首页 > 最新文献

Neuroscientist最新文献

英文 中文
Excitation-Inhibition Balance, Neural Criticality, and Activities in Neuronal Circuits. 神经元回路中的兴奋抑制平衡、神经临界和活动。
IF 3.5 3区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2025-02-01 Epub Date: 2024-01-31 DOI: 10.1177/10738584231221766
Junhao Liang, Zhuda Yang, Changsong Zhou

Neural activities in local circuits exhibit complex and multilevel dynamic features. Individual neurons spike irregularly, which is believed to originate from receiving balanced amounts of excitatory and inhibitory inputs, known as the excitation-inhibition balance. The spatial-temporal cascades of clustered neuronal spikes occur in variable sizes and durations, manifested as neural avalanches with scale-free features. These may be explained by the neural criticality hypothesis, which posits that neural systems operate around the transition between distinct dynamic states. Here, we summarize the experimental evidence for and the underlying theory of excitation-inhibition balance and neural criticality. Furthermore, we review recent studies of excitatory-inhibitory networks with synaptic kinetics as a simple solution to reconcile these two apparently distinct theories in a single circuit model. This provides a more unified understanding of multilevel neural activities in local circuits, from spontaneous to stimulus-response dynamics.

局部回路中的神经活动呈现出复杂和多层次的动态特征。单个神经元会不规则地激增,这被认为是由于接受了均衡的兴奋性和抑制性输入,即所谓的兴奋-抑制平衡。集群神经元尖峰的时空级联在大小和持续时间上各不相同,表现为具有无尺度特征的神经雪崩。神经临界假说认为,神经系统是在不同的动态状态之间的转换过程中运行的。在此,我们总结了兴奋-抑制平衡和神经临界的实验证据和基本理论。此外,我们还回顾了最近对具有突触动力学的兴奋-抑制网络的研究,这是一种在单一电路模型中调和这两种看似不同理论的简单解决方案。这使我们对局部电路中从自发到刺激-反应动力学的多层次神经活动有了更统一的认识。
{"title":"Excitation-Inhibition Balance, Neural Criticality, and Activities in Neuronal Circuits.","authors":"Junhao Liang, Zhuda Yang, Changsong Zhou","doi":"10.1177/10738584231221766","DOIUrl":"10.1177/10738584231221766","url":null,"abstract":"<p><p>Neural activities in local circuits exhibit complex and multilevel dynamic features. Individual neurons spike irregularly, which is believed to originate from receiving balanced amounts of excitatory and inhibitory inputs, known as the <i>excitation-inhibition balance</i>. The spatial-temporal cascades of clustered neuronal spikes occur in variable sizes and durations, manifested as neural avalanches with scale-free features. These may be explained by the neural criticality hypothesis, which posits that neural systems operate around the transition between distinct dynamic states. Here, we summarize the experimental evidence for and the underlying theory of excitation-inhibition balance and neural criticality. Furthermore, we review recent studies of excitatory-inhibitory networks with synaptic kinetics as a simple solution to reconcile these two apparently distinct theories in a single circuit model. This provides a more unified understanding of multilevel neural activities in local circuits, from spontaneous to stimulus-response dynamics.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"31-46"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139643231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transfer of Tactile Learning to Untrained Body Parts: Emerging Cortical Mechanisms. 将触觉学习转移到未经训练的身体部位:新出现的皮层机制
IF 3.5 3区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2025-02-01 Epub Date: 2024-05-30 DOI: 10.1177/10738584241256277
Sebastian M Frank

Pioneering investigations in the mid-19th century revealed that the perception of tactile cues presented to the surface of the skin improves with training, which is referred to as tactile learning. Surprisingly, tactile learning also occurs for body parts and skin locations that are not physically involved in the training. For example, after training of a finger, tactile learning transfers to adjacent untrained fingers. This suggests that the transfer of tactile learning follows a somatotopic pattern and involves brain regions such as the primary somatosensory cortex (S1), in which the trained and untrained body parts and skin locations are represented close to each other. However, other results showed that transfer occurs between body parts that are not represented close to each other in S1-for example, between the hand and the foot. These and similar findings have led to the suggestion of additional cortical mechanisms to explain the transfer of tactile learning. Here, different mechanisms are reviewed, and the extent to which they can explain the transfer of tactile learning is discussed. What all of these mechanisms have in common is that they assume a representational or functional relationship between the trained and untrained body parts and skin locations. However, none of these mechanisms alone can explain the complex pattern of transfer results, and it is likely that different mechanisms interact to enable transfer, perhaps in concert with higher somatosensory and decision-making areas.

19 世纪中叶的开创性研究表明,对皮肤表面触觉线索的感知会随着训练的进行而提高,这被称为触觉学习。令人惊讶的是,触觉学习也会发生在没有参与训练的身体部位和皮肤位置。例如,在对手指进行训练后,触觉学习会转移到相邻的未经训练的手指上。这表明,触觉学习的迁移遵循体位模式,涉及初级体感皮层(S1)等脑区,在这些脑区中,受过训练和未受过训练的身体部位和皮肤位置彼此靠近。然而,其他研究结果表明,迁移发生在身体部位之间,而这些部位在 S1 中的表现并不接近--例如,在手和脚之间。这些研究结果和类似的研究结果促使人们提出了更多的皮层机制来解释触觉学习的迁移。在此,我们将对不同的机制进行回顾,并讨论它们在多大程度上可以解释触觉学习的迁移。所有这些机制的共同点是,它们都假定训练过和未训练过的身体部位和皮肤位置之间存在表征或功能关系。然而,这些机制都无法单独解释复杂的迁移结果模式,很可能是不同的机制相互作用促成了迁移,也许是与高级躯体感觉和决策区域协同作用。
{"title":"Transfer of Tactile Learning to Untrained Body Parts: Emerging Cortical Mechanisms.","authors":"Sebastian M Frank","doi":"10.1177/10738584241256277","DOIUrl":"10.1177/10738584241256277","url":null,"abstract":"<p><p>Pioneering investigations in the mid-19th century revealed that the perception of tactile cues presented to the surface of the skin improves with training, which is referred to as <i>tactile learning</i>. Surprisingly, tactile learning also occurs for body parts and skin locations that are not physically involved in the training. For example, after training of a finger, tactile learning transfers to adjacent untrained fingers. This suggests that the transfer of tactile learning follows a somatotopic pattern and involves brain regions such as the primary somatosensory cortex (S1), in which the trained and untrained body parts and skin locations are represented close to each other. However, other results showed that transfer occurs between body parts that are not represented close to each other in S1-for example, between the hand and the foot. These and similar findings have led to the suggestion of additional cortical mechanisms to explain the transfer of tactile learning. Here, different mechanisms are reviewed, and the extent to which they can explain the transfer of tactile learning is discussed. What all of these mechanisms have in common is that they assume a representational or functional relationship between the trained and untrained body parts and skin locations. However, none of these mechanisms alone can explain the complex pattern of transfer results, and it is likely that different mechanisms interact to enable transfer, perhaps in concert with higher somatosensory and decision-making areas.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"98-114"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronic Fatigue Syndrome: Pulling Back the Curtains. 慢性疲劳综合症:拉开窗帘。
IF 3.5 3区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2025-02-01 DOI: 10.1177/10738584241308723
{"title":"Chronic Fatigue Syndrome: Pulling Back the Curtains.","authors":"","doi":"10.1177/10738584241308723","DOIUrl":"https://doi.org/10.1177/10738584241308723","url":null,"abstract":"","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"31 1","pages":"5"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143383907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adenosine and Cortical Plasticity. 腺苷与皮质可塑性
IF 3.5 3区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2025-02-01 Epub Date: 2024-03-18 DOI: 10.1177/10738584241236773
Irene Martínez-Gallego, Antonio Rodríguez-Moreno

Brain plasticity is the ability of the nervous system to change its structure and functioning in response to experiences. These changes occur mainly at synaptic connections, and this plasticity is named synaptic plasticity. During postnatal development, environmental influences trigger changes in synaptic plasticity that will play a crucial role in the formation and refinement of brain circuits and their functions in adulthood. One of the greatest challenges of present neuroscience is to try to explain how synaptic connections change and cortical maps are formed and modified to generate the most suitable adaptive behavior after different external stimuli. Adenosine is emerging as a key player in these plastic changes at different brain areas. Here, we review the current knowledge of the mechanisms responsible for the induction and duration of synaptic plasticity at different postnatal brain development stages in which adenosine, probably released by astrocytes, directly participates in the induction of long-term synaptic plasticity and in the control of the duration of plasticity windows at different cortical synapses. In addition, we comment on the role of the different adenosine receptors in brain diseases and on the potential therapeutic effects of acting via adenosine receptors.

大脑可塑性是神经系统根据经验改变其结构和功能的能力。这些变化主要发生在突触连接处,这种可塑性被命名为突触可塑性。在出生后的发育过程中,环境影响会引发突触可塑性的变化,这些变化将在成年后大脑回路及其功能的形成和完善过程中发挥至关重要的作用。目前神经科学面临的最大挑战之一,就是试图解释突触连接是如何变化的,大脑皮层地图是如何形成和修改的,从而在不同的外部刺激后产生最合适的适应行为。腺苷正在成为不同脑区发生这些可塑性变化的关键因素。腺苷可能由星形胶质细胞释放,直接参与长期突触可塑性的诱导和不同皮质突触可塑性窗口持续时间的控制。此外,我们还评论了不同腺苷受体在脑部疾病中的作用,以及通过腺苷受体发挥作用的潜在治疗效果。
{"title":"Adenosine and Cortical Plasticity.","authors":"Irene Martínez-Gallego, Antonio Rodríguez-Moreno","doi":"10.1177/10738584241236773","DOIUrl":"10.1177/10738584241236773","url":null,"abstract":"<p><p>Brain plasticity is the ability of the nervous system to change its structure and functioning in response to experiences. These changes occur mainly at synaptic connections, and this plasticity is named <i>synaptic plasticity</i>. During postnatal development, environmental influences trigger changes in synaptic plasticity that will play a crucial role in the formation and refinement of brain circuits and their functions in adulthood. One of the greatest challenges of present neuroscience is to try to explain how synaptic connections change and cortical maps are formed and modified to generate the most suitable adaptive behavior after different external stimuli. Adenosine is emerging as a key player in these plastic changes at different brain areas. Here, we review the current knowledge of the mechanisms responsible for the induction and duration of synaptic plasticity at different postnatal brain development stages in which adenosine, probably released by astrocytes, directly participates in the induction of long-term synaptic plasticity and in the control of the duration of plasticity windows at different cortical synapses. In addition, we comment on the role of the different adenosine receptors in brain diseases and on the potential therapeutic effects of acting via adenosine receptors.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"47-64"},"PeriodicalIF":3.5,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140144480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activity-Dependent Synapse Refinement: From Mechanisms to Molecules. 活动依赖性突触细化:从机制到分子。
IF 3.5 3区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-12-01 Epub Date: 2023-05-04 DOI: 10.1177/10738584231170167
Sivapratha Nagappan-Chettiar, Timothy J Burbridge, Hisashi Umemori

The refinement of immature neuronal networks into efficient mature ones is critical to nervous system development and function. This process of synapse refinement is driven by the neuronal activity-dependent competition of converging synaptic inputs, resulting in the elimination of weak inputs and the stabilization of strong ones. Neuronal activity, whether in the form of spontaneous activity or experience-evoked activity, is known to drive synapse refinement in numerous brain regions. More recent studies are now revealing the manner and mechanisms by which neuronal activity is detected and converted into molecular signals that appropriately regulate the elimination of weaker synapses and stabilization of stronger ones. Here, we highlight how spontaneous activity and evoked activity instruct neuronal activity-dependent competition during synapse refinement. We then focus on how neuronal activity is transformed into the molecular cues that determine and execute synapse refinement. A comprehensive understanding of the mechanisms underlying synapse refinement can lead to novel therapeutic strategies in neuropsychiatric diseases characterized by aberrant synaptic function.

将不成熟的神经元网络完善为高效的成熟网络,对神经系统的发育和功能至关重要。这一突触细化过程是由神经元活动驱动的,神经元活动会对汇聚的突触输入进行竞争,从而导致弱输入的消除和强输入的稳定。众所周知,神经元活动,无论是自发活动还是经验诱发活动,都会在许多脑区驱动突触细化。最近的研究揭示了神经元活动被检测到并转化为分子信号的方式和机制,这些信号能适当地调节弱突触的消除和强突触的稳定。在这里,我们将重点介绍自发活动和诱发活动如何在突触细化过程中指导神经元活动依赖性竞争。然后,我们将重点关注神经元活动如何转化为决定和执行突触细化的分子线索。全面了解突触细化的内在机制可以为以突触功能异常为特征的神经精神疾病找到新的治疗策略。
{"title":"Activity-Dependent Synapse Refinement: From Mechanisms to Molecules.","authors":"Sivapratha Nagappan-Chettiar, Timothy J Burbridge, Hisashi Umemori","doi":"10.1177/10738584231170167","DOIUrl":"10.1177/10738584231170167","url":null,"abstract":"<p><p>The refinement of immature neuronal networks into efficient mature ones is critical to nervous system development and function. This process of synapse refinement is driven by the neuronal activity-dependent competition of converging synaptic inputs, resulting in the elimination of weak inputs and the stabilization of strong ones. Neuronal activity, whether in the form of spontaneous activity or experience-evoked activity, is known to drive synapse refinement in numerous brain regions. More recent studies are now revealing the manner and mechanisms by which neuronal activity is detected and converted into molecular signals that appropriately regulate the elimination of weaker synapses and stabilization of stronger ones. Here, we highlight how spontaneous activity and evoked activity instruct neuronal activity-dependent competition during synapse refinement. We then focus on how neuronal activity is transformed into the molecular cues that determine and execute synapse refinement. A comprehensive understanding of the mechanisms underlying synapse refinement can lead to novel therapeutic strategies in neuropsychiatric diseases characterized by aberrant synaptic function.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"673-689"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9405276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bror Rexed (1914-2002) and His Pioneer Works on Spinal Cord Cytoarchitecture. Bror Rexed(1914-2002 年)和他在脊髓细胞结构方面的开创性工作。
IF 3.5 3区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-12-01 Epub Date: 2023-02-02 DOI: 10.1177/10738584221149664
Esra Candar, Ibrahim Demircubuk, Gulgun Sengul

Swedish neuroscientist Bror Anders Rexed lived between 1914 and 2002. He was a renowned neuroscientist and a politician who packed a lot into his 88-year life. Bror Rexed is best known for his works on the description of the cytoarchitectonic organization of the cat spinal cord. Rexed laminae as an eponym is a historical landmark for the spinal cord cytoarchitecture. Rexed's name (particularly his surname) has also been linked to the du-reform in Swedish. In this article, we focus on his works on the central and peripheral nervous systems and translational approaches for neurosurgery, as well as his influence on health policies in Sweden.

瑞典神经科学家 Bror Anders Rexed 生于 1914 年至 2002 年。他是一位知名的神经科学家和政治家,在他 88 年的生命中经历了许多事情。Bror Rexed 以描述猫脊髓细胞结构组织的著作而闻名。雷克塞德层状结构作为一个同名,是脊髓细胞结构的一个历史性里程碑。Rexed的名字(尤其是他的姓)还与瑞典的du-reform有关。在本文中,我们将重点介绍他在中枢和周围神经系统、神经外科转化方法方面的研究成果,以及他对瑞典卫生政策的影响。
{"title":"Bror Rexed (1914-2002) and His Pioneer Works on Spinal Cord Cytoarchitecture.","authors":"Esra Candar, Ibrahim Demircubuk, Gulgun Sengul","doi":"10.1177/10738584221149664","DOIUrl":"10.1177/10738584221149664","url":null,"abstract":"<p><p>Swedish neuroscientist Bror Anders Rexed lived between 1914 and 2002. He was a renowned neuroscientist and a politician who packed a lot into his 88-year life. Bror Rexed is best known for his works on the description of the cytoarchitectonic organization of the cat spinal cord. <i>Rexed laminae</i> as an eponym is a historical landmark for the spinal cord cytoarchitecture. Rexed's name (particularly his surname) has also been linked to the <i>du-reform</i> in Swedish. In this article, we focus on his works on the central and peripheral nervous systems and translational approaches for neurosurgery, as well as his influence on health policies in Sweden.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"666-672"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10736715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasticity of Dendritic Spines Underlies Fear Memory. 树突棘的可塑性是恐惧记忆的基础
IF 3.5 3区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-12-01 Epub Date: 2023-07-22 DOI: 10.1177/10738584231185530
Ja Eun Choi, Bong-Kiun Kaang

The brain has the powerful ability to transform experiences into anatomic maps and continuously integrate massive amounts of information to form new memories. The manner in which the brain performs these processes has been investigated extensively for decades. Emerging reports suggest that dendritic spines are the structural basis of information storage. The complex orchestration of functional and structural dynamics of dendritic spines is associated with learning and memory. Owing to advancements in techniques, more precise observations and manipulation enable the investigation of dendritic spines and provide clues to the challenging question of how memories reside in dendritic spines. In this review, we summarize the remarkable progress made in revealing the role of dendritic spines in fear memory and the techniques used in this field.

大脑具有将经验转化为解剖图并不断整合大量信息以形成新记忆的强大能力。几十年来,人们对大脑执行这些过程的方式进行了广泛研究。最新报告表明,树突棘是信息存储的结构基础。树突棘的功能和结构动态的复杂协调与学习和记忆有关。由于技术的进步,更精确的观察和操作使树突棘的研究成为可能,并为记忆如何驻留在树突棘这一具有挑战性的问题提供了线索。在这篇综述中,我们总结了在揭示树突棘在恐惧记忆中的作用方面所取得的显著进展以及该领域所使用的技术。
{"title":"Plasticity of Dendritic Spines Underlies Fear Memory.","authors":"Ja Eun Choi, Bong-Kiun Kaang","doi":"10.1177/10738584231185530","DOIUrl":"10.1177/10738584231185530","url":null,"abstract":"<p><p>The brain has the powerful ability to transform experiences into anatomic maps and continuously integrate massive amounts of information to form new memories. The manner in which the brain performs these processes has been investigated extensively for decades. Emerging reports suggest that dendritic spines are the structural basis of information storage. The complex orchestration of functional and structural dynamics of dendritic spines is associated with learning and memory. Owing to advancements in techniques, more precise observations and manipulation enable the investigation of dendritic spines and provide clues to the challenging question of how memories reside in dendritic spines. In this review, we summarize the remarkable progress made in revealing the role of dendritic spines in fear memory and the techniques used in this field.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"690-703"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10227652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Cerebellum and the Motor Cortex: Multiple Networks Controlling Multiple Aspects of Behavior. 小脑和运动皮层:多个网络控制行为的多个方面
IF 3.5 3区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-12-01 Epub Date: 2023-08-31 DOI: 10.1177/10738584231189435
Danny Adrian Spampinato, Elias Paolo Casula, Giacomo Koch

The cerebellum and its thalamic projections to the primary motor cortex (M1) are well known to play an essential role in executing daily actions. Anatomic investigations in animals and postmortem humans have established the reciprocal connections between these regions; however, how these pathways can shape cortical activity in behavioral contexts and help promote recovery in neuropathological conditions remains not well understood. The present review aims to provide a comprehensive description of these pathways in animals and humans and discuss how novel noninvasive brain stimulation (NIBS) methods can be used to gain a deeper understanding of the cerebellar-M1 connections. In the first section, we focus on recent animal literature that details how information sent from the cerebellum and thalamus is integrated into an broad network of cortical motor neurons. We then discuss how NIBS approaches in humans can be used to reliably assess the connectivity between the cerebellum and M1. Moreover, we provide the latest perspectives on using advanced NIBS approaches to investigate and modulate multiple cerebellar-cortical networks involved in movement behavior and plasticity. Finally, we discuss how these emerging methods have been used in translation research to produce long-lasting modifications of cerebellar-thalamic-M1 to restore cortical activity and motor function in neurologic patients.

众所周知,小脑及其丘脑向初级运动皮层(M1)的投射在执行日常动作中起着至关重要的作用。对动物和死后人类进行的解剖学研究已经确定了这些区域之间的相互联系;然而,这些通路如何在行为环境中影响皮层活动并帮助促进神经病变情况下的恢复,目前仍不十分清楚。本综述旨在全面描述动物和人类的这些通路,并讨论如何利用新型无创脑刺激(NIBS)方法来深入了解小脑-M1 连接。在第一部分中,我们将重点讨论最近的动物文献,这些文献详细介绍了小脑和丘脑发出的信息如何整合到皮层运动神经元的广泛网络中。然后,我们将讨论如何在人体中使用 NIBS 方法来可靠地评估小脑和 M1 之间的连接性。此外,我们还提供了使用先进的 NIBS 方法研究和调节参与运动行为和可塑性的多个小脑-皮层网络的最新视角。最后,我们将讨论如何在转化研究中使用这些新兴方法,对小脑-丘脑-M1 进行长效调节,以恢复神经系统患者的皮质活动和运动功能。
{"title":"The Cerebellum and the Motor Cortex: Multiple Networks Controlling Multiple Aspects of Behavior.","authors":"Danny Adrian Spampinato, Elias Paolo Casula, Giacomo Koch","doi":"10.1177/10738584231189435","DOIUrl":"10.1177/10738584231189435","url":null,"abstract":"<p><p>The cerebellum and its thalamic projections to the primary motor cortex (M1) are well known to play an essential role in executing daily actions. Anatomic investigations in animals and postmortem humans have established the reciprocal connections between these regions; however, how these pathways can shape cortical activity in behavioral contexts and help promote recovery in neuropathological conditions remains not well understood. The present review aims to provide a comprehensive description of these pathways in animals and humans and discuss how novel noninvasive brain stimulation (NIBS) methods can be used to gain a deeper understanding of the cerebellar-M1 connections. In the first section, we focus on recent animal literature that details how information sent from the cerebellum and thalamus is integrated into an broad network of cortical motor neurons. We then discuss how NIBS approaches in humans can be used to reliably assess the connectivity between the cerebellum and M1. Moreover, we provide the latest perspectives on using advanced NIBS approaches to investigate and modulate multiple cerebellar-cortical networks involved in movement behavior and plasticity. Finally, we discuss how these emerging methods have been used in translation research to produce long-lasting modifications of cerebellar-thalamic-M1 to restore cortical activity and motor function in neurologic patients.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"723-743"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10476965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Control of Cortical Folding: Multiple Mechanisms, Multiple Models. 皮质折叠的控制:多种机制,多种模式。
IF 3.5 3区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-12-01 Epub Date: 2023-08-24 DOI: 10.1177/10738584231190839
Alexandra Moffat, Carol Schuurmans

The cerebral cortex develops through a carefully conscripted series of cellular and molecular events that culminate in the production of highly specialized neuronal and glial cells. During development, cortical neurons and glia acquire a precise cellular arrangement and architecture to support higher-order cognitive functioning. Decades of study using rodent models, naturally gyrencephalic animal models, human pathology specimens, and, recently, human cerebral organoids, reveal that rodents recapitulate some but not all the cellular and molecular features of human cortices. Whereas rodent cortices are smooth-surfaced or lissencephalic, larger mammals, including humans and nonhuman primates, have highly folded/gyrencephalic cortices that accommodate an expansion in neuronal mass and increase in surface area. Several genes have evolved to drive cortical gyrification, arising from gene duplications or de novo origins, or by alterations to the structure/function of ancestral genes or their gene regulatory regions. Primary cortical folds arise in stereotypical locations, prefigured by a molecular "blueprint" that is set up by several signaling pathways (e.g., Notch, Fgf, Wnt, PI3K, Shh) and influenced by the extracellular matrix. Mutations that affect neural progenitor cell proliferation and/or neurogenesis, predominantly of upper-layer neurons, perturb cortical gyrification. Below we review the molecular drivers of cortical folding and their roles in disease.

大脑皮层的发育经历了一系列精心设计的细胞和分子过程,最终形成高度特化的神经元和神经胶质细胞。在发育过程中,大脑皮层神经元和胶质细胞获得了精确的细胞排列和结构,以支持高阶认知功能。数十年来利用啮齿动物模型、自然颅脑动物模型、人类病理标本以及最近的人类脑器质性组织进行的研究表明,啮齿动物再现了人类大脑皮层的部分而非全部细胞和分子特征。啮齿类动物的大脑皮层表面光滑或呈裂脑状,而包括人类和非人灵长类在内的大型哺乳动物的大脑皮层则呈高度折叠/腱脑状,可容纳神经元数量的增加和表面积的扩大。一些基因的进化推动了大脑皮层的回旋,这些基因产生于基因复制或新起源,或通过改变祖先基因或其基因调控区的结构/功能而产生。原发性皮质褶皱出现在刻板的位置,其分子 "蓝图 "由几种信号通路(如 Notch、Fgf、Wnt、PI3K、Shh)预设,并受细胞外基质的影响。影响神经祖细胞增殖和/或神经发生(主要是上层神经元)的突变会扰乱大脑皮层的回旋。下面我们将回顾大脑皮层折叠的分子驱动因素及其在疾病中的作用。
{"title":"The Control of Cortical Folding: Multiple Mechanisms, Multiple Models.","authors":"Alexandra Moffat, Carol Schuurmans","doi":"10.1177/10738584231190839","DOIUrl":"10.1177/10738584231190839","url":null,"abstract":"<p><p>The cerebral cortex develops through a carefully conscripted series of cellular and molecular events that culminate in the production of highly specialized neuronal and glial cells. During development, cortical neurons and glia acquire a precise cellular arrangement and architecture to support higher-order cognitive functioning. Decades of study using rodent models, naturally gyrencephalic animal models, human pathology specimens, and, recently, human cerebral organoids, reveal that rodents recapitulate some but not all the cellular and molecular features of human cortices. Whereas rodent cortices are smooth-surfaced or lissencephalic, larger mammals, including humans and nonhuman primates, have highly folded/gyrencephalic cortices that accommodate an expansion in neuronal mass and increase in surface area. Several genes have evolved to drive cortical gyrification, arising from gene duplications or de novo origins, or by alterations to the structure/function of ancestral genes or their gene regulatory regions. Primary cortical folds arise in stereotypical locations, prefigured by a molecular \"blueprint\" that is set up by several signaling pathways (e.g., Notch, Fgf, Wnt, PI3K, Shh) and influenced by the extracellular matrix. Mutations that affect neural progenitor cell proliferation and/or neurogenesis, predominantly of upper-layer neurons, perturb cortical gyrification. Below we review the molecular drivers of cortical folding and their roles in disease.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"704-722"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10058100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglial Dysfunction in Autism Spectrum Disorder. 自闭症谱系障碍中的小胶质细胞功能障碍
IF 3.5 3区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-12-01 Epub Date: 2024-05-07 DOI: 10.1177/10738584241252576
Jian Meng, Lingliang Zhang, Yun-Wu Zhang

Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder with onset in childhood. The molecular mechanisms underlying ASD have not yet been elucidated completely. Evidence has emerged to support a link between microglial dysfunction and the etiology of ASD. This review summarizes current research on microglial dysfunction in neuroinflammation and synaptic pruning, which are associated with altered transcriptomes and autophagy in ASD. Dysbiosis of gut microbiota in ASD and its correlation with microglial dysfunction are also addressed.

自闭症谱系障碍(ASD)是一种发病于儿童期的高度异质性神经发育障碍。自闭症谱系障碍的分子机制尚未完全阐明。已有证据表明,小胶质细胞功能障碍与 ASD 的病因之间存在联系。本综述总结了目前有关神经炎症和突触修剪中的小胶质细胞功能障碍的研究,这些障碍与 ASD 中转录组和自噬的改变有关。此外,还探讨了 ASD 中肠道微生物群的菌群失调及其与微神经胶质细胞功能障碍的相关性。
{"title":"Microglial Dysfunction in Autism Spectrum Disorder.","authors":"Jian Meng, Lingliang Zhang, Yun-Wu Zhang","doi":"10.1177/10738584241252576","DOIUrl":"10.1177/10738584241252576","url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder with onset in childhood. The molecular mechanisms underlying ASD have not yet been elucidated completely. Evidence has emerged to support a link between microglial dysfunction and the etiology of ASD. This review summarizes current research on microglial dysfunction in neuroinflammation and synaptic pruning, which are associated with altered transcriptomes and autophagy in ASD. Dysbiosis of gut microbiota in ASD and its correlation with microglial dysfunction are also addressed.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"744-758"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140865628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Neuroscientist
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1