Loess paleoenvironmental reconstructions on regional to supra-regional scales have recently gained much attention. Geochemistry comparisons in relation to reference datasets, such as the Upper Continental Crust (UCC) data, have furthered our understanding of the climatic and geomorphological conditions under which terrestrial sites have developed. However, UCC data differs from loess, thereby obscuring important features, and the existing “average loess” datasets also are not sufficient for modern investigations.
In this study, we examine the youngest Polish loess (L1LL1 = MIS 2, ca. 26–15 ka) for its suitability as a new, loess-focused reference dataset. Eighty-nine samples from seven sites were analyzed, using inductively coupled plasma spectrometry. The loess had assumedly been homogenized during transportation and/or sedimentary recycling (LaN/SmN = 3.34–4.06, median 3.78; Eu/Eu* = 0.46–0.66, median 0.55; GdN/YbN = 1.08–1.49, median 1.26), and weakly affected by pre- or post-depositional weathering (CIA = 53.64–69.12, median 57.69). The statistically significant differences between sites in elemental medians were mostly conditioned by variations in grain size and in the “fresh” to “re-deposited” sediment ratio. Nonetheless, the overall geochemical composition homogeneity provided a basis for the estimation of Polish Median Loess (PML) data, as determined for 41 chemical elements. When used, PML data highlight differences between loess regions in Europe, thereby providing a tool for cross-continental comparisons.
We examined a Late Holocene sea-level stillstand using phreatic overgrowths on speleothems (POS) recovered from Medvjeđa Špilja [Bear Cave] (northern Adriatic Sea) from −1.28 ± 0.15 m below present mean sea level. Different mineralogical analyses were performed to characterize the POS and better understand the mechanisms of their formation. Results reveal that the fibrous overgrowth is formed of calcite and that both the supporting soda straw and the overgrowth have very similar trace element compositions. This suggests that the drip-water and groundwater pool from which the POS formed have similar chemical compositions. Four subsamples were dated by means of uranium-series. We found that ca. 2800 years ago, the relative sea level was stable for about 300 years at a depth of approximately −1.28 ± 0.15 m below the current mean sea level. This finding roughly corresponds with the end of a relatively stable sea-level period, between 3250 and 2800 cal yr BP, previously noted in the southern Adriatic. Our research confirms the presence of POS in the Adriatic region and establishes the Medvjeđa Špilja pool as a conducive environment for calcite POS formation, which encourages further investigations at this study site.
The structure and origin of the Pleistocene (Marine Isotope Stage [MIS] 5) coastal Barrier III in southern Brazil were investigated through analysis of lithofacies, numerical ages, and ground-penetrating radar (GPR) data obtained in outcrops and subsurface deposits. The stratigraphic succession is characteristic of transgressive barriers, with muddy lagoon bottom facies unconformably overlying an older unit (Barrier II) and overlain by landward-dipping lagoon margin and aeolian facies. The back-barrier lagoon was filled with sediments and shells transferred from the foreshore through overwash and/or inlets during the MIS 5e transgressive-high-stand phase, with a higher sea level that reached about +6 to +7 m relative to the present. Marine sediments and shells on the seaward side of the barrier dated to ~100–106 ka indicate another high stand at +4 to +5.1 m during MIS 5c. One shell dated to ~87 ka and aeolian deposits dated to ~82 and ~85 ka suggest a third high stand during MIS 5a that reached at least −2 m relative to the present. The two (possibly three) juxtaposed marine deposits show that Barrier III is a more complex unit than previously recognized, built by successive orbitally forced eustatic sea-level oscillations also recorded in other deposits along the Brazilian coast and worldwide.
Past studies have demonstrated that Ruppia cirrhosa (Ruppia), which typically grows in brackish water, is far too unreliable to serve as the chronological basis for radiocarbon dating because of the hard water effect (HWE). Despite this unreliability, Ruppia seeds have been used to date footprints along the margins of paleo-Lake Otero in southern New Mexico to around 23,000–21,000 cal yr BP. In this study, we employ a modern analog approach using δ13C values and radiocarbon dates from modern Ruppia plants growing in Salt Creek to calculate a maximum limiting age range for the footprints. Those plant samples with higher δ13C values produced greater age discrepancies. This simple relationship can be used to correct for the HWE and demonstrates that the human footprints purported to have been made during the local last glacial maximum could be at least ~7500 yr younger.
Prehistoric and historic iron metallurgy in the Holy Cross Mountains in central Poland developed along with human Przeworsk Culture activity (during the Roman period) and within the boundaries of the Old-Polish Industrial District (OPID) during the Middle Ages and during recent centuries. At the Świślina catchment, there are many archaeological sites showing intense prehistoric metallurgical activity. The later medieval and modern iron industry was significantly smaller. At the Doły Biskupie site, slags and microscopic iron spherules (hammerscales) were found in alluvia. The microscopic spherules separation method (MSS) enabled analysis of these small artefacts created during iron ore smelting and forging. Iron spherules were detected in floodplain sediments, which are characterized by increased content of trace elements. The presence of these artefacts in shallow sediment layers in the confluence section of the river may be an indicator of archaeologically confirmed prehistoric metallurgical activity in the catchment area. Study of these residues enabled an attempt to reconstruct the river valley environment during the prehistoric and historical period. The MSS method can be used to detect iron spherules in alluvia in other river catchments, confirming the presence of yet-undiscovered bloomery sites.
Connecting changes in erosion and vegetation is necessary for predicting topographic and ecologic change in thawing permafrost landscapes. Formerly periglacial landscapes serve as potential analogs for understanding modern permafrost landscape change, yet compared to paleoenvironmental records at these sites, less is known about concurrent geomorphic processes, particularly their rates and relationships to climate change. Here, we target sediments preserved in a central Appalachian peat bog to reconstruct sedimentation across the last deglacial warming. We use ground-penetrating radar and geochemistry of cored bog sediments to quantify sedimentation timing, style, and provenance. Using 14C dating of sedimentary and geochemical shifts, we connect depositional changes to global climate and local vegetation change. We show that deglacial warming promoted deep soil disturbances via solifluction at ca. 14 ka. In contrast, relatively wetter conditions from ca. 10–9 ka promoted shallow disturbance of hillslopes via slopewash, which corresponds to a time of vegetation change. Our results highlight climate-modulated erosion depth and processes in periglacial and post-periglacial landscapes. The existence of similar erosion and vegetation records preserved regionally implies these dynamics were pervasive across unglaciated Appalachian highlands, aiding in reconstructing erosion responses to warming at a resolution with implications for predicting high-latitude landscape responses to disturbance.
Large stratovolcanoes in the Cascade Range have high equilibrium-line altitudes that support glaciers whose Holocene and latest Pleistocene advances are amenable to dating. Glacier advances produced datable stratigraphic sequences in lateral moraines, which complement dating of end moraines. New mapping of glacial deposits on Mount Rainier using LIDAR and field observations supports a single latest Pleistocene or early Holocene advance. Rainier R tephra overlies deposits from this advance and could be as old as >11.6 ka; the advance could be of Younger Dryas age. Radiocarbon ages on wood interbedded between tills in the lateral moraines of Nisqually, Carbon, and Emmons glaciers and the South Tahoma glacier forefield suggest glacier advances between 200 and 550 CE, correlative with the First Millennium Advance in western Canada, and during the Little Ice Age (LIA) beginning as early as 1300 CE.
These results resolve previous contradictory interpretations of Mount Rainier's glacial history and indicate that the original proposal of a single pre-Neoglacial cirque advance is correct, in contrast to a later interpretation of two advances of pre- and post-Younger Dryas age, respectively. Meanwhile, the occurrence of the pre-LIA Burroughs Mountain Advance, interpreted in previous work as occurring 3–2.5 ka, is questionable based on inherently ambiguous interpretations of tephra distribution.

