Pub Date : 2025-01-13DOI: 10.1016/j.na.2024.113745
Chiara Bernardini , Annalisa Cesaroni
We consider the following nonlinear Choquard equation where , , is a continuous radial function such that and is the Riesz potential of order . Assuming Neumann or Dirichlet boundary conditions, we prove existence of a positive radial solution to the corresponding boundary value problem when is an annulus, or an exterior domain of the form . We also provide a nonexistence result: if the corresponding Dirichlet problem has no nontrivial regular solution in strictly star-shaped domains. Finally, when considering annular domains, letting we recover existence results for the corresponding local problem with power-type nonlinearity.
{"title":"Boundary value problems for Choquard equations","authors":"Chiara Bernardini , Annalisa Cesaroni","doi":"10.1016/j.na.2024.113745","DOIUrl":"10.1016/j.na.2024.113745","url":null,"abstract":"<div><div>We consider the following nonlinear Choquard equation <span><math><mrow><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>V</mi><mi>u</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>∗</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mspace></mspace><mtext>in</mtext><mspace></mspace><mspace></mspace><mspace></mspace><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>N</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>+</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is a continuous radial function such that <span><math><mrow><msub><mrow><mo>inf</mo></mrow><mrow><mi>x</mi><mo>∈</mo><mi>Ω</mi></mrow></msub><mi>V</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is the Riesz potential of order <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span>. Assuming Neumann or Dirichlet boundary conditions, we prove existence of a positive radial solution to the corresponding boundary value problem when <span><math><mi>Ω</mi></math></span> is an annulus, or an exterior domain of the form <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mover><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow><mo>¯</mo></mover></mrow></math></span>. We also provide a nonexistence result: if <span><math><mrow><mi>p</mi><mo>≥</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mi>α</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn></mrow></mfrac></mrow></math></span> the corresponding Dirichlet problem has no nontrivial regular solution in strictly star-shaped domains. Finally, when considering annular domains, letting <span><math><mrow><mi>α</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> we recover existence results for the corresponding <em>local</em> problem with power-type nonlinearity.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"254 ","pages":"Article 113745"},"PeriodicalIF":1.3,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143136810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09DOI: 10.1016/j.na.2024.113744
Ira Herbst
We use a well known integral equation to derive some regularity properties of Leray–Hopf weak solutions of the Navier–Stokes equations in .
{"title":"Mild regularity of weak solutions to the Navier – Stokes equations","authors":"Ira Herbst","doi":"10.1016/j.na.2024.113744","DOIUrl":"10.1016/j.na.2024.113744","url":null,"abstract":"<div><div>We use a well known integral equation to derive some regularity properties of Leray–Hopf weak solutions of the Navier–Stokes equations in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow><mo>,</mo><mi>p</mi><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"254 ","pages":"Article 113744"},"PeriodicalIF":1.3,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143136811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06DOI: 10.1016/j.na.2024.113738
Alessandro Cucinotta
We show that the heat flow provides good approximation properties for the area functional on proper spaces, implying that in this setting the area formula for functions of bounded variation holds and that the area functional coincides with its relaxation. We then obtain partial regularity and uniqueness results for functions whose hypographs are perimeter minimizing. Finally, we consider sequences of spaces and we show that, thanks to the previously obtained properties, Sobolev minimizers of the area functional in a limit space can be approximated with minimizers along the converging sequence of spaces. Using this last result, we obtain applications on Ricci-limit spaces.
{"title":"Convergence of the area functional on spaces with lower Ricci bounds and applications","authors":"Alessandro Cucinotta","doi":"10.1016/j.na.2024.113738","DOIUrl":"10.1016/j.na.2024.113738","url":null,"abstract":"<div><div>We show that the heat flow provides good approximation properties for the area functional on proper <span><math><mrow><mi>RCD</mi><mrow><mo>(</mo><mi>K</mi><mo>,</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span> spaces, implying that in this setting the area formula for functions of bounded variation holds and that the area functional coincides with its relaxation. We then obtain partial regularity and uniqueness results for functions whose hypographs are perimeter minimizing. Finally, we consider sequences of <span><math><mrow><mi>RCD</mi><mrow><mo>(</mo><mi>K</mi><mo>,</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span> spaces and we show that, thanks to the previously obtained properties, Sobolev minimizers of the area functional in a limit space can be approximated with minimizers along the converging sequence of spaces. Using this last result, we obtain applications on Ricci-limit spaces.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"254 ","pages":"Article 113738"},"PeriodicalIF":1.3,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143136809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06DOI: 10.1016/j.na.2024.113742
Jiawei Tan, Qingying Xue
Let be a homogeneous function of degree zero that enjoys the vanishing condition on the unit sphere . Let be the convolution singular integral operator with kernel . In this paper, when , we consider quantitative weighted bounds of composite operators of on rearrangement invariant Banach function spaces. These spaces contain classical Lorentz spaces and Orlicz spaces as special examples. Weighted boundedness of the composite operators on rearrangement invariant quasi-Banach spaces are also given.
{"title":"Composition of rough singular integral operators on rearrangement invariant Banach type spaces","authors":"Jiawei Tan, Qingying Xue","doi":"10.1016/j.na.2024.113742","DOIUrl":"10.1016/j.na.2024.113742","url":null,"abstract":"<div><div>Let <span><math><mi>Ω</mi></math></span> be a homogeneous function of degree zero that enjoys the vanishing condition on the unit sphere <span><math><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>. Let <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> be the convolution singular integral operator with kernel <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mi>n</mi></mrow></msup></mrow></math></span>. In this paper, when <span><math><mrow><mi>Ω</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, we consider quantitative weighted bounds of composite operators of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> on rearrangement invariant Banach function spaces. These spaces contain classical Lorentz spaces and Orlicz spaces as special examples. Weighted boundedness of the composite operators on rearrangement invariant quasi-Banach spaces are also given.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"254 ","pages":"Article 113742"},"PeriodicalIF":1.3,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143136808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.na.2024.113743
Hui Ma , Mingxuan Yang , Jiabin Yin
We consider a partially overdetermined problem for the -Laplace equation in a convex cone intersected with the exterior of a smooth bounded domain in (). First, we establish the existence, regularity, and asymptotic behavior of a capacitary potential. Then, based on these properties of the potential, we obtain a rigidity result under the assumption of orthogonal intersection, by using -function, the isoperimetric inequality, and a Heintze–Karcher type inequality in a convex cone.
{"title":"A partially overdetermined problem for the p-Laplace equation in a convex cone","authors":"Hui Ma , Mingxuan Yang , Jiabin Yin","doi":"10.1016/j.na.2024.113743","DOIUrl":"10.1016/j.na.2024.113743","url":null,"abstract":"<div><div>We consider a partially overdetermined problem for the <span><math><mi>p</mi></math></span>-Laplace equation in a convex cone <span><math><mi>C</mi></math></span> intersected with the exterior of a smooth bounded domain <span><math><mover><mrow><mi>Ω</mi></mrow><mo>¯</mo></mover></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> (<span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span>). First, we establish the existence, regularity, and asymptotic behavior of a capacitary potential. Then, based on these properties of the potential, we obtain a rigidity result under the assumption of orthogonal intersection, by using <span><math><mi>P</mi></math></span>-function, the isoperimetric inequality, and a Heintze–Karcher type inequality in a convex cone.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"253 ","pages":"Article 113743"},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143176776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.na.2024.113737
Arttu Karppinen , Saara Sarsa
We consider Orlicz–Laplace equation where is an Orlicz function and either or . We prove local second order regularity results for the weak solutions of the Orlicz–Laplace equation. More precisely, we show that if is another Orlicz function that is close to in a suitable sense, then . This work contributes to the building up of quantitative second order Sobolev regularity for solutions of nonlinear equations.
{"title":"Local second order regularity of solutions to elliptic Orlicz–Laplace equation","authors":"Arttu Karppinen , Saara Sarsa","doi":"10.1016/j.na.2024.113737","DOIUrl":"10.1016/j.na.2024.113737","url":null,"abstract":"<div><div>We consider Orlicz–Laplace equation <span><math><mrow><mo>−</mo><mo>div</mo><mspace></mspace><mrow><mo>(</mo><mfrac><mrow><msup><mrow><mi>φ</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow><mo>)</mo></mrow></mrow><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow></mfrac><mo>∇</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi></mrow></math></span> where <span><math><mi>φ</mi></math></span> is an Orlicz function and either <span><math><mrow><mi>f</mi><mo>=</mo><mn>0</mn></mrow></math></span> or <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></mrow></math></span>. We prove local second order regularity results for the weak solutions <span><math><mi>u</mi></math></span> of the Orlicz–Laplace equation. More precisely, we show that if <span><math><mi>ψ</mi></math></span> is another Orlicz function that is close to <span><math><mi>φ</mi></math></span> in a suitable sense, then <span><math><mrow><mfrac><mrow><msup><mrow><mi>ψ</mi></mrow><mrow><mo>′</mo></mrow></msup><mrow><mo>(</mo><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow><mo>)</mo></mrow></mrow><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow></mfrac><mo>∇</mo><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mtext>loc</mtext></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msubsup></mrow></math></span>. This work contributes to the building up of quantitative second order Sobolev regularity for solutions of nonlinear equations.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"253 ","pages":"Article 113737"},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143177344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.na.2024.113741
Xiaofeng Ye , Chunjie Zhang , Xiangrong Zhu
<div><div>In this note, we consider a Fourier integral operator defined by <span><span><span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>ϕ</mi><mo>,</mo><mi>a</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>ϕ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></msup><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mover><mrow><mi>f</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mi>d</mi><mi>ξ</mi><mo>,</mo></mrow></math></span></span></span>where <span><math><mi>a</mi></math></span> is the amplitude, and <span><math><mi>ϕ</mi></math></span> is the phase.</div><div>Let <span><math><mrow><mn>0</mn><mo>≤</mo><mi>ρ</mi><mo>≤</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span> or <span><math><mrow><mn>0</mn><mo>≤</mo><mi>ρ</mi><mo><</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>=</mo><mn>1</mn></mrow></math></span> and <span><span><span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mfrac><mrow><mi>ρ</mi><mo>−</mo><mi>n</mi></mrow><mrow><mi>p</mi></mrow></mfrac><mo>+</mo><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>min</mo><mrow><mo>{</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>ρ</mi><mo>}</mo></mrow><mo>.</mo></mrow></math></span></span></span>If <span><math><mi>a</mi></math></span> belongs to the forbidden Hörmander class <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>ρ</mi><mo>,</mo><mn>1</mn></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msubsup></math></span> and <span><math><mrow><mi>ϕ</mi><mo>∈</mo><msup><mrow><mi>Φ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> satisfies the strong non-degeneracy condition, then for any <span><math><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo><</mo><mi>p</mi><mo>≤</mo><mn>1</mn></mrow></math></span>, we can show that the Fourier integral operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>ϕ</mi><mo>,</mo><mi>a</mi></mrow></msub></math></span> is bounded from the local Hardy space <span><math><msup><mrow><mi>h</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. Furthermore, if <span><math><mi>a</mi></math></span> has compact support in variable <span><math><mi>x</mi></math></span>, then we can extend this result to <span><math><mrow><mn>0</mn><mo><</mo><mi>p</mi><mo>≤</mo><mn>1</mn></mrow></math></span>. As <span><math><mrow><msubsup><mrow><mi>S</mi></mrow><mrow><mi>ρ</mi><mo>,</mo><mi>δ</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msubsup><mo>⊂</mo><msubsup><mrow><mi>S</mi></m
{"title":"Fourier integral operators on Hardy spaces with amplitudes in forbidden Hörmander classes","authors":"Xiaofeng Ye , Chunjie Zhang , Xiangrong Zhu","doi":"10.1016/j.na.2024.113741","DOIUrl":"10.1016/j.na.2024.113741","url":null,"abstract":"<div><div>In this note, we consider a Fourier integral operator defined by <span><span><span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>ϕ</mi><mo>,</mo><mi>a</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>ϕ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></msup><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mover><mrow><mi>f</mi></mrow><mrow><mo>̂</mo></mrow></mover><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mi>d</mi><mi>ξ</mi><mo>,</mo></mrow></math></span></span></span>where <span><math><mi>a</mi></math></span> is the amplitude, and <span><math><mi>ϕ</mi></math></span> is the phase.</div><div>Let <span><math><mrow><mn>0</mn><mo>≤</mo><mi>ρ</mi><mo>≤</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span> or <span><math><mrow><mn>0</mn><mo>≤</mo><mi>ρ</mi><mo><</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo>=</mo><mn>1</mn></mrow></math></span> and <span><span><span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mfrac><mrow><mi>ρ</mi><mo>−</mo><mi>n</mi></mrow><mrow><mi>p</mi></mrow></mfrac><mo>+</mo><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>min</mo><mrow><mo>{</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>ρ</mi><mo>}</mo></mrow><mo>.</mo></mrow></math></span></span></span>If <span><math><mi>a</mi></math></span> belongs to the forbidden Hörmander class <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>ρ</mi><mo>,</mo><mn>1</mn></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msubsup></math></span> and <span><math><mrow><mi>ϕ</mi><mo>∈</mo><msup><mrow><mi>Φ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> satisfies the strong non-degeneracy condition, then for any <span><math><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mo><</mo><mi>p</mi><mo>≤</mo><mn>1</mn></mrow></math></span>, we can show that the Fourier integral operator <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>ϕ</mi><mo>,</mo><mi>a</mi></mrow></msub></math></span> is bounded from the local Hardy space <span><math><msup><mrow><mi>h</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. Furthermore, if <span><math><mi>a</mi></math></span> has compact support in variable <span><math><mi>x</mi></math></span>, then we can extend this result to <span><math><mrow><mn>0</mn><mo><</mo><mi>p</mi><mo>≤</mo><mn>1</mn></mrow></math></span>. As <span><math><mrow><msubsup><mrow><mi>S</mi></mrow><mrow><mi>ρ</mi><mo>,</mo><mi>δ</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow></msubsup><mo>⊂</mo><msubsup><mrow><mi>S</mi></m","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"253 ","pages":"Article 113741"},"PeriodicalIF":1.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143176777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-28DOI: 10.1016/j.na.2024.113736
Marielle Simon , Christian Olivera
This paper considers a large class of nonlinear integro-differential scalar equations which involve an anomalous diffusion (e.g. driven by a fractional Laplacian) and a non-local singular convolution kernel. Each of those singular equations is obtained as the macroscopic limit of an interacting particle system modeled as coupled stochastic differential equations driven by Lévy processes. In particular we derive quantitative estimates between the microscopic empirical measure of the particle system and the solution to the limit equation in some non-homogeneous Sobolev space. Our result only requires very weak regularity on the interaction kernel, therefore it includes numerous applications, e.g.: the turbulence model (including the quasi-geostrophic equation) in sub-critical regime, the generalized Navier–Stokes equation, the fractional Keller–Segel equation in any dimension, and the fractal Burgers equation.
{"title":"Microscopic derivation of non-local models with anomalous diffusions from stochastic particle systems","authors":"Marielle Simon , Christian Olivera","doi":"10.1016/j.na.2024.113736","DOIUrl":"10.1016/j.na.2024.113736","url":null,"abstract":"<div><div>This paper considers a large class of nonlinear integro-differential scalar equations which involve an anomalous diffusion (<em>e.g.</em> driven by a fractional Laplacian) and a non-local singular convolution kernel. Each of those singular equations is obtained as the macroscopic limit of an interacting particle system modeled as <span><math><mi>N</mi></math></span> coupled stochastic differential equations driven by Lévy processes. In particular we derive quantitative estimates between the microscopic empirical measure of the particle system and the solution to the limit equation in some non-homogeneous Sobolev space. Our result only requires very weak regularity on the interaction kernel, therefore it includes numerous applications, <em>e.g.</em>: the <span><math><mrow><mn>2</mn><mi>d</mi></mrow></math></span> turbulence model (including the quasi-geostrophic equation) in sub-critical regime, the <span><math><mrow><mn>2</mn><mi>d</mi></mrow></math></span> generalized Navier–Stokes equation, the fractional Keller–Segel equation in any dimension, and the fractal Burgers equation.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"253 ","pages":"Article 113736"},"PeriodicalIF":1.3,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143176774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-27DOI: 10.1016/j.na.2024.113739
Christian Hong
This work is concerned with the long time behavior of solutions to the -family of peakon equations. We prove local energy decay of global solutions under suitable hypotheses. Assuming the global bound of the norm, we show local energy decay along sequences of time in an expanding region around the origin. If we assume nonnegativity for an initial momentum, , we show strict decay on a similar region. Moreover, we show decay in an exterior region given the same nonnegativity condition.
{"title":"On local energy decay for solutions to the b-family of peakon equations","authors":"Christian Hong","doi":"10.1016/j.na.2024.113739","DOIUrl":"10.1016/j.na.2024.113739","url":null,"abstract":"<div><div>This work is concerned with the long time behavior of solutions to the <span><math><mi>b</mi></math></span>-family of peakon equations. We prove local energy decay of global solutions under suitable hypotheses. Assuming the global bound of the <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> norm, we show local energy decay along sequences of time in an expanding region around the origin. If we assume nonnegativity for an initial momentum, <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mi>u</mi><mo>−</mo><msubsup><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>u</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, we show strict decay on a similar region. Moreover, we show decay in an exterior region given the same nonnegativity condition.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"253 ","pages":"Article 113739"},"PeriodicalIF":1.3,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143176775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-21DOI: 10.1016/j.na.2024.113735
Guangming Hu , Yi Qi , Yu Sun , Puchun Zhou
This paper investigates a generalized hyperbolic circle packing (including circles, horocycles or hypercycles) with respect to the total geodesic curvatures on the surface with boundary. We mainly focus on the existence and rigidity of circle packing whose contact graph is the 1-skeleton of a finite polygonal cellular decomposition, which is analogous to the construction of Bobenko and Springborn (2004). Motivated by Colin de Verdiere’s method (Colin de Verdiere’s, 1991), we introduce the variational principle for generalized hyperbolic circle packings on polygons. By analyzing limit behaviors of generalized circle packings on polygons, we obtain an existence and rigidity for the generalized hyperbolic circle packing with conical singularities regarding the total geodesic curvature on each vertex of the contact graph. As a consequence, we introduce the combinatoral Ricci flow to find a desired circle packing with a prescribed total geodesic curvature on each vertex of the contact graph.
{"title":"Hyperbolic circle packings and total geodesic curvatures on surfaces with boundary","authors":"Guangming Hu , Yi Qi , Yu Sun , Puchun Zhou","doi":"10.1016/j.na.2024.113735","DOIUrl":"10.1016/j.na.2024.113735","url":null,"abstract":"<div><div>This paper investigates a generalized hyperbolic circle packing (including circles, horocycles or hypercycles) with respect to the total geodesic curvatures on the surface with boundary. We mainly focus on the existence and rigidity of circle packing whose contact graph is the 1-skeleton of a finite polygonal cellular decomposition, which is analogous to the construction of Bobenko and Springborn (2004). Motivated by Colin de Verdiere’s method (Colin de Verdiere’s, 1991), we introduce the variational principle for generalized hyperbolic circle packings on polygons. By analyzing limit behaviors of generalized circle packings on polygons, we obtain an existence and rigidity for the generalized hyperbolic circle packing with conical singularities regarding the total geodesic curvature on each vertex of the contact graph. As a consequence, we introduce the combinatoral Ricci flow to find a desired circle packing with a prescribed total geodesic curvature on each vertex of the contact graph.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"253 ","pages":"Article 113735"},"PeriodicalIF":1.3,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143176773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}