Pub Date : 2021-11-01DOI: 10.14358/pers.21-00009r2
Binbin Li, Huan Xie, Shijie Liu, X. Tong, Hong Tang, Xu Wang
Due to its high ranging accuracy, spaceborne laser altimetry technology can improve the accuracy of satellite stereo mapping without ground control points. In the past, full-waveform ICE, CLOUD, and Land Elevation Satellite (ICESat) laser altimeter data have been used as one of the main data sources for global elevation control. As a second-generation satellite, ICESat-2 is equipped with an altimeter using photon counting mode. This can further improve the application capability for stereo mapping because of the six laser beams with high along-track repetition frequency, which can provide more detailed ground contour descriptions. Previous studies have addressed how to extract high-accuracy elevation control points from ICESat data. However, these methods cannot be directly applied to ICESat-2 data because of the different modes of the laser altimeters. Therefore, in this paper, we propose a method using comprehensive evaluation labels that can extract high-accuracy elevation control points that meet the different level elevation accuracy requirements for large scale mapping from the ICESat-2 land-vegetation along-track product. The method was verified using two airborne lidar data sets. In flat, hilly, and mountainous areas, by using our method to extract the terrain elevation, the root-mean-square error of elevation control points decrease from 1.249–2.094 m, 2.237–3.225 m, and 2.791–4.822 m to 0.262–0.429 m, 0.484–0.596 m, and 0.611–1.003 m, respectively. The results show that the extraction elevations meet the required accuracy for large scale mapping.
{"title":"A Method of Extracting High-Accuracy Elevation Control Points from ICESat-2 Altimetry Data","authors":"Binbin Li, Huan Xie, Shijie Liu, X. Tong, Hong Tang, Xu Wang","doi":"10.14358/pers.21-00009r2","DOIUrl":"https://doi.org/10.14358/pers.21-00009r2","url":null,"abstract":"Due to its high ranging accuracy, spaceborne laser altimetry technology can improve the accuracy of satellite stereo mapping without ground control points. In the past, full-waveform ICE, CLOUD, and Land Elevation Satellite (ICESat) laser altimeter data have been\u0000 used as one of the main data sources for global elevation control. As a second-generation satellite, ICESat-2 is equipped with an altimeter using photon counting mode. This can further improve the application capability for stereo mapping because of the six laser beams with high along-track\u0000 repetition frequency, which can provide more detailed ground contour descriptions. Previous studies have addressed how to extract high-accuracy elevation control points from ICESat data. However, these methods cannot be directly applied to ICESat-2 data because of the different\u0000 modes of the laser altimeters. Therefore, in this paper, we propose a method using comprehensive evaluation labels that can extract high-accuracy elevation control points that meet the different level elevation accuracy requirements for large scale mapping from the ICESat-2 land-vegetation\u0000 along-track product. The method was verified using two airborne lidar data sets. In flat, hilly, and mountainous areas, by using our method to extract the terrain elevation, the root-mean-square error of elevation control points decrease from 1.249–2.094 m, 2.237–3.225 m, and 2.791–4.822\u0000 m to 0.262–0.429 m, 0.484–0.596 m, and 0.611–1.003 m, respectively. The results show that the extraction elevations meet the required accuracy for large scale mapping.","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":"20 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91078709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Grids and Datums Update: This month we look at the Commonwealth of Australia","authors":"C. Mugnier","doi":"10.14358/pers.87.11.795","DOIUrl":"https://doi.org/10.14358/pers.87.11.795","url":null,"abstract":"","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":"30 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78025616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-01DOI: 10.14358/pers.21-00013r2
Forrest Corcoran, Christopher E. Parrish
This study investigates a new method for measuring water turbidity—specifically, the diffuse attenuation coefficient of downwelling irradiance Kd —using data from a spaceborne, green-wavelength lidar aboard the National Aeronautics and Space Administration's ICESat-2 satellite. The method enables us to fill nearshore data voids in existing Kd data sets and provides a more direct measurement approach than methods based on passive multispectral satellite imagery. Furthermore, in contrast to other lidar-based methods, it does not rely on extensive signal processing or the availability of the system impulse response function, and it is designed to be applied globally rather than at a specific geographic location. The model was tested using Kd measurements from the National Oceanic and Atmospheric Administration's Visible Infrared Imaging Radiometer Suite sensor at 94 coastal sites spanning the globe, with Kd values ranging from 0.05 to 3.6 m –1 . The results demonstrate the efficacy of the approach and serve as a benchmark for future machine-learning regression studies of turbidity using ICESat-2.
本研究利用美国国家航空航天局ICESat-2卫星上的绿波长激光雷达的数据,研究了一种测量水浊度的新方法,具体来说,就是测量下坡辐照度的扩散衰减系数Kd。该方法使我们能够填补现有Kd数据集的近岸数据空白,并提供比基于被动多光谱卫星图像的方法更直接的测量方法。此外,与其他基于激光雷达的方法相比,它不依赖于广泛的信号处理或系统脉冲响应函数的可用性,它被设计用于全球而不是特定的地理位置。该模型使用美国国家海洋和大气管理局可见光红外成像辐射计套件传感器在全球94个沿海地点测量的Kd值进行了测试,Kd值范围为0.05至3.6 m -1。结果证明了该方法的有效性,并可作为未来使用ICESat-2进行浊度机器学习回归研究的基准。
{"title":"Diffuse Attenuation Coefficient (Kd) from ICESat-2 ATLAS Spaceborne Lidar Using Random-Forest Regression","authors":"Forrest Corcoran, Christopher E. Parrish","doi":"10.14358/pers.21-00013r2","DOIUrl":"https://doi.org/10.14358/pers.21-00013r2","url":null,"abstract":"This study investigates a new method for measuring water turbidity—specifically, the diffuse attenuation coefficient of downwelling irradiance Kd —using data from a spaceborne, green-wavelength lidar aboard the National Aeronautics and Space Administration's ICESat-2\u0000 satellite. The method enables us to fill nearshore data voids in existing Kd data sets and provides a more direct measurement approach than methods based on passive multispectral satellite imagery. Furthermore, in contrast to other lidar-based methods, it does not rely on extensive signal\u0000 processing or the availability of the system impulse response function, and it is designed to be applied globally rather than at a specific geographic location. The model was tested using Kd measurements from the National Oceanic and Atmospheric Administration's Visible Infrared Imaging Radiometer\u0000 Suite sensor at 94 coastal sites spanning the globe, with Kd values ranging from 0.05 to 3.6 m –1 . The results demonstrate the efficacy of the approach and serve as a benchmark for future machine-learning regression studies of turbidity using ICESat-2.","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":"294 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79607085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Building a Comprehensive Digital Toolkit for Aerial Acquisition","authors":"David Beattie, Tracy Ray","doi":"10.14358/pers.87.11.785","DOIUrl":"https://doi.org/10.14358/pers.87.11.785","url":null,"abstract":"","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":"149 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89229184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-01DOI: 10.14358/pers.20-00071r3
S. Boukir, L. Guo, N. Chehata
In this article, margin theory is exploited to design better ensemble classifiers for remote sensing data. A semi-supervised version of the ensemble margin is at the core of this work. Some major challenges in ensemble learning are investigated using this paradigm in the difficult context of land cover classification: selecting the most informative instances to form an appropriate training set, and selecting the best ensemble members. The main contribution of this work lies in the explicit use of the ensemble margin as a decision method to select training data and base classifiers in an ensemble learning framework. The selection of training data is achieved through an innovative iterative guided bagging algorithm exploiting low-margin instances. The overall classification accuracy is improved by up to 3%, with more dramatic improvement in per-class accuracy (up to 12%). The selection of ensemble base classifiers is achieved by an ordering-based ensemble-selection algorithm relying on an original margin-based criterion that also targets low-margin instances. This method reduces the complexity (ensemble size under 30) but maintains performance.
{"title":"Improving Remote Sensing Multiple Classification by Data and Ensemble Selection","authors":"S. Boukir, L. Guo, N. Chehata","doi":"10.14358/pers.20-00071r3","DOIUrl":"https://doi.org/10.14358/pers.20-00071r3","url":null,"abstract":"In this article, margin theory is exploited to design better ensemble classifiers for remote sensing data. A semi-supervised version of the ensemble margin is at the core of this work. Some major challenges in ensemble learning are investigated using this paradigm in the difficult context\u0000 of land cover classification: selecting the most informative instances to form an appropriate training set, and selecting the best ensemble members. The main contribution of this work lies in the explicit use of the ensemble margin as a decision method to select training data and base classifiers\u0000 in an ensemble learning framework. The selection of training data is achieved through an innovative iterative guided bagging algorithm exploiting low-margin instances. The overall classification accuracy is improved by up to 3%, with more dramatic improvement in per-class accuracy (up to 12%).\u0000 The selection of ensemble base classifiers is achieved by an ordering-based ensemble-selection algorithm relying on an original margin-based criterion that also targets low-margin instances. This method reduces the complexity (ensemble size under 30) but maintains performance.","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":"132 5 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79618006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-11-01DOI: 10.14358/pers.21-00020r3
H. Shankar, A. Roy, P. Chauhan
The continuous monitoring of land surface movement over time is of paramount importance for assessing landslide triggering factors and mitigating landslide hazards. This research focuses on measuring horizontal and vertical surface displacement due to a devastating landslide event in the west-facing slope of the Rajamala Hills, induced by intense rainfall. The landslide occurred in Pettimudi, a tea-plantation village of the Idukki district in Kerala, India, on August 6–7, 2020. The persistent-scatterer synthetic aperture radar interferometry (PSInSAR ) technique, along with the Stanford Method for Persistent Scatterers (StaMPS), was applied to investigate the land surface movement over time. A stack of 20 Sentinel-1A single-look complex images (19 interferograms) acquired in descending passes was used for PSInSAR processing. The line-of-sight (LOS ) displacement in long time series, and hence the average LOS velocity, was measured at each measurement-point location. The mean LOS velocity was decomposed into horizontal east–west (EW ) and vertical up–down velocity components. The results show that the mean LOS, EW, and up–down velocities in the study area, respectively, range from –18.76 to +11.88, –10.95 to +6.93, and –15.05 to +9.53 mm/y, and the LOS displacement ranges from –19.60 to +19.59 mm. The displacement values clearly indicate the instability of the terrain. The time-series LOS displacement trends derived from the applied PSInSAR technique are very useful for providing valuable inputs for disaster management and the development of disaster early-warning systems for the benefit of local residents.
{"title":"Persistent Scatterer Interferometry for Pettimudi (India) Landslide Monitoring using Sentinel-1A Images","authors":"H. Shankar, A. Roy, P. Chauhan","doi":"10.14358/pers.21-00020r3","DOIUrl":"https://doi.org/10.14358/pers.21-00020r3","url":null,"abstract":"The continuous monitoring of land surface movement over time is of paramount importance for assessing landslide triggering factors and mitigating landslide hazards. This research focuses on measuring horizontal and vertical surface displacement due to a devastating landslide event in\u0000 the west-facing slope of the Rajamala Hills, induced by intense rainfall. The landslide occurred in Pettimudi, a tea-plantation village of the Idukki district in Kerala, India, on August 6–7, 2020. The persistent-scatterer synthetic aperture radar interferometry (PSInSAR ) technique,\u0000 along with the Stanford Method for Persistent Scatterers (StaMPS), was applied to investigate the land surface movement over time. A stack of 20 Sentinel-1A single-look complex images (19 interferograms) acquired in descending passes was used for PSInSAR processing. The line-of-sight (LOS\u0000 ) displacement in long time series, and hence the average LOS velocity, was measured at each measurement-point location. The mean LOS velocity was decomposed into horizontal east–west (EW ) and vertical up–down velocity components. The results show that the mean LOS, EW, and up–down\u0000 velocities in the study area, respectively, range from –18.76 to +11.88, –10.95 to +6.93, and –15.05 to +9.53 mm/y, and the LOS displacement ranges from –19.60 to +19.59 mm. The displacement values clearly indicate the instability of the terrain. The time-series LOS\u0000 displacement trends derived from the applied PSInSAR technique are very useful for providing valuable inputs for disaster management and the development of disaster early-warning systems for the benefit of local residents.","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":"39 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75151251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-01DOI: 10.14358/pers.20-00091r2
Saket Gowravaram, Haiyang Chao, A. Molthan, Tiebiao Zhao, Pengzhi Tian, H. Flanagan, L. Schultz, J. Bell
This paper introduces a satellite-based cross-calibration (SCC) method for spectral reflectance estimation of unmanned aircraft system (UAS) multispectral imagery. The SCC method provides a low-cost and feasible solution to convert high-resolution UAS images in digital numbers (DN) to reflectance when satellite data is available. The proposed method is evaluated using a multispectral data set, including orthorectified KHawk UAS DN imagery and Landsat 8 Operational Land Imager Level-2 surface reflectance (SR) data over a forest/grassland area. The estimated UAS reflectance images are compared with the National Ecological Observatory Network's imaging spectrometer (NIS) SR data for validation. The UAS reflectance showed high similarities with the NIS data for the near-infrared and red bands with Pearson's r values being 97 and 95.74, and root-mean-square errors being 0.0239 and 0.0096 over a 32-subplot hayfield.
{"title":"Spectral Reflectance Estimation of UAS Multispectral Imagery Using Satellite Cross-Calibration Method","authors":"Saket Gowravaram, Haiyang Chao, A. Molthan, Tiebiao Zhao, Pengzhi Tian, H. Flanagan, L. Schultz, J. Bell","doi":"10.14358/pers.20-00091r2","DOIUrl":"https://doi.org/10.14358/pers.20-00091r2","url":null,"abstract":"This paper introduces a satellite-based cross-calibration (SCC) method for spectral reflectance estimation of unmanned aircraft system (UAS) multispectral imagery. The SCC method provides a low-cost and feasible solution to convert high-resolution UAS images in digital numbers (DN)\u0000 to reflectance when satellite data is available. The proposed method is evaluated using a multispectral data set, including orthorectified KHawk UAS DN imagery and Landsat 8 Operational Land Imager Level-2 surface reflectance (SR) data over a forest/grassland area. The estimated UAS reflectance\u0000 images are compared with the National Ecological Observatory Network's imaging spectrometer (NIS) SR data for validation. The UAS reflectance showed high similarities with the NIS data for the near-infrared and red bands with Pearson's r values being 97 and 95.74, and root-mean-square errors\u0000 being 0.0239 and 0.0096 over a 32-subplot hayfield.","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":"44 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82549975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-01DOI: 10.14358/pers.21-00007r2
M. Khoshboresh-Masouleh, R. Shah-Hosseini
This study focuses on tackling the challenge of building mapping in multi-modal remote sensing data by proposing a novel, deep superpixel-wise convolutional neural network called DeepQuantized-Net, plus a new red, green, blue (RGB)-depth data set named IND. DeepQuantized-Net incorporated two practical ideas in segmentation: first, improving the object pattern with the exploitation of superpixels instead of pixels, as the imaging unit in DeepQuantized-Net. Second, the reduction of computational cost. The generated data set includes 294 RGB-depth images (256 training images and 38 test images) from different locations in the state of Indiana in the U.S., with 1024 × 1024 pixels and a spatial resolution of 0.5 ftthat covers different cities. The experimental results using the IND data set demonstrates the mean F1 scores and the average Intersection over Union scores could increase by approximately 7.0% and 7.2% compared to other methods, respectively.
{"title":"A Deep Multi-Modal Learning Method and a New RGB-Depth Data Set for Building Roof Extraction","authors":"M. Khoshboresh-Masouleh, R. Shah-Hosseini","doi":"10.14358/pers.21-00007r2","DOIUrl":"https://doi.org/10.14358/pers.21-00007r2","url":null,"abstract":"This study focuses on tackling the challenge of building mapping in multi-modal remote sensing data by proposing a novel, deep superpixel-wise convolutional neural network called DeepQuantized-Net, plus a new red, green, blue (RGB)-depth data set named IND. DeepQuantized-Net\u0000 incorporated two practical ideas in segmentation: first, improving the object pattern with the exploitation of superpixels instead of pixels, as the imaging unit in DeepQuantized-Net. Second, the reduction of computational cost. The generated data set includes 294 RGB-depth images (256\u0000 training images and 38 test images) from different locations in the state of Indiana in the U.S., with 1024 × 1024 pixels and a spatial resolution of 0.5 ftthat covers different cities. The experimental results using the IND data set demonstrates the mean F1 scores and the average\u0000 Intersection over Union scores could increase by approximately 7.0% and 7.2% compared to other methods, respectively.","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":"19 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75107963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-10-01DOI: 10.14358/pers.21-00003r2
T. Sakamoto
An early crop classification method is functionally required in a near-real-time crop-yield prediction system, especially for upland crops. This study proposes methods to estimate the mixed-pixel ratio of corn, soybean, and other classes within a low-resolution MODIS pixel by coupling MODIS-derived crop phenology information and the past Cropland Data Layer in a random-forest regression algorithm. Verification of the classification accuracy was conducted for the Midwestern United States. The following conclusions are drawn: The use of the random-forest algorithm is effective in estimating the mixed-pixel ratio, which leads to stable classification accuracy; the fusion of historical data and MODIS-derived crop phenology information provides much better crop classification accuracy than when these are used individually; and the input of a longer MODIS data period can improve classification accuracy, especially after day of year 279, because of improved estimation accuracy for the soybean emergence date.
{"title":"Early Classification Method for US Corn and Soybean by Incorporating MODIS-Estimated Phenological Data and Historical Classification Maps in Random-Forest Regression Algorithm","authors":"T. Sakamoto","doi":"10.14358/pers.21-00003r2","DOIUrl":"https://doi.org/10.14358/pers.21-00003r2","url":null,"abstract":"An early crop classification method is functionally required in a near-real-time crop-yield prediction system, especially for upland crops. This study proposes methods to estimate the mixed-pixel ratio of corn, soybean, and other classes within a low-resolution MODIS pixel by coupling\u0000 MODIS-derived crop phenology information and the past Cropland Data Layer in a random-forest regression algorithm. Verification of the classification accuracy was conducted for the Midwestern United States. The following conclusions are drawn: The use of the random-forest algorithm is effective\u0000 in estimating the mixed-pixel ratio, which leads to stable classification accuracy; the fusion of historical data and MODIS-derived crop phenology information provides much better crop classification accuracy than when these are used individually; and the input of a longer MODIS data period\u0000 can improve classification accuracy, especially after day of year 279, because of improved estimation accuracy for the soybean emergence date.","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":"22 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73237046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"GIS Tips & Tricks—Need to Find Something Fast? Here are a Few Tips","authors":"Kristopher Gallagher, Alex S. Karlin","doi":"10.14358/pers.87.10.697","DOIUrl":"https://doi.org/10.14358/pers.87.10.697","url":null,"abstract":"","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":"8 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88692157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}