首页 > 最新文献

Nonlinear Analysis-Theory Methods & Applications最新文献

英文 中文
Exotic traveling waves for a quasilinear Schrödinger equation with nonzero background 具有非零背景的拟线性Schrödinger方程的奇异行波
IF 1.3 2区 数学 Q1 MATHEMATICS Pub Date : 2025-11-30 DOI: 10.1016/j.na.2025.114027
André de Laire, Erwan Le Quiniou
We study a defocusing quasilinear Schrödinger equation with nonzero conditions at infinity in dimension one. This quasilinear model corresponds to a weakly nonlocal approximation of the nonlocal Gross–Pitaevskii equation, and can also be derived by considering the effects of surface tension in superfluids. When the quasilinear term is neglected, the resulting equation is the classical Gross–Pitaevskii equation, which possesses a well-known stable branch of subsonic traveling waves solution, given by dark solitons.
Our goal is to investigate how the quasilinear term and the intensity-dependent dispersion affect the traveling-wave solutions. We provide a complete classification of finite energy traveling waves of the equation, in terms of two parameters: the speed and the strength of the quasilinear term. This classification leads to the existence of dark and antidark solitons, as well as more exotic localized solutions like dark cuspons, compactons, and composite waves, even for supersonic speeds. Depending on the parameters, these types of solutions can coexist, showing that finite energy solutions are not unique. Furthermore, we prove that some of these dark solitons can be obtained as minimizers of the energy, at fixed momentum, and that they are orbitally stable.
研究了一维无穷远处具有非零条件的离焦拟线性Schrödinger方程。该拟线性模型对应于非局部Gross-Pitaevskii方程的弱非局部近似,也可以通过考虑超流体中表面张力的影响来推导。当忽略拟线性项时,得到的方程是经典的Gross-Pitaevskii方程,该方程具有众所周知的由暗孤子给出的亚音速行波解的稳定分支。我们的目标是研究拟线性项和强度相关色散如何影响行波解。我们给出了有限能量行波方程的完整分类,根据两个参数:速度和拟线性项的强度。这种分类导致了暗孤子和反暗孤子的存在,以及更奇特的局部解,如暗垫子、紧子和复合波,甚至对于超音速也是如此。根据参数的不同,这些类型的解可以共存,这表明有限能量解不是唯一的。此外,我们证明了其中一些暗孤子可以作为能量的最小值,在固定动量下获得,并且它们是轨道稳定的。
{"title":"Exotic traveling waves for a quasilinear Schrödinger equation with nonzero background","authors":"André de Laire,&nbsp;Erwan Le Quiniou","doi":"10.1016/j.na.2025.114027","DOIUrl":"10.1016/j.na.2025.114027","url":null,"abstract":"<div><div>We study a defocusing quasilinear Schrödinger equation with nonzero conditions at infinity in dimension one. This quasilinear model corresponds to a weakly nonlocal approximation of the nonlocal Gross–Pitaevskii equation, and can also be derived by considering the effects of surface tension in superfluids. When the quasilinear term is neglected, the resulting equation is the classical Gross–Pitaevskii equation, which possesses a well-known stable branch of subsonic traveling waves solution, given by dark solitons.</div><div>Our goal is to investigate how the quasilinear term and the intensity-dependent dispersion affect the traveling-wave solutions. We provide a complete classification of finite energy traveling waves of the equation, in terms of two parameters: the speed and the strength of the quasilinear term. This classification leads to the existence of dark and antidark solitons, as well as more exotic localized solutions like dark cuspons, compactons, and composite waves, even for supersonic speeds. Depending on the parameters, these types of solutions can coexist, showing that finite energy solutions are not unique. Furthermore, we prove that some of these dark solitons can be obtained as minimizers of the energy, at fixed momentum, and that they are orbitally stable.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"265 ","pages":"Article 114027"},"PeriodicalIF":1.3,"publicationDate":"2025-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145685496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The blow-up dynamics for the divergence Schrödinger equations with inhomogeneous nonlinearity 非齐次非线性散度Schrödinger方程的爆破动力学
IF 1.3 2区 数学 Q1 MATHEMATICS Pub Date : 2025-11-24 DOI: 10.1016/j.na.2025.114015
Bowen Zheng , Tohru Ozawa
<div><div>This paper is dedicated to the blow-up solution for the divergence Schrödinger equations with inhomogeneous nonlinearity (dINLS for short) <span><span><span><math><mrow><mi>i</mi><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>b</mi></mrow></msup><mo>∇</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mo>−</mo><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>c</mi></mrow></msup><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mn>2</mn><mo>−</mo><mi>n</mi><mo><</mo><mi>b</mi><mo><</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mi>c</mi><mo>></mo><mi>b</mi><mo>−</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mi>p</mi><mo>−</mo><mn>2</mn><mi>c</mi><mo><</mo><mrow><mo>(</mo><mn>2</mn><mo>−</mo><mi>b</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>p</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>. First, for radial blow-up solutions in <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>b</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msubsup></math></span>, we prove an upper bound on the blow-up rate for the intercritical dNLS. Moreover, an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm concentration in the mass-critical case is also obtained by giving a compact lemma. Next, we turn to the non-radial case. By establishing two types of Gagliardo–Nirenberg inequalities, we show the existence of finite time blow-up solutions in <span><math><mrow><msup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></msup><mo>∩</mo><msubsup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mi>b</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msubsup></mrow></math></span>, where <span><math><mrow><msup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></msup><mo>=</mo><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mfrac><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> and <span><math><mrow><msubsup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mi>b</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msubsup
本文研究具有非齐次非线性(dINLS) i∂tu+∇⋅(|x|b∇u)= - |x|c|u|pu,u(x,0)=u0(x)的散度Schrödinger方程的爆破解,其中2 - n<;b<2, c>;b - 2和np - 2c<;(2 - b)(p+2)。首先,对于Wb1,2中的径向爆破解,我们证明了临界间dNLS爆破率的上界。此外,通过给出一个紧引理,还得到了质量临界情况下的l2范数浓度。接下来,我们转向非径向情况。通过建立两种类型的Gagliardo-Nirenberg不等式,我们证明了Ḣsc∩Ẇb1,2中有限时间爆炸解的存在性,其中Ḣsc=(−Δ)−sc2L2和Ẇb1,2=|x|−b2(−Δ)−12L2。作为一个应用,我们得到了这个爆破率的下界,将Merle和Raphaël(2008)对经典NLS方程的工作推广到dINLS设置。
{"title":"The blow-up dynamics for the divergence Schrödinger equations with inhomogeneous nonlinearity","authors":"Bowen Zheng ,&nbsp;Tohru Ozawa","doi":"10.1016/j.na.2025.114015","DOIUrl":"10.1016/j.na.2025.114015","url":null,"abstract":"&lt;div&gt;&lt;div&gt;This paper is dedicated to the blow-up solution for the divergence Schrödinger equations with inhomogeneous nonlinearity (dINLS for short) &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. First, for radial blow-up solutions in &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;, we prove an upper bound on the blow-up rate for the intercritical dNLS. Moreover, an &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;-norm concentration in the mass-critical case is also obtained by giving a compact lemma. Next, we turn to the non-radial case. By establishing two types of Gagliardo–Nirenberg inequalities, we show the existence of finite time blow-up solutions in &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;̇&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;̇&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;̇&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;̇&lt;/mo&gt;&lt;/mrow&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"265 ","pages":"Article 114015"},"PeriodicalIF":1.3,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145618595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Keplerian billiards in three dimensions: Stability of equilibrium orbits and conditions for chaos 三维的开普勒台球:平衡轨道的稳定性和混沌的条件
IF 1.3 2区 数学 Q1 MATHEMATICS Pub Date : 2025-11-20 DOI: 10.1016/j.na.2025.114018
Irene De Blasi
This work presents some results regarding three-dimensional billiards having a non-constant potential of Keplerian type inside a regular domain DR3. Two models will be analysed: in the first one, only an inner Keplerian potential is present, and every time the particle encounters the boundary of D is reflected back by keeping constant its tangential component to D, while the normal one changes its sign. The second model is a refractive billiard, where the inner Keplerian potential is coupled with a harmonic outer one; in this case, the interaction with D results in a generalised refraction Snell’s law. In both cases, the analysis of a particular type of straight equilibrium trajectories, called homothetic, is carried on, and their presence is linked to the topological chaoticity of the dynamics for large inner energies.
这项工作提出了关于在正则域D∧R3内具有开普勒型非恒定势的三维台球的一些结果。将分析两个模型:在第一个模型中,只有一个内开普勒势存在,并且每次粒子遇到D的边界时,通过保持其切向分量与∂D不变而反射回来,而法向分量则改变其符号。第二个模型是一个折射台球,其中内部的开普勒势与外部的谐波势耦合;在这种情况下,与∂D的相互作用产生广义折射斯涅尔定律。在这两种情况下,对一种称为同质的特殊类型的直线平衡轨迹进行了分析,并且它们的存在与大内能动力学的拓扑混沌性有关。
{"title":"Keplerian billiards in three dimensions: Stability of equilibrium orbits and conditions for chaos","authors":"Irene De Blasi","doi":"10.1016/j.na.2025.114018","DOIUrl":"10.1016/j.na.2025.114018","url":null,"abstract":"<div><div>This work presents some results regarding three-dimensional billiards having a non-constant potential of Keplerian type inside a regular domain <span><math><mrow><mi>D</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>. Two models will be analysed: in the first one, only an inner Keplerian potential is present, and every time the particle encounters the boundary of <span><math><mi>D</mi></math></span> is reflected back by keeping constant its tangential component to <span><math><mrow><mi>∂</mi><mi>D</mi></mrow></math></span>, while the normal one changes its sign. The second model is a refractive billiard, where the inner Keplerian potential is coupled with a harmonic outer one; in this case, the interaction with <span><math><mrow><mi>∂</mi><mi>D</mi></mrow></math></span> results in a generalised refraction Snell’s law. In both cases, the analysis of a particular type of straight equilibrium trajectories, called <em>homothetic</em>, is carried on, and their presence is linked to the topological chaoticity of the dynamics for large inner energies.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"265 ","pages":"Article 114018"},"PeriodicalIF":1.3,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145571025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the existence of optimal and ɛ-optimal controls for the stochastic 2D nonlocal Cahn–Hilliard–Navier–Stokes system 关于二维随机非局部Cahn-Hilliard-Navier-Stokes系统的最优控制和最优控制的存在性
IF 1.3 2区 数学 Q1 MATHEMATICS Pub Date : 2025-11-19 DOI: 10.1016/j.na.2025.114016
R.D. Ayissi , G. Deugoué , J. Ngandjou Zangue , T. Tachim Medjo
In this paper, we study a feedback optimal control problem for the stochastic nonlocal Cahn–Hilliard–Navier–Stokes model in a two-dimensional bounded domain. The model consists of the stochastic Navier–Stokes equations for the velocity, coupled with a nonlocal Cahn-Hilliard system for the order (phase) parameter. We prove the existence of an optimal feedback control for the stochastic nonlocal Cahn–Hilliard-Navier-Stokes system. Moreover using the Galerkin approximation, we show that the optimal cost can be approximated by a sequence of finite dimensional optimal costs.
本文研究了二维有界区域上随机非局部Cahn-Hilliard-Navier-Stokes模型的反馈最优控制问题。该模型由速度的随机Navier-Stokes方程和阶(相位)参数的非局部Cahn-Hilliard系统组成。证明了随机非局部Cahn-Hilliard-Navier-Stokes系统的最优反馈控制的存在性。此外,利用伽辽金近似,我们证明了最优成本可以用有限维最优成本序列来逼近。
{"title":"On the existence of optimal and ɛ-optimal controls for the stochastic 2D nonlocal Cahn–Hilliard–Navier–Stokes system","authors":"R.D. Ayissi ,&nbsp;G. Deugoué ,&nbsp;J. Ngandjou Zangue ,&nbsp;T. Tachim Medjo","doi":"10.1016/j.na.2025.114016","DOIUrl":"10.1016/j.na.2025.114016","url":null,"abstract":"<div><div>In this paper, we study a feedback optimal control problem for the stochastic nonlocal Cahn–Hilliard–Navier–Stokes model in a two-dimensional bounded domain. The model consists of the stochastic Navier–Stokes equations for the velocity, coupled with a nonlocal Cahn-Hilliard system for the order (phase) parameter. We prove the existence of an optimal feedback control for the stochastic nonlocal Cahn–Hilliard-Navier-Stokes system. Moreover using the Galerkin approximation, we show that the optimal cost can be approximated by a sequence of finite dimensional optimal costs.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"265 ","pages":"Article 114016"},"PeriodicalIF":1.3,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145537288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global Fujita-Kato solutions for the incompressible Hall-MHD system 不可压缩Hall-MHD系统的全球富士通解决方案
IF 1.3 2区 数学 Q1 MATHEMATICS Pub Date : 2025-11-19 DOI: 10.1016/j.na.2025.114007
Jin Tan
We show the global-in-time existence and uniqueness of solutions to the 3D incompressible Hall-magnetohydrodynamic (Hall-MHD) system with small initial data in critical Sobolev spaces. Our result works for general physical parameters, thus gives a full answer to the problem proposed by Chae and Lee in the Remark 2 of Chae and Lee (2014). Moreover, considering the so-called 212D flows for the Hall-MHD system (that is 3D flows independent of the vertical variable), we show that under the sole assumption that the initial magnetic field is small in the critical Sobolev space leads to a global unique solvability statement. Comparing with the classical MHD system, the new difficulties of proving such results come from the additional Hall term, which endows the magnetic equation with a quasi-linear character.
研究了临界Sobolev空间中初始数据较小的三维不可压缩霍尔-磁流体动力学(Hall-MHD)系统解的全局存在唯一性。我们的结果适用于一般物理参数,从而完整地回答了Chae和Lee在Chae和Lee(2014)的Remark 2中提出的问题。此外,考虑到所谓的Hall-MHD系统的212D流动(即独立于垂直变量的3D流动),我们表明,在临界Sobolev空间中初始磁场很小的唯一假设下,导致全局唯一可解性陈述。与经典MHD系统相比,证明这些结果的新困难来自于附加的霍尔项,它使磁方程具有拟线性特征。
{"title":"Global Fujita-Kato solutions for the incompressible Hall-MHD system","authors":"Jin Tan","doi":"10.1016/j.na.2025.114007","DOIUrl":"10.1016/j.na.2025.114007","url":null,"abstract":"<div><div>We show the global-in-time existence and uniqueness of solutions to the 3D incompressible Hall-magnetohydrodynamic (Hall-MHD) system with small initial data in critical Sobolev spaces. Our result works for general physical parameters, thus gives a full answer to the problem proposed by Chae and Lee in the Remark 2 of Chae and Lee (2014). Moreover, considering the so-called 2<span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>D flows for the Hall-MHD system (that is 3D flows independent of the vertical variable), we show that under the sole assumption that the initial magnetic field is small in the critical Sobolev space leads to a global unique solvability statement. Comparing with the classical MHD system, the new difficulties of proving such results come from the additional Hall term, which endows the magnetic equation with a quasi-linear character.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"265 ","pages":"Article 114007"},"PeriodicalIF":1.3,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145537289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted Orlicz-Sobolev and variable exponent Morrey regularity for fully nonlinear parabolic PDEs with oblique boundary conditions and applications 斜边界条件下全非线性抛物型偏微分方程的加权Orlicz-Sobolev和变指数Morrey正则性及其应用
IF 1.3 2区 数学 Q1 MATHEMATICS Pub Date : 2025-11-14 DOI: 10.1016/j.na.2025.114017
Junior da S. Bessa , João Vitor da Silva , Maria N.B. Frederico , Gleydson C. Ricarte
<div><div>In this manuscript, we establish global weighted Orlicz-Sobolev and variable exponent Morrey–Sobolev estimates for viscosity solutions to fully nonlinear parabolic equations subject to oblique boundary conditions on a portion of the boundary, within the following framework: <span><math><mfenced><mrow><mtable><mtr><mtd><mi>F</mi><mrow><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>−</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub></mtd><mtd><mo>=</mo></mtd><mtd><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mtd><mtd><mtext>in</mtext></mtd><mtd><msub><mrow><mi>Ω</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>,</mo></mtd></mtr><mtr><mtd><mi>β</mi><mi>⋅</mi><mi>D</mi><mi>u</mi><mo>+</mo><mi>γ</mi><mi>u</mi></mtd><mtd><mo>=</mo></mtd><mtd><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mtd><mtd><mtext>on</mtext></mtd><mtd><msub><mrow><mi>S</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mtd><mtd><mo>=</mo></mtd><mtd><mn>0</mn></mtd><mtd><mtext>on</mtext></mtd><mtd><msub><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span> where <span><math><mrow><msub><mrow><mi>Ω</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>=</mo><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> denotes the parabolic cylinder with spatial base <span><math><mi>Ω</mi></math></span> (a bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span>) and temporal height <span><math><mrow><mi>T</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>T</mi></mrow></msub><mo>=</mo><mi>∂</mi><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mi>Ω</mi><mo>×</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span>. Additionally, <span><math><mi>f</mi></math></span> represents the source term of the parabolic equation, while the boundary data are given by <span><math><mi>β</mi></math></span>, <span><math><mi>γ</mi></math></span>, and <span><math><mi>g</mi></math></span>. Our first main result is a global weighted Orlicz–Sobolev estimate for the solution, obtained under asymptotic structural conditions on the differential operator and appropriate assumptions on the boundary data, assuming that the source term belongs to the corresponding weighted Orlicz space. Leveraging these estimates, we demonstrate several applications, including a density result
在本文中,我们在以下框架内建立了部分边界上受倾斜边界条件约束的全非线性抛物方程的粘度解的全局权重Orlicz-Sobolev和变指数Morrey-Sobolev估计:F(D2u,Du,u,x,t)−ut= F(x,t)inΩT,β·Du+γu=g(x,t)onST,u(x,0)=0onΩ0,其中ΩT=Ω×(0, t)表示空间基Ω (Rn, n≥2中的有界域)和时间高度T>;0的抛物线柱体,ST=∂Ω×(0, t), Ω0=Ω×{0}。此外,f表示抛物方程的源项,而边界数据由β, γ和g给出。我们的第一个主要结果是解的全局加权Orlicz - sobolev估计,该估计是在微分算子的渐近结构条件和对边界数据的适当假设下得到的,假设源项属于相应的加权Orlicz空间。利用这些估计,我们展示了几种应用,包括抛物方程基本类中的密度结果,相关障碍问题的正则性结果,以及解决方案的Hessian和时间导数的加权Orlicz-BMO估计。最后,我们通过外推技术推导出问题的可变指数Morrey-Sobolev估计,这是独立的数学兴趣。
{"title":"Weighted Orlicz-Sobolev and variable exponent Morrey regularity for fully nonlinear parabolic PDEs with oblique boundary conditions and applications","authors":"Junior da S. Bessa ,&nbsp;João Vitor da Silva ,&nbsp;Maria N.B. Frederico ,&nbsp;Gleydson C. Ricarte","doi":"10.1016/j.na.2025.114017","DOIUrl":"10.1016/j.na.2025.114017","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this manuscript, we establish global weighted Orlicz-Sobolev and variable exponent Morrey–Sobolev estimates for viscosity solutions to fully nonlinear parabolic equations subject to oblique boundary conditions on a portion of the boundary, within the following framework: &lt;span&gt;&lt;math&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mtext&gt;in&lt;/mtext&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mtext&gt;on&lt;/mtext&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mtext&gt;on&lt;/mtext&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/math&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; denotes the parabolic cylinder with spatial base &lt;span&gt;&lt;math&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; (a bounded domain in &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) and temporal height &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;×&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Additionally, &lt;span&gt;&lt;math&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; represents the source term of the parabolic equation, while the boundary data are given by &lt;span&gt;&lt;math&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. Our first main result is a global weighted Orlicz–Sobolev estimate for the solution, obtained under asymptotic structural conditions on the differential operator and appropriate assumptions on the boundary data, assuming that the source term belongs to the corresponding weighted Orlicz space. Leveraging these estimates, we demonstrate several applications, including a density result ","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"264 ","pages":"Article 114017"},"PeriodicalIF":1.3,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145520546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on unique continuation from the edge of a crack with no star-shapedness condition 在没有星形条件的情况下,从裂纹边缘唯一延续的音符
IF 1.3 2区 数学 Q1 MATHEMATICS Pub Date : 2025-11-12 DOI: 10.1016/j.na.2025.114006
Alessandra De Luca
In the present paper, which aims at representing an improvement of De Luca and Felli (2021), we prove the validity of the strong unique continuation property for solutions to some second order elliptic equations from the edge of a crack via a description of their local behaviour. In particular we relax the star-shapedness condition on the complement of the crack considered in De Luca and Felli (2021) by applying a suitable diffeomorphism which straightens the boundary of the crack before performing an approximation of the fractured domain needed to derive a monotonicity formula
在本文中,旨在表示De Luca和feli(2021)的改进,我们通过描述其局部行为证明了从裂纹边缘开始的一些二阶椭圆方程解的强唯一延拓性质的有效性。特别是,我们放宽了De Luca和feli(2021)中考虑的裂纹补上的星形条件,通过应用合适的微分同态,该微分同态在执行导出单调公式所需的断裂域近似之前使裂纹边界变直
{"title":"A note on unique continuation from the edge of a crack with no star-shapedness condition","authors":"Alessandra De Luca","doi":"10.1016/j.na.2025.114006","DOIUrl":"10.1016/j.na.2025.114006","url":null,"abstract":"<div><div>In the present paper, which aims at representing an improvement of De Luca and Felli (2021), we prove the validity of the strong unique continuation property for solutions to some second order elliptic equations from the edge of a crack via a description of their local behaviour. In particular we relax the star-shapedness condition on the complement of the crack considered in De Luca and Felli (2021) by applying a suitable diffeomorphism which straightens the boundary of the crack before performing an approximation of the fractured domain needed to derive a monotonicity formula</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"264 ","pages":"Article 114006"},"PeriodicalIF":1.3,"publicationDate":"2025-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145520547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new mechanism for producing degenerate centers in polynomial differential systems 多项式微分系统产生退化中心的新机制
IF 1.3 2区 数学 Q1 MATHEMATICS Pub Date : 2025-11-12 DOI: 10.1016/j.na.2025.113981
Jaume Giné , Dmitry I. Sinelshchikov
It has been conjectured that the only mechanisms capable of producing a center – whether degenerate or not – at a singular point of a polynomial differential system are algebraic reducibility and Liouvillian integrability. In this work, we present an example that is algebraically reducible but neither orbitally reversible nor Liouvillian integrable. The construction of this example is based on a recently developed mechanism that establishes a necessary and sufficient condition for the existence of a center.
据推测,能够在多项式微分系统的奇点上产生中心(无论是否退化)的唯一机制是代数可约性和Liouvillian可积性。在这项工作中,我们提出了一个代数上可约,但既不是轨道可逆的,也不是柳维廉可积的例子。这个例子的构造是基于最近开发的一种机制,该机制建立了中心存在的充分必要条件。
{"title":"A new mechanism for producing degenerate centers in polynomial differential systems","authors":"Jaume Giné ,&nbsp;Dmitry I. Sinelshchikov","doi":"10.1016/j.na.2025.113981","DOIUrl":"10.1016/j.na.2025.113981","url":null,"abstract":"<div><div>It has been conjectured that the only mechanisms capable of producing a center – whether degenerate or not – at a singular point of a polynomial differential system are algebraic reducibility and Liouvillian integrability. In this work, we present an example that is algebraically reducible but neither orbitally reversible nor Liouvillian integrable. The construction of this example is based on a recently developed mechanism that establishes a necessary and sufficient condition for the existence of a center.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"264 ","pages":"Article 113981"},"PeriodicalIF":1.3,"publicationDate":"2025-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145520545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Random dynamics and invariant measures for a class of non-Newtonian fluids of differential type on 2D and 3D Poincaré domains 二维和三维庞卡罗区域上一类微分型非牛顿流体的随机动力学和不变测度
IF 1.3 2区 数学 Q1 MATHEMATICS Pub Date : 2025-11-07 DOI: 10.1016/j.na.2025.114005
Kush Kinra , Fernanda Cipriano
In this article, we consider a class of incompressible stochastic third-grade fluids (non-Newtonian fluids) equations on two- as well as three-dimensional Poincaré domains O (which may be bounded or unbounded). Our aims are to study the well-posedness and asymptotic analysis for the solutions of the underlying system. Firstly, we prove that the underlying system defined on O has a unique weak solution (in the analytic sense) under Dirichlet boundary condition and it also generates random dynamical system Ψ. Secondly, we consider the underlying system on bounded domains. Using the compact Sobolev embedding H1(O)L2(O), we prove the existence of a unique random attractor for the underlying system on bounded domains with external forcing in H1(O). Thirdly, we consider the underlying system on unbounded Poincaré domains with external forcing in L2(O) and show the existence of a unique random attractor. In order to obtain the existence of a unique random attractor on unbounded domains, due to the lack of compact Sobolev embedding H1(O)L2(O), we use the uniform-tail estimates method which helps us to demonstrate the asymptotic compactness of Ψ. Note that due to the presence of several nonlinear terms in the underlying system, we are not able to use the energy equality method to obtain the asymptotic compactness of Ψ in unbounded domains, which makes the analysis of this work in unbounded domains more difficult and interesting. Finally, as a consequence of the existence of random attractors, we address the existence of invariant measures for underlying system. To the best of authors’ knowledge, this is the first work which consider a class of the 2D as well as 3D incompressible stochastic third-grade fluids equations and establish the existence of random attractor in bounded as well as unbounded domains. In addition, this is the first work which address the existence of invariant measures for underlying system on unbounded domains.
在这篇文章中,我们考虑了一类不可压缩的随机三阶流体(非牛顿流体)在二维和三维庞加莱格区域(可能是有界的或无界的)上的方程。我们的目的是研究底层系统解的适定性和渐近分析。首先,我们证明了定义在0上的底层系统在Dirichlet边界条件下具有唯一的弱解(解析意义上的),并生成随机动力系统Ψ。其次,我们考虑了有界域上的底层系统。利用紧凑Sobolev嵌入H1(O)“previous L2(O)”,证明了H−1(O)中具有外强迫的有界域上底层系统存在唯一随机吸引子。第三,我们考虑了L2(O)上具有外强迫的无界poincarcar区域上的基础系统,并证明了一个唯一随机吸引子的存在性。为了得到无界域上唯一随机吸引子的存在性,由于缺乏紧Sobolev嵌入H1(O)“previous L2(O)”,我们使用均匀尾估计方法证明了Ψ的渐近紧性。注意,由于底层系统中存在几个非线性项,我们无法使用能量相等方法来获得Ψ在无界域中的渐近紧性,这使得在无界域中分析这项工作变得更加困难和有趣。最后,作为随机吸引子存在的结果,我们讨论了底层系统不变测度的存在性。据作者所知,这是第一次考虑一类二维和三维不可压缩的随机三级流体方程,并在有界和无界区域中建立随机吸引子的存在性。此外,本文还首次讨论了无界域上底层系统的不变量测度的存在性。
{"title":"Random dynamics and invariant measures for a class of non-Newtonian fluids of differential type on 2D and 3D Poincaré domains","authors":"Kush Kinra ,&nbsp;Fernanda Cipriano","doi":"10.1016/j.na.2025.114005","DOIUrl":"10.1016/j.na.2025.114005","url":null,"abstract":"<div><div>In this article, we consider a class of incompressible stochastic third-grade fluids (non-Newtonian fluids) equations on two- as well as three-dimensional Poincaré domains <span><math><mi>O</mi></math></span> (which may be bounded or unbounded). Our aims are to study the well-posedness and asymptotic analysis for the solutions of the underlying system. Firstly, we prove that the underlying system defined on <span><math><mi>O</mi></math></span> has a unique weak solution (in the analytic sense) under Dirichlet boundary condition and it also generates random dynamical system <span><math><mi>Ψ</mi></math></span>. Secondly, we consider the underlying system on bounded domains. Using the compact Sobolev embedding <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>O</mi><mo>)</mo></mrow><mo>↪</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>O</mi><mo>)</mo></mrow></mrow></math></span>, we prove the existence of a unique random attractor for the underlying system on bounded domains with external forcing in <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>O</mi><mo>)</mo></mrow></mrow></math></span>. Thirdly, we consider the underlying system on unbounded Poincaré domains with external forcing in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>O</mi><mo>)</mo></mrow></mrow></math></span> and show the existence of a unique random attractor. In order to obtain the existence of a unique random attractor on unbounded domains, due to the lack of compact Sobolev embedding <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>O</mi><mo>)</mo></mrow><mo>↪</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>O</mi><mo>)</mo></mrow></mrow></math></span>, we use the uniform-tail estimates method which helps us to demonstrate the asymptotic compactness of <span><math><mi>Ψ</mi></math></span>. Note that due to the presence of several nonlinear terms in the underlying system, we are not able to use the energy equality method to obtain the asymptotic compactness of <span><math><mi>Ψ</mi></math></span> in unbounded domains, which makes the analysis of this work in unbounded domains more difficult and interesting. Finally, as a consequence of the existence of random attractors, we address the existence of invariant measures for underlying system. To the best of authors’ knowledge, this is the first work which consider a class of the 2D as well as 3D incompressible stochastic third-grade fluids equations and establish the existence of random attractor in bounded as well as unbounded domains. In addition, this is the first work which address the existence of invariant measures for underlying system on unbounded domains.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"264 ","pages":"Article 114005"},"PeriodicalIF":1.3,"publicationDate":"2025-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145467936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On dimension stable spaces of measures 测度的维稳定空间
IF 1.3 2区 数学 Q1 MATHEMATICS Pub Date : 2025-11-06 DOI: 10.1016/j.na.2025.113997
Daniel Spector , Dmitriy Stolyarov
In this paper, we define spaces of measures DSβ(Rd) with dimensional stability β(0,d). These spaces bridge between Mb(Rd), the space of finite Radon measures, and DSd(Rd)=H1(Rd), the real Hardy space. We show the spaces DSβ(Rd) support Sobolev inequalities for β(0,d], while for any β[0,d] we show that the lower Hausdorff dimension of an element of DSβ(Rd) is at least β.
在本文中,我们定义了维度稳定性β∈(0,d)的测度空间DSβ(Rd)。这些空间连接了有限Radon测度空间Mb(Rd)和实Hardy空间DSd(Rd)=H1(Rd)。我们证明了空间DSβ(Rd)对于β∈(0,d)支持Sobolev不等式,而对于任何β∈[0,d],我们证明了DSβ(Rd)的元素的下Hausdorff维数至少为β。
{"title":"On dimension stable spaces of measures","authors":"Daniel Spector ,&nbsp;Dmitriy Stolyarov","doi":"10.1016/j.na.2025.113997","DOIUrl":"10.1016/j.na.2025.113997","url":null,"abstract":"<div><div>In this paper, we define spaces of measures <span><math><mrow><mi>D</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>β</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> with dimensional stability <span><math><mrow><mi>β</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mrow></math></span>. These spaces bridge between <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>b</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, the space of finite Radon measures, and <span><math><mrow><mi>D</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>, the real Hardy space. We show the spaces <span><math><mrow><mi>D</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>β</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> support Sobolev inequalities for <span><math><mrow><mi>β</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>d</mi><mo>]</mo></mrow></mrow></math></span>, while for any <span><math><mrow><mi>β</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>d</mi><mo>]</mo></mrow></mrow></math></span> we show that the lower Hausdorff dimension of an element of <span><math><mrow><mi>D</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>β</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> is at least <span><math><mi>β</mi></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"264 ","pages":"Article 113997"},"PeriodicalIF":1.3,"publicationDate":"2025-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145467932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nonlinear Analysis-Theory Methods & Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1