Pub Date : 2025-02-01Epub Date: 2024-01-31DOI: 10.1177/10738584231221766
Junhao Liang, Zhuda Yang, Changsong Zhou
Neural activities in local circuits exhibit complex and multilevel dynamic features. Individual neurons spike irregularly, which is believed to originate from receiving balanced amounts of excitatory and inhibitory inputs, known as the excitation-inhibition balance. The spatial-temporal cascades of clustered neuronal spikes occur in variable sizes and durations, manifested as neural avalanches with scale-free features. These may be explained by the neural criticality hypothesis, which posits that neural systems operate around the transition between distinct dynamic states. Here, we summarize the experimental evidence for and the underlying theory of excitation-inhibition balance and neural criticality. Furthermore, we review recent studies of excitatory-inhibitory networks with synaptic kinetics as a simple solution to reconcile these two apparently distinct theories in a single circuit model. This provides a more unified understanding of multilevel neural activities in local circuits, from spontaneous to stimulus-response dynamics.
{"title":"Excitation-Inhibition Balance, Neural Criticality, and Activities in Neuronal Circuits.","authors":"Junhao Liang, Zhuda Yang, Changsong Zhou","doi":"10.1177/10738584231221766","DOIUrl":"10.1177/10738584231221766","url":null,"abstract":"<p><p>Neural activities in local circuits exhibit complex and multilevel dynamic features. Individual neurons spike irregularly, which is believed to originate from receiving balanced amounts of excitatory and inhibitory inputs, known as the <i>excitation-inhibition balance</i>. The spatial-temporal cascades of clustered neuronal spikes occur in variable sizes and durations, manifested as neural avalanches with scale-free features. These may be explained by the neural criticality hypothesis, which posits that neural systems operate around the transition between distinct dynamic states. Here, we summarize the experimental evidence for and the underlying theory of excitation-inhibition balance and neural criticality. Furthermore, we review recent studies of excitatory-inhibitory networks with synaptic kinetics as a simple solution to reconcile these two apparently distinct theories in a single circuit model. This provides a more unified understanding of multilevel neural activities in local circuits, from spontaneous to stimulus-response dynamics.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"31-46"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139643231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-05-30DOI: 10.1177/10738584241256277
Sebastian M Frank
Pioneering investigations in the mid-19th century revealed that the perception of tactile cues presented to the surface of the skin improves with training, which is referred to as tactile learning. Surprisingly, tactile learning also occurs for body parts and skin locations that are not physically involved in the training. For example, after training of a finger, tactile learning transfers to adjacent untrained fingers. This suggests that the transfer of tactile learning follows a somatotopic pattern and involves brain regions such as the primary somatosensory cortex (S1), in which the trained and untrained body parts and skin locations are represented close to each other. However, other results showed that transfer occurs between body parts that are not represented close to each other in S1-for example, between the hand and the foot. These and similar findings have led to the suggestion of additional cortical mechanisms to explain the transfer of tactile learning. Here, different mechanisms are reviewed, and the extent to which they can explain the transfer of tactile learning is discussed. What all of these mechanisms have in common is that they assume a representational or functional relationship between the trained and untrained body parts and skin locations. However, none of these mechanisms alone can explain the complex pattern of transfer results, and it is likely that different mechanisms interact to enable transfer, perhaps in concert with higher somatosensory and decision-making areas.
{"title":"Transfer of Tactile Learning to Untrained Body Parts: Emerging Cortical Mechanisms.","authors":"Sebastian M Frank","doi":"10.1177/10738584241256277","DOIUrl":"10.1177/10738584241256277","url":null,"abstract":"<p><p>Pioneering investigations in the mid-19th century revealed that the perception of tactile cues presented to the surface of the skin improves with training, which is referred to as <i>tactile learning</i>. Surprisingly, tactile learning also occurs for body parts and skin locations that are not physically involved in the training. For example, after training of a finger, tactile learning transfers to adjacent untrained fingers. This suggests that the transfer of tactile learning follows a somatotopic pattern and involves brain regions such as the primary somatosensory cortex (S1), in which the trained and untrained body parts and skin locations are represented close to each other. However, other results showed that transfer occurs between body parts that are not represented close to each other in S1-for example, between the hand and the foot. These and similar findings have led to the suggestion of additional cortical mechanisms to explain the transfer of tactile learning. Here, different mechanisms are reviewed, and the extent to which they can explain the transfer of tactile learning is discussed. What all of these mechanisms have in common is that they assume a representational or functional relationship between the trained and untrained body parts and skin locations. However, none of these mechanisms alone can explain the complex pattern of transfer results, and it is likely that different mechanisms interact to enable transfer, perhaps in concert with higher somatosensory and decision-making areas.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"98-114"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1177/10738584241308723
{"title":"Chronic Fatigue Syndrome: Pulling Back the Curtains.","authors":"","doi":"10.1177/10738584241308723","DOIUrl":"https://doi.org/10.1177/10738584241308723","url":null,"abstract":"","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"31 1","pages":"5"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-03-18DOI: 10.1177/10738584241236773
Irene Martínez-Gallego, Antonio Rodríguez-Moreno
Brain plasticity is the ability of the nervous system to change its structure and functioning in response to experiences. These changes occur mainly at synaptic connections, and this plasticity is named synaptic plasticity. During postnatal development, environmental influences trigger changes in synaptic plasticity that will play a crucial role in the formation and refinement of brain circuits and their functions in adulthood. One of the greatest challenges of present neuroscience is to try to explain how synaptic connections change and cortical maps are formed and modified to generate the most suitable adaptive behavior after different external stimuli. Adenosine is emerging as a key player in these plastic changes at different brain areas. Here, we review the current knowledge of the mechanisms responsible for the induction and duration of synaptic plasticity at different postnatal brain development stages in which adenosine, probably released by astrocytes, directly participates in the induction of long-term synaptic plasticity and in the control of the duration of plasticity windows at different cortical synapses. In addition, we comment on the role of the different adenosine receptors in brain diseases and on the potential therapeutic effects of acting via adenosine receptors.
{"title":"Adenosine and Cortical Plasticity.","authors":"Irene Martínez-Gallego, Antonio Rodríguez-Moreno","doi":"10.1177/10738584241236773","DOIUrl":"10.1177/10738584241236773","url":null,"abstract":"<p><p>Brain plasticity is the ability of the nervous system to change its structure and functioning in response to experiences. These changes occur mainly at synaptic connections, and this plasticity is named <i>synaptic plasticity</i>. During postnatal development, environmental influences trigger changes in synaptic plasticity that will play a crucial role in the formation and refinement of brain circuits and their functions in adulthood. One of the greatest challenges of present neuroscience is to try to explain how synaptic connections change and cortical maps are formed and modified to generate the most suitable adaptive behavior after different external stimuli. Adenosine is emerging as a key player in these plastic changes at different brain areas. Here, we review the current knowledge of the mechanisms responsible for the induction and duration of synaptic plasticity at different postnatal brain development stages in which adenosine, probably released by astrocytes, directly participates in the induction of long-term synaptic plasticity and in the control of the duration of plasticity windows at different cortical synapses. In addition, we comment on the role of the different adenosine receptors in brain diseases and on the potential therapeutic effects of acting via adenosine receptors.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"47-64"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The refinement of immature neuronal networks into efficient mature ones is critical to nervous system development and function. This process of synapse refinement is driven by the neuronal activity-dependent competition of converging synaptic inputs, resulting in the elimination of weak inputs and the stabilization of strong ones. Neuronal activity, whether in the form of spontaneous activity or experience-evoked activity, is known to drive synapse refinement in numerous brain regions. More recent studies are now revealing the manner and mechanisms by which neuronal activity is detected and converted into molecular signals that appropriately regulate the elimination of weaker synapses and stabilization of stronger ones. Here, we highlight how spontaneous activity and evoked activity instruct neuronal activity-dependent competition during synapse refinement. We then focus on how neuronal activity is transformed into the molecular cues that determine and execute synapse refinement. A comprehensive understanding of the mechanisms underlying synapse refinement can lead to novel therapeutic strategies in neuropsychiatric diseases characterized by aberrant synaptic function.
{"title":"Activity-Dependent Synapse Refinement: From Mechanisms to Molecules.","authors":"Sivapratha Nagappan-Chettiar, Timothy J Burbridge, Hisashi Umemori","doi":"10.1177/10738584231170167","DOIUrl":"10.1177/10738584231170167","url":null,"abstract":"<p><p>The refinement of immature neuronal networks into efficient mature ones is critical to nervous system development and function. This process of synapse refinement is driven by the neuronal activity-dependent competition of converging synaptic inputs, resulting in the elimination of weak inputs and the stabilization of strong ones. Neuronal activity, whether in the form of spontaneous activity or experience-evoked activity, is known to drive synapse refinement in numerous brain regions. More recent studies are now revealing the manner and mechanisms by which neuronal activity is detected and converted into molecular signals that appropriately regulate the elimination of weaker synapses and stabilization of stronger ones. Here, we highlight how spontaneous activity and evoked activity instruct neuronal activity-dependent competition during synapse refinement. We then focus on how neuronal activity is transformed into the molecular cues that determine and execute synapse refinement. A comprehensive understanding of the mechanisms underlying synapse refinement can lead to novel therapeutic strategies in neuropsychiatric diseases characterized by aberrant synaptic function.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"673-689"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9405276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2023-02-02DOI: 10.1177/10738584221149664
Esra Candar, Ibrahim Demircubuk, Gulgun Sengul
Swedish neuroscientist Bror Anders Rexed lived between 1914 and 2002. He was a renowned neuroscientist and a politician who packed a lot into his 88-year life. Bror Rexed is best known for his works on the description of the cytoarchitectonic organization of the cat spinal cord. Rexed laminae as an eponym is a historical landmark for the spinal cord cytoarchitecture. Rexed's name (particularly his surname) has also been linked to the du-reform in Swedish. In this article, we focus on his works on the central and peripheral nervous systems and translational approaches for neurosurgery, as well as his influence on health policies in Sweden.
瑞典神经科学家 Bror Anders Rexed 生于 1914 年至 2002 年。他是一位知名的神经科学家和政治家,在他 88 年的生命中经历了许多事情。Bror Rexed 以描述猫脊髓细胞结构组织的著作而闻名。雷克塞德层状结构作为一个同名,是脊髓细胞结构的一个历史性里程碑。Rexed的名字(尤其是他的姓)还与瑞典的du-reform有关。在本文中,我们将重点介绍他在中枢和周围神经系统、神经外科转化方法方面的研究成果,以及他对瑞典卫生政策的影响。
{"title":"Bror Rexed (1914-2002) and His Pioneer Works on Spinal Cord Cytoarchitecture.","authors":"Esra Candar, Ibrahim Demircubuk, Gulgun Sengul","doi":"10.1177/10738584221149664","DOIUrl":"10.1177/10738584221149664","url":null,"abstract":"<p><p>Swedish neuroscientist Bror Anders Rexed lived between 1914 and 2002. He was a renowned neuroscientist and a politician who packed a lot into his 88-year life. Bror Rexed is best known for his works on the description of the cytoarchitectonic organization of the cat spinal cord. <i>Rexed laminae</i> as an eponym is a historical landmark for the spinal cord cytoarchitecture. Rexed's name (particularly his surname) has also been linked to the <i>du-reform</i> in Swedish. In this article, we focus on his works on the central and peripheral nervous systems and translational approaches for neurosurgery, as well as his influence on health policies in Sweden.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"666-672"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10736715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2023-07-22DOI: 10.1177/10738584231185530
Ja Eun Choi, Bong-Kiun Kaang
The brain has the powerful ability to transform experiences into anatomic maps and continuously integrate massive amounts of information to form new memories. The manner in which the brain performs these processes has been investigated extensively for decades. Emerging reports suggest that dendritic spines are the structural basis of information storage. The complex orchestration of functional and structural dynamics of dendritic spines is associated with learning and memory. Owing to advancements in techniques, more precise observations and manipulation enable the investigation of dendritic spines and provide clues to the challenging question of how memories reside in dendritic spines. In this review, we summarize the remarkable progress made in revealing the role of dendritic spines in fear memory and the techniques used in this field.
{"title":"Plasticity of Dendritic Spines Underlies Fear Memory.","authors":"Ja Eun Choi, Bong-Kiun Kaang","doi":"10.1177/10738584231185530","DOIUrl":"10.1177/10738584231185530","url":null,"abstract":"<p><p>The brain has the powerful ability to transform experiences into anatomic maps and continuously integrate massive amounts of information to form new memories. The manner in which the brain performs these processes has been investigated extensively for decades. Emerging reports suggest that dendritic spines are the structural basis of information storage. The complex orchestration of functional and structural dynamics of dendritic spines is associated with learning and memory. Owing to advancements in techniques, more precise observations and manipulation enable the investigation of dendritic spines and provide clues to the challenging question of how memories reside in dendritic spines. In this review, we summarize the remarkable progress made in revealing the role of dendritic spines in fear memory and the techniques used in this field.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"690-703"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10227652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2023-08-31DOI: 10.1177/10738584231189435
Danny Adrian Spampinato, Elias Paolo Casula, Giacomo Koch
The cerebellum and its thalamic projections to the primary motor cortex (M1) are well known to play an essential role in executing daily actions. Anatomic investigations in animals and postmortem humans have established the reciprocal connections between these regions; however, how these pathways can shape cortical activity in behavioral contexts and help promote recovery in neuropathological conditions remains not well understood. The present review aims to provide a comprehensive description of these pathways in animals and humans and discuss how novel noninvasive brain stimulation (NIBS) methods can be used to gain a deeper understanding of the cerebellar-M1 connections. In the first section, we focus on recent animal literature that details how information sent from the cerebellum and thalamus is integrated into an broad network of cortical motor neurons. We then discuss how NIBS approaches in humans can be used to reliably assess the connectivity between the cerebellum and M1. Moreover, we provide the latest perspectives on using advanced NIBS approaches to investigate and modulate multiple cerebellar-cortical networks involved in movement behavior and plasticity. Finally, we discuss how these emerging methods have been used in translation research to produce long-lasting modifications of cerebellar-thalamic-M1 to restore cortical activity and motor function in neurologic patients.
{"title":"The Cerebellum and the Motor Cortex: Multiple Networks Controlling Multiple Aspects of Behavior.","authors":"Danny Adrian Spampinato, Elias Paolo Casula, Giacomo Koch","doi":"10.1177/10738584231189435","DOIUrl":"10.1177/10738584231189435","url":null,"abstract":"<p><p>The cerebellum and its thalamic projections to the primary motor cortex (M1) are well known to play an essential role in executing daily actions. Anatomic investigations in animals and postmortem humans have established the reciprocal connections between these regions; however, how these pathways can shape cortical activity in behavioral contexts and help promote recovery in neuropathological conditions remains not well understood. The present review aims to provide a comprehensive description of these pathways in animals and humans and discuss how novel noninvasive brain stimulation (NIBS) methods can be used to gain a deeper understanding of the cerebellar-M1 connections. In the first section, we focus on recent animal literature that details how information sent from the cerebellum and thalamus is integrated into an broad network of cortical motor neurons. We then discuss how NIBS approaches in humans can be used to reliably assess the connectivity between the cerebellum and M1. Moreover, we provide the latest perspectives on using advanced NIBS approaches to investigate and modulate multiple cerebellar-cortical networks involved in movement behavior and plasticity. Finally, we discuss how these emerging methods have been used in translation research to produce long-lasting modifications of cerebellar-thalamic-M1 to restore cortical activity and motor function in neurologic patients.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"723-743"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10476965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2023-08-24DOI: 10.1177/10738584231190839
Alexandra Moffat, Carol Schuurmans
The cerebral cortex develops through a carefully conscripted series of cellular and molecular events that culminate in the production of highly specialized neuronal and glial cells. During development, cortical neurons and glia acquire a precise cellular arrangement and architecture to support higher-order cognitive functioning. Decades of study using rodent models, naturally gyrencephalic animal models, human pathology specimens, and, recently, human cerebral organoids, reveal that rodents recapitulate some but not all the cellular and molecular features of human cortices. Whereas rodent cortices are smooth-surfaced or lissencephalic, larger mammals, including humans and nonhuman primates, have highly folded/gyrencephalic cortices that accommodate an expansion in neuronal mass and increase in surface area. Several genes have evolved to drive cortical gyrification, arising from gene duplications or de novo origins, or by alterations to the structure/function of ancestral genes or their gene regulatory regions. Primary cortical folds arise in stereotypical locations, prefigured by a molecular "blueprint" that is set up by several signaling pathways (e.g., Notch, Fgf, Wnt, PI3K, Shh) and influenced by the extracellular matrix. Mutations that affect neural progenitor cell proliferation and/or neurogenesis, predominantly of upper-layer neurons, perturb cortical gyrification. Below we review the molecular drivers of cortical folding and their roles in disease.
{"title":"The Control of Cortical Folding: Multiple Mechanisms, Multiple Models.","authors":"Alexandra Moffat, Carol Schuurmans","doi":"10.1177/10738584231190839","DOIUrl":"10.1177/10738584231190839","url":null,"abstract":"<p><p>The cerebral cortex develops through a carefully conscripted series of cellular and molecular events that culminate in the production of highly specialized neuronal and glial cells. During development, cortical neurons and glia acquire a precise cellular arrangement and architecture to support higher-order cognitive functioning. Decades of study using rodent models, naturally gyrencephalic animal models, human pathology specimens, and, recently, human cerebral organoids, reveal that rodents recapitulate some but not all the cellular and molecular features of human cortices. Whereas rodent cortices are smooth-surfaced or lissencephalic, larger mammals, including humans and nonhuman primates, have highly folded/gyrencephalic cortices that accommodate an expansion in neuronal mass and increase in surface area. Several genes have evolved to drive cortical gyrification, arising from gene duplications or de novo origins, or by alterations to the structure/function of ancestral genes or their gene regulatory regions. Primary cortical folds arise in stereotypical locations, prefigured by a molecular \"blueprint\" that is set up by several signaling pathways (e.g., Notch, Fgf, Wnt, PI3K, Shh) and influenced by the extracellular matrix. Mutations that affect neural progenitor cell proliferation and/or neurogenesis, predominantly of upper-layer neurons, perturb cortical gyrification. Below we review the molecular drivers of cortical folding and their roles in disease.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"704-722"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10058100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-05-07DOI: 10.1177/10738584241252576
Jian Meng, Lingliang Zhang, Yun-Wu Zhang
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder with onset in childhood. The molecular mechanisms underlying ASD have not yet been elucidated completely. Evidence has emerged to support a link between microglial dysfunction and the etiology of ASD. This review summarizes current research on microglial dysfunction in neuroinflammation and synaptic pruning, which are associated with altered transcriptomes and autophagy in ASD. Dysbiosis of gut microbiota in ASD and its correlation with microglial dysfunction are also addressed.
{"title":"Microglial Dysfunction in Autism Spectrum Disorder.","authors":"Jian Meng, Lingliang Zhang, Yun-Wu Zhang","doi":"10.1177/10738584241252576","DOIUrl":"10.1177/10738584241252576","url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder with onset in childhood. The molecular mechanisms underlying ASD have not yet been elucidated completely. Evidence has emerged to support a link between microglial dysfunction and the etiology of ASD. This review summarizes current research on microglial dysfunction in neuroinflammation and synaptic pruning, which are associated with altered transcriptomes and autophagy in ASD. Dysbiosis of gut microbiota in ASD and its correlation with microglial dysfunction are also addressed.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"744-758"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140865628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}