = 19), respectively, are similar to the modern wind regime. Results suggest significant landscape resilience to wind erosion, which resulted in preservation of a mosaic of Early and Late Holocene parabolic dunes. Quantification of dune characteristics will help refine the chronology of eolian activity in the WRB, provide insight into drought-driven landscape evolution, and integrate WRB eolian activity in a regional paleoenvironmental context.
摘要南达科他州的White River Badlands(WRB)记录了从更新世晚期到最近的全新世(21 ka到现代)的风活动,反映了最后一次冰川期和全新世气候波动(全新世热盛期、中世纪气候异常和小冰期)的影响。WRB沙丘区是大平原一个气候指标很少的地区的重要古气候指标。本研究的目标是使用无人机图像中的1米/像素分辨率数字高程模型来区分全新世早期至中期的抛物线沙丘和全新世晚期的抛物线沙丘。结果表明,沙丘的相对年龄以坡度和粗糙度(地形粗糙度指数)来区分。形态差异归因于沉积后的风蚀、土壤形成和物质浪费。全新世早期至中期和全新世晚期的古风向分别为324°±13.1°(N=7)和323°±3.0°(N=19),与现代风况相似。结果表明,景观对风蚀具有显著的恢复力,从而保存了全新世早期和晚期抛物线沙丘的马赛克。沙丘特征的量化将有助于完善WRB中风成活动的年表,深入了解干旱驱动的景观演变,并将WRB风成活动整合到区域古环境背景中。
{"title":"Holocene evolution of parabolic dunes, White River Badlands, South Dakota, USA, revealed by high-resolution mapping","authors":"P. Baldauf, G. Baker, Maraina Miles, Patrick A. Burkhart, A. Gontz, Madelyn Rinka, M. Levenson","doi":"10.1017/qua.2022.69","DOIUrl":"https://doi.org/10.1017/qua.2022.69","url":null,"abstract":"Abstract The White River Badlands (WRB) of South Dakota record eolian activity spanning the late Pleistocene through the latest Holocene (21 ka to modern), reflecting the effects of the last glacial period and Holocene climate fluctuations (Holocene Thermal Maximum, Medieval Climate Anomaly, and Little Ice Age). The WRB dune fields are important paleoclimate indicators in an area of the Great Plains with few climate proxies. The goal of this study is to use 1 m/pixel-resolution digital elevation models from drone imagery to distinguish Early to Middle Holocene parabolic dunes from Late Holocene parabolic dunes. Results indicate that relative ages of dunes are distinguished by slope and roughness (terrain ruggedness index). Morphological differences are attributed to postdepositional wind erosion, soil formation, and mass wasting. Early to Middle Holocene and Late Holocene paleowind directions, 324°± 13.1° (N = 7) and 323° ± 3.0° (N = 19), respectively, are similar to the modern wind regime. Results suggest significant landscape resilience to wind erosion, which resulted in preservation of a mosaic of Early and Late Holocene parabolic dunes. Quantification of dune characteristics will help refine the chronology of eolian activity in the WRB, provide insight into drought-driven landscape evolution, and integrate WRB eolian activity in a regional paleoenvironmental context.","PeriodicalId":49643,"journal":{"name":"Quaternary Research","volume":"115 1","pages":"46 - 57"},"PeriodicalIF":2.3,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48491158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Turu, J. L. Peña‐Monné, P. P. Cunha, G. Jalut, J. Buylaert, A. Murray, D. Bridgland, Mads Faurschou-Knudsen, M. Oliva, R. M. Carrasco, X. Ros, Laia Turu-Font, Josep Ventura Roca
Abstract This study uses luminescence and 14C accelerator mass spectrometry procedures to date relevant glaciofluvial and glacial deposits from the south-central and southeastern Pyrenees (Andorra–France–Spain). We distinguish two types of end-moraine complexes: (1) those in which at least a far-flung moraine exists beyond a frequently nested end-moraine complex (the most common) and (2) those in which a close-nested end moraine encompasses at least two glacial cycles. Both types formed within six distinctive glacial intervals: (1) A penultimate glacial cycle during Marine Oxygen Isotope Stage (MIS) 6 and older glaciofluvial terraces occurred beyond the range of the luminescence dating method. (2) An early glacial advance in MIS 5d (~97 −15/+19 ka) was followed by glacial retreat during MIS 5c (< 91 ± 9 ka). (3) The last maximum ice extent (LMIE) was in early MIS 4 (~74 ± 4.5 ka). (4) Unexpectedly, glaciers thinned during the second half of MIS 3 (~39 −6/+11 ka). (5) During the MIS 3–2 transition, glaciers subsequently fluctuated behind the LMIE limits. (6) The global last glacial maximum (LGM) started as early as ~26.6 ± 0.365 ka b2k, and the corresponding end moraines were built behind the LMIE limits or merged with it, forming close-nested moraines.
{"title":"Glacial–interglacial cycles in the south-central and southeastern Pyrenees since ~180 ka (NE Spain–Andorra–S France)","authors":"V. Turu, J. L. Peña‐Monné, P. P. Cunha, G. Jalut, J. Buylaert, A. Murray, D. Bridgland, Mads Faurschou-Knudsen, M. Oliva, R. M. Carrasco, X. Ros, Laia Turu-Font, Josep Ventura Roca","doi":"10.1017/qua.2022.68","DOIUrl":"https://doi.org/10.1017/qua.2022.68","url":null,"abstract":"Abstract This study uses luminescence and 14C accelerator mass spectrometry procedures to date relevant glaciofluvial and glacial deposits from the south-central and southeastern Pyrenees (Andorra–France–Spain). We distinguish two types of end-moraine complexes: (1) those in which at least a far-flung moraine exists beyond a frequently nested end-moraine complex (the most common) and (2) those in which a close-nested end moraine encompasses at least two glacial cycles. Both types formed within six distinctive glacial intervals: (1) A penultimate glacial cycle during Marine Oxygen Isotope Stage (MIS) 6 and older glaciofluvial terraces occurred beyond the range of the luminescence dating method. (2) An early glacial advance in MIS 5d (~97 −15/+19 ka) was followed by glacial retreat during MIS 5c (< 91 ± 9 ka). (3) The last maximum ice extent (LMIE) was in early MIS 4 (~74 ± 4.5 ka). (4) Unexpectedly, glaciers thinned during the second half of MIS 3 (~39 −6/+11 ka). (5) During the MIS 3–2 transition, glaciers subsequently fluctuated behind the LMIE limits. (6) The global last glacial maximum (LGM) started as early as ~26.6 ± 0.365 ka b2k, and the corresponding end moraines were built behind the LMIE limits or merged with it, forming close-nested moraines.","PeriodicalId":49643,"journal":{"name":"Quaternary Research","volume":"113 1","pages":"1 - 28"},"PeriodicalIF":2.3,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48321389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}