Pub Date : 2023-06-01DOI: 10.1177/10738584211069061
Hang Zeng, Siyi Chen, Gereon R Fink, Ralph Weidner
As nearly all brain functions, perception, motion, and higher-order cognitive functions require coordinated neural information processing within distributed cortical networks. Over the past decades, new theories and techniques emerged that advanced our understanding of how information is transferred between cortical areas. This review surveys critical aspects of interareal information exchange. We begin by examining the brain's structural connectivity, which provides the basic framework for interareal communication. We then illustrate information exchange between cortical areas using the visual system as an example. Next, well-studied and newly proposed theories that may underlie principles of neural communication are reviewed, highlighting recent work that offers new perspectives on interareal information exchange. We finally discuss open questions in the study of the neural mechanisms underlying interareal information exchange.
{"title":"Information Exchange between Cortical Areas: The Visual System as a Model.","authors":"Hang Zeng, Siyi Chen, Gereon R Fink, Ralph Weidner","doi":"10.1177/10738584211069061","DOIUrl":"https://doi.org/10.1177/10738584211069061","url":null,"abstract":"<p><p>As nearly all brain functions, perception, motion, and higher-order cognitive functions require coordinated neural information processing within distributed cortical networks. Over the past decades, new theories and techniques emerged that advanced our understanding of how information is transferred between cortical areas. This review surveys critical aspects of interareal information exchange. We begin by examining the brain's structural connectivity, which provides the basic framework for interareal communication. We then illustrate information exchange between cortical areas using the visual system as an example. Next, well-studied and newly proposed theories that may underlie principles of neural communication are reviewed, highlighting recent work that offers new perspectives on interareal information exchange. We finally discuss open questions in the study of the neural mechanisms underlying interareal information exchange.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"29 3","pages":"370-384"},"PeriodicalIF":5.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9834942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1177/10738584231166317
The NeuroscieNTisT commeNTs ~ The NeuroscieNTisT commeNTs~ The NeuroscieNTisT commeNTs T h e N e u r o s c ie N T is T c o m m e N T s ~ T h e N e u r o s c ie N T is T c o m m e N T s ~ T h e N e u r o s c ie N T is T c o m m e N T s ~ T h e N e u r o s c ie N T is T c o m m e N T s T h e N e u r o s c ie N T is T c o m m e N T s ~ T h e N e u r o s c ie N T is T c o m m e N T s ~ T h e N e u r o s c ie N T is T c o m m e N T s ~ T h e N e u r o s c ie N T is T c o m m e N T s Brain Region–Specific Astrogliosis in Neurotrauma
{"title":"<i>The Neuroscientist</i> Comments.","authors":"","doi":"10.1177/10738584231166317","DOIUrl":"https://doi.org/10.1177/10738584231166317","url":null,"abstract":"The NeuroscieNTisT commeNTs ~ The NeuroscieNTisT commeNTs~ The NeuroscieNTisT commeNTs T h e N e u r o s c ie N T is T c o m m e N T s ~ T h e N e u r o s c ie N T is T c o m m e N T s ~ T h e N e u r o s c ie N T is T c o m m e N T s ~ T h e N e u r o s c ie N T is T c o m m e N T s T h e N e u r o s c ie N T is T c o m m e N T s ~ T h e N e u r o s c ie N T is T c o m m e N T s ~ T h e N e u r o s c ie N T is T c o m m e N T s ~ T h e N e u r o s c ie N T is T c o m m e N T s Brain Region–Specific Astrogliosis in Neurotrauma","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"29 3","pages":"271"},"PeriodicalIF":5.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9410480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1177/10738584231166318
A recent review discussed the evidence that I N i -methyl-d-aspartate receptor (NMDA) hypofunction, neuroimmune dysregulation, and mitochondrial energy metabolism acted through a "central hub" of oxidative stress that resulted in impaired oligodendrocytes and parvalbumin-GABAergic neuron microcircuits that produce the impaired neural synchronization and cognitive, emotional, and social deficits seen in schizophrenia (Cuenod and others 2022) Now, genome-wide polygenic risk scores (GW-PRSs) and pathway-specific polygenic risk scores (PRSs) have been studied in two samples of first episode of psychosis patients. Oxidative stress was the only one of the five pathways that showed significant enrichment in both sample 1 ( I P i <.03) and sample 2 ( I P i <.002) in Oxidative stress and psychosis, (Pistis and others 2022). Now, it has been found that increased neuropsychiatric symptoms correlate with the increased blood oxidative stress toxicity (OSTOX)/antioxidant (ANTIOX) ratio ( I r i SP 2 sp = 0.186) in 120 patients with long COVID and 36 controls. [Extracted from the article] Copyright of Neuroscientist is the property of Sage Publications Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)
{"title":"Perspectives on Neuroscience and Behavior.","authors":"","doi":"10.1177/10738584231166318","DOIUrl":"https://doi.org/10.1177/10738584231166318","url":null,"abstract":"A recent review discussed the evidence that I N i -methyl-d-aspartate receptor (NMDA) hypofunction, neuroimmune dysregulation, and mitochondrial energy metabolism acted through a \"central hub\" of oxidative stress that resulted in impaired oligodendrocytes and parvalbumin-GABAergic neuron microcircuits that produce the impaired neural synchronization and cognitive, emotional, and social deficits seen in schizophrenia (Cuenod and others 2022) Now, genome-wide polygenic risk scores (GW-PRSs) and pathway-specific polygenic risk scores (PRSs) have been studied in two samples of first episode of psychosis patients. Oxidative stress was the only one of the five pathways that showed significant enrichment in both sample 1 ( I P i <.03) and sample 2 ( I P i <.002) in Oxidative stress and psychosis, (Pistis and others 2022). Now, it has been found that increased neuropsychiatric symptoms correlate with the increased blood oxidative stress toxicity (OSTOX)/antioxidant (ANTIOX) ratio ( I r i SP 2 sp = 0.186) in 120 patients with long COVID and 36 controls. [Extracted from the article] Copyright of Neuroscientist is the property of Sage Publications Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"29 3","pages":"272"},"PeriodicalIF":5.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9409341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1177/10738584211069977
Yan Yan, Ailikemu Aierken, Chunjian Wang, Wei Jin, Zhenzhen Quan, Zhe Wang, Hong Qing, Junjun Ni, Juan Zhao
Posttraumatic stress disorder (PTSD) is a psychiatric disorder that is associated with long-lasting memories of traumatic experiences. Extinction and discrimination of fear memory have become therapeutic targets for PTSD. Newly developed optogenetics and advanced in vivo imaging techniques have provided unprecedented spatiotemporal tools to characterize the activity, connectivity, and functionality of specific cell types in complicated neuronal circuits. The use of such tools has offered mechanistic insights into the exquisite organization of the circuitry underlying the extinction and discrimination of fear memory. This review focuses on the acquisition of more detailed, comprehensive, and integrated neural circuits to understand how the brain regulates the extinction and discrimination of fear memory. A future challenge is to translate these researches into effective therapeutic treatment for PTSD from the perspective of precise regulation of the neural circuits associated with the extinction and discrimination of fear memories.
{"title":"Neuronal Circuits Associated with Fear Memory: Potential Therapeutic Targets for Posttraumatic Stress Disorder.","authors":"Yan Yan, Ailikemu Aierken, Chunjian Wang, Wei Jin, Zhenzhen Quan, Zhe Wang, Hong Qing, Junjun Ni, Juan Zhao","doi":"10.1177/10738584211069977","DOIUrl":"https://doi.org/10.1177/10738584211069977","url":null,"abstract":"<p><p>Posttraumatic stress disorder (PTSD) is a psychiatric disorder that is associated with long-lasting memories of traumatic experiences. Extinction and discrimination of fear memory have become therapeutic targets for PTSD. Newly developed optogenetics and advanced in vivo imaging techniques have provided unprecedented spatiotemporal tools to characterize the activity, connectivity, and functionality of specific cell types in complicated neuronal circuits. The use of such tools has offered mechanistic insights into the exquisite organization of the circuitry underlying the extinction and discrimination of fear memory. This review focuses on the acquisition of more detailed, comprehensive, and integrated neural circuits to understand how the brain regulates the extinction and discrimination of fear memory. A future challenge is to translate these researches into effective therapeutic treatment for PTSD from the perspective of precise regulation of the neural circuits associated with the extinction and discrimination of fear memories.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"29 3","pages":"332-351"},"PeriodicalIF":5.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9775357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1177/10738584211067744
Shirley Fecteau
The use of tools to perturb brain activity can generate important insights into brain physiology and offer valuable therapeutic approaches for brain disorders. Furthermore, the potential of such tools to enhance normal behavior has become increasingly recognized, and this has led to the development of various noninvasive technologies that provides a broader access to the human brain. While providing a brief survey of brain manipulation procedures used in the past decades, this review aims at stimulating an informed discussion on the use of these new technologies to investigate the human. It highlights the importance to revisit the past use of this unique armamentarium and proceed to a detailed analysis of its present state, especially in regard to human behavioral regulation.
{"title":"Influencing Human Behavior with Noninvasive Brain Stimulation: Direct Human Brain Manipulation Revisited.","authors":"Shirley Fecteau","doi":"10.1177/10738584211067744","DOIUrl":"https://doi.org/10.1177/10738584211067744","url":null,"abstract":"<p><p>The use of tools to perturb brain activity can generate important insights into brain physiology and offer valuable therapeutic approaches for brain disorders. Furthermore, the potential of such tools to enhance normal behavior has become increasingly recognized, and this has led to the development of various noninvasive technologies that provides a broader access to the human brain. While providing a brief survey of brain manipulation procedures used in the past decades, this review aims at stimulating an informed discussion on the use of these new technologies to investigate the human. It highlights the importance to revisit the past use of this unique armamentarium and proceed to a detailed analysis of its present state, especially in regard to human behavioral regulation.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"29 3","pages":"317-331"},"PeriodicalIF":5.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5b/72/10.1177_10738584211067744.PMC10159214.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9412141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1177/10738584221090836
Michal Fila, Aleksandra Jablkowska, Elzbieta Pawlowska, Janusz Blasiak
Energy generation in the brain to ameliorate energy deficit in migraine leads to oxidative stress as it is associated with reactive oxygen species (ROS) that may damage DNA and show a pronociceptive action in meninges mediated by transient receptor potential cation channel subfamily A member 1 (TRPA1). Recent studies show high levels of single-strand breaks (SSBs) at specific sites in the genome of postmitotic neurons and point at SSB repair (SSBR) as an important element of homeostasis of the central nervous system. DNA topoisomerase 1 (TOP1) is stabilized in the DNA damage-inducing state by neuronal stimulation, including cortical spreading depression. Impairment in poly (ADP-ribose) polymerase 1 (PARP-1) and X-ray repair cross complementing 1 (XRCC1), key SSBR proteins, may be linked with migraine by transient receptor potential melastatin 2 (TRPM2). TRPM2 may also mediate the involvement of migraine-related neuroinflammation with PARP-1 activated by oxidative stress–related SSBs. In conclusion, aberrant activity of SSBR evoked by compromised PARP-1 and XRCC1 may contribute to pathological phenomena in the migraine brain. Such aberrant SSBR results in the lack of repair or misrepair of SSBs induced by ROS or resulting from impaired TOP1. Therefore, components of SSBR may be considered a prospective druggable target in migraine.
{"title":"DNA Damage and Repair in Migraine: Oxidative Stress and Beyond.","authors":"Michal Fila, Aleksandra Jablkowska, Elzbieta Pawlowska, Janusz Blasiak","doi":"10.1177/10738584221090836","DOIUrl":"https://doi.org/10.1177/10738584221090836","url":null,"abstract":"Energy generation in the brain to ameliorate energy deficit in migraine leads to oxidative stress as it is associated with reactive oxygen species (ROS) that may damage DNA and show a pronociceptive action in meninges mediated by transient receptor potential cation channel subfamily A member 1 (TRPA1). Recent studies show high levels of single-strand breaks (SSBs) at specific sites in the genome of postmitotic neurons and point at SSB repair (SSBR) as an important element of homeostasis of the central nervous system. DNA topoisomerase 1 (TOP1) is stabilized in the DNA damage-inducing state by neuronal stimulation, including cortical spreading depression. Impairment in poly (ADP-ribose) polymerase 1 (PARP-1) and X-ray repair cross complementing 1 (XRCC1), key SSBR proteins, may be linked with migraine by transient receptor potential melastatin 2 (TRPM2). TRPM2 may also mediate the involvement of migraine-related neuroinflammation with PARP-1 activated by oxidative stress–related SSBs. In conclusion, aberrant activity of SSBR evoked by compromised PARP-1 and XRCC1 may contribute to pathological phenomena in the migraine brain. Such aberrant SSBR results in the lack of repair or misrepair of SSBs induced by ROS or resulting from impaired TOP1. Therefore, components of SSBR may be considered a prospective druggable target in migraine.","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"29 3","pages":"277-286"},"PeriodicalIF":5.6,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9407900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01Epub Date: 2021-09-02DOI: 10.1177/10738584211040786
Wenhui Qu, Ling Li
As resident immune cells of the brain, microglia serve pivotal roles in regulating neuronal function under both physiological and pathological conditions, including aging and the most prevalent neurodegenerative disease, Alzheimer's disease (AD). Instructed by neurons, microglia regulate synaptic function and guard brain homeostasis throughout life. Dysregulation of microglial function, however, can lead to dire consequences, including aggravated cognitive decline during aging and exacerbated neuropathology in diseases. The triggering receptor expressed on myeloid cells 2 (TREM2) is a key regulator of microglial function. Loss-of-function variants of TREM2 are associated with an increased risk of AD. TREM2 orchestrates the switch of microglial transcriptome programming that modulates microglial chemotaxis, phagocytosis, and inflammatory responses, as well as microglial regulation of synaptic function in health and disease. Intriguingly, the outcome of microglial/TREM2 function is influenced by age and the context of neuropathology. This review summarizes the rapidly growing research on TREM2 under physiological conditions and in AD, particularly highlighting the impact of TREM2 on neuronal function.
作为大脑的常驻免疫细胞,小胶质细胞在生理和病理条件下,包括衰老和最常见的神经退行性疾病--阿尔茨海默病(AD)--调节神经元功能方面发挥着关键作用。在神经元的指导下,小胶质细胞调节突触功能,终生守护大脑的平衡。然而,小胶质细胞功能失调会导致可怕的后果,包括在衰老过程中加剧认知能力下降,以及在疾病中加剧神经病理学。髓系细胞上表达的触发受体 2(TREM2)是小胶质细胞功能的关键调节因子。TREM2的功能缺失变体与AD风险增加有关。TREM2 可协调小胶质细胞转录组程序的转换,从而调节小胶质细胞的趋化、吞噬和炎症反应,以及小胶质细胞对健康和疾病中突触功能的调节。有趣的是,小胶质细胞/TREM2 功能的结果受年龄和神经病理学背景的影响。这篇综述总结了在生理条件下和在 AD 中对 TREM2 快速增长的研究,特别强调了 TREM2 对神经元功能的影响。
{"title":"Microglial TREM2 at the Intersection of Brain Aging and Alzheimer's Disease.","authors":"Wenhui Qu, Ling Li","doi":"10.1177/10738584211040786","DOIUrl":"10.1177/10738584211040786","url":null,"abstract":"<p><p>As resident immune cells of the brain, microglia serve pivotal roles in regulating neuronal function under both physiological and pathological conditions, including aging and the most prevalent neurodegenerative disease, Alzheimer's disease (AD). Instructed by neurons, microglia regulate synaptic function and guard brain homeostasis throughout life. Dysregulation of microglial function, however, can lead to dire consequences, including aggravated cognitive decline during aging and exacerbated neuropathology in diseases. The triggering receptor expressed on myeloid cells 2 (TREM2) is a key regulator of microglial function. Loss-of-function variants of TREM2 are associated with an increased risk of AD. TREM2 orchestrates the switch of microglial transcriptome programming that modulates microglial chemotaxis, phagocytosis, and inflammatory responses, as well as microglial regulation of synaptic function in health and disease. Intriguingly, the outcome of microglial/TREM2 function is influenced by age and the context of neuropathology. This review summarizes the rapidly growing research on TREM2 under physiological conditions and in AD, particularly highlighting the impact of TREM2 on neuronal function.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"29 3","pages":"302-316"},"PeriodicalIF":3.5,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810316/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9413960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biobanking has emerged as a strategic challenge to promote knowledge on neurological diseases, by the application of translational research. Due to the inaccessibility of the central nervous system, the advent of biobanks, as structure collecting biospecimens and associated data, are essential to turn experimental results into clinical practice. Findings from basic research, omics sciences, and in silico studies, definitely require validation in clinically well-defined cohorts of patients, even more valuable when longitudinal, or including preclinical and asymptomatic individuals. Finally, collecting biological samples requires a great effort to guarantee respect for transparency and protection of sensitive data of patients and donors. Since the European General Data Protection Regulation 2016/679 has been approved, concerns about the use of data in biomedical research have emerged. In this narrative review, we focus on the essential role of biobanking for translational research on neurodegenerative diseases. Moreover, we address considerations for biological samples and data collection, the importance of standardization in the preanalytical phase, data protection (ethical and legal) and the role of donors in improving research in this field.
{"title":"Biobanking for Neurodegenerative Diseases: Challenge for Translational Research and Data Privacy.","authors":"Emilia Giannella, Valentino Notarangelo, Caterina Motta, Giulia Sancesario","doi":"10.1177/10738584211036693","DOIUrl":"https://doi.org/10.1177/10738584211036693","url":null,"abstract":"<p><p>Biobanking has emerged as a strategic challenge to promote knowledge on neurological diseases, by the application of translational research. Due to the inaccessibility of the central nervous system, the advent of biobanks, as structure collecting biospecimens and associated data, are essential to turn experimental results into clinical practice. Findings from basic research, omics sciences, and in silico studies, definitely require validation in clinically well-defined cohorts of patients, even more valuable when longitudinal, or including preclinical and asymptomatic individuals. Finally, collecting biological samples requires a great effort to guarantee respect for transparency and protection of sensitive data of patients and donors. Since the European General Data Protection Regulation 2016/679 has been approved, concerns about the use of data in biomedical research have emerged. In this narrative review, we focus on the essential role of biobanking for translational research on neurodegenerative diseases. Moreover, we address considerations for biological samples and data collection, the importance of standardization in the preanalytical phase, data protection (ethical and legal) and the role of donors in improving research in this field.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"29 2","pages":"190-201"},"PeriodicalIF":5.6,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/10738584211036693","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9285247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01Epub Date: 2021-06-18DOI: 10.1177/10738584211024531
Zena K Chatila, Elizabeth M Bradshaw
Alzheimer's disease (AD) is a debilitating age-related neurodegenerative condition. Unbiased genetic studies have implicated a central role for microglia, the resident innate immune cells of the central nervous system, in AD pathogenesis. On-going efforts are clarifying the biology underlying these associations and the microglial pathways that are dysfunctional in AD. Several genetic risk factors converge to decrease the function of activating microglial receptors and increase the function of inhibitory receptors, resulting in a seemingly dampened microglial phenotype in AD. Moreover, many of these microglial proteins that are genetically associated with AD appear to interact and share pathways or regulatory mechanisms, presenting several points of convergence that may be strategic targets for therapeutic intervention. Here, we review some of these studies and their implications for microglial participation in AD pathogenesis.
阿尔茨海默病(AD)是一种与年龄有关的神经退行性疾病,会使人衰弱。无偏见的遗传学研究表明,小胶质细胞(中枢神经系统的常驻先天性免疫细胞)在阿尔茨海默病的发病机制中扮演着核心角色。目前正在进行的研究正在阐明这些关联的生物学基础以及 AD 中功能失调的小胶质细胞通路。几种遗传风险因素共同降低了激活型小胶质细胞受体的功能,而增加了抑制型受体的功能,从而导致 AD 中的小胶质细胞表型似乎受到抑制。此外,许多与 AD 遗传相关的小胶质细胞蛋白似乎相互影响并共享通路或调控机制,这就出现了几个可能成为治疗干预战略目标的交汇点。在此,我们回顾了其中的一些研究及其对小胶质细胞参与 AD 发病机制的影响。
{"title":"Alzheimer's Disease Genetics: A Dampened Microglial Response?","authors":"Zena K Chatila, Elizabeth M Bradshaw","doi":"10.1177/10738584211024531","DOIUrl":"10.1177/10738584211024531","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a debilitating age-related neurodegenerative condition. Unbiased genetic studies have implicated a central role for microglia, the resident innate immune cells of the central nervous system, in AD pathogenesis. On-going efforts are clarifying the biology underlying these associations and the microglial pathways that are dysfunctional in AD. Several genetic risk factors converge to decrease the function of activating microglial receptors and increase the function of inhibitory receptors, resulting in a seemingly dampened microglial phenotype in AD. Moreover, many of these microglial proteins that are genetically associated with AD appear to interact and share pathways or regulatory mechanisms, presenting several points of convergence that may be strategic targets for therapeutic intervention. Here, we review some of these studies and their implications for microglial participation in AD pathogenesis.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"29 2","pages":"245-263"},"PeriodicalIF":5.6,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/10738584211024531","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9285239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}