首页 > 最新文献

Neuroscientist最新文献

英文 中文
Adult Hippocampal Neurogenesis in the Human Brain: Updates, Challenges, and Perspectives. 人脑中的成年海马神经发生:最新进展、挑战和前景》。
IF 5.6 3区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-05-17 DOI: 10.1177/10738584241252581
Sophie Simard, Natalie Matosin, Naguib Mechawar

The existence of neurogenesis in the adult human hippocampus has been under considerable debate within the past three decades due to the diverging conclusions originating mostly from immunohistochemistry studies. While some of these reports conclude that hippocampal neurogenesis in humans occurs throughout physiologic aging, others indicate that this phenomenon ends by early childhood. More recently, some groups have adopted next-generation sequencing technologies to characterize with more acuity the extent of this phenomenon in humans. Here, we review the current state of research on adult hippocampal neurogenesis in the human brain with an emphasis on the challenges and limitations of using immunohistochemistry and next-generation sequencing technologies for its study.

在过去的三十年中,由于主要来自免疫组化研究的不同结论,关于成年人类海马神经发生的存在一直存在很大争议。其中一些报告得出结论认为,人类海马的神经发生贯穿整个生理衰老过程,而另一些报告则指出,这种现象在儿童早期就已经结束。最近,一些研究小组采用了下一代测序技术,以更清晰地描述这一现象在人类中的程度。在此,我们回顾了人脑中成年海马神经发生的研究现状,重点介绍了使用免疫组化和新一代测序技术进行研究的挑战和局限性。
{"title":"Adult Hippocampal Neurogenesis in the Human Brain: Updates, Challenges, and Perspectives.","authors":"Sophie Simard, Natalie Matosin, Naguib Mechawar","doi":"10.1177/10738584241252581","DOIUrl":"https://doi.org/10.1177/10738584241252581","url":null,"abstract":"<p><p>The existence of neurogenesis in the adult human hippocampus has been under considerable debate within the past three decades due to the diverging conclusions originating mostly from immunohistochemistry studies. While some of these reports conclude that hippocampal neurogenesis in humans occurs throughout physiologic aging, others indicate that this phenomenon ends by early childhood. More recently, some groups have adopted next-generation sequencing technologies to characterize with more acuity the extent of this phenomenon in humans. Here, we review the current state of research on adult hippocampal neurogenesis in the human brain with an emphasis on the challenges and limitations of using immunohistochemistry and next-generation sequencing technologies for its study.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"10738584241252581"},"PeriodicalIF":5.6,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gustav Oppenheim (1882-1937) and the Discovery of Cerebral Amyloid Angiopathy. 古斯塔夫-奥本海姆(1882-1937 年)与脑淀粉样血管病的发现。
IF 5.6 3区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-05-14 DOI: 10.1177/10738584241251828
Anthony Maurice Ness, Judd Aiken

The discovery of cerebral amyloid angiopathy (CAA) is frequently attributed to Dr. Gustav Oppenheim-a man who has been largely passed over in history. Oppenheim's clinical and neuropathologic research covered a variety of disorders, but his name is best known for his work on senile dementia and CAA. Although Oppenheim was in fact not the first to discover CAA, his neuropathologic observations and inferences on neurodegenerative disease proved to be remarkably faithful to our modern understanding of neurodegenerative diseases. As a neurologist, he served in the First World War and was later subjected to religious persecutions in the leadup to the Holocaust but was not fortunate enough to emigrate before his death. The life, social impact, and previously overlooked contributions to science and medicine by Oppenheim are detailed.

脑淀粉样血管病(CAA)的发现常常归功于古斯塔夫-奥本海姆(Gustav Oppenheim)博士--一个在历史上被忽略的人。奥本海姆的临床和神经病理学研究涉及多种疾病,但他的名字因研究老年痴呆症和 CAA 而最为人熟知。虽然奥本海姆事实上并不是第一个发现 CAA 的人,但他对神经退行性疾病的神经病理学观察和推断,被证明非常忠实于我们现代对神经退行性疾病的理解。作为一名神经病学家,他参加了第一次世界大战,后来在大屠杀前夕受到宗教迫害,但生前没有幸运地移居国外。书中详细介绍了奥本海姆的生平、社会影响以及以前被忽视的对科学和医学的贡献。
{"title":"Gustav Oppenheim (1882-1937) and the Discovery of Cerebral Amyloid Angiopathy.","authors":"Anthony Maurice Ness, Judd Aiken","doi":"10.1177/10738584241251828","DOIUrl":"https://doi.org/10.1177/10738584241251828","url":null,"abstract":"<p><p>The discovery of cerebral amyloid angiopathy (CAA) is frequently attributed to Dr. Gustav Oppenheim-a man who has been largely passed over in history. Oppenheim's clinical and neuropathologic research covered a variety of disorders, but his name is best known for his work on senile dementia and CAA. Although Oppenheim was in fact not the first to discover CAA, his neuropathologic observations and inferences on neurodegenerative disease proved to be remarkably faithful to our modern understanding of neurodegenerative diseases. As a neurologist, he served in the First World War and was later subjected to religious persecutions in the leadup to the Holocaust but was not fortunate enough to emigrate before his death. The life, social impact, and previously overlooked contributions to science and medicine by Oppenheim are detailed.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"10738584241251828"},"PeriodicalIF":5.6,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140922094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxygen and the Spark of Human Brain Evolution: Complex Interactions of Metabolism and Cortical Expansion across Development and Evolution. 氧气与人类大脑进化的火花:新陈代谢与皮质扩展在发育和进化过程中的复杂互动。
IF 5.6 3区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-04-01 Epub Date: 2022-12-08 DOI: 10.1177/10738584221138032
Andrea I Luppi, Fernando E Rosas, MaryAnn P Noonan, Pedro A M Mediano, Morten L Kringelbach, Robin L Carhart-Harris, Emmanuel A Stamatakis, Anthony C Vernon, Federico E Turkheimer

Scientific theories on the functioning and dysfunction of the human brain require an understanding of its development-before and after birth and through maturation to adulthood-and its evolution. Here we bring together several accounts of human brain evolution by focusing on the central role of oxygen and brain metabolism. We argue that evolutionary expansion of human transmodal association cortices exceeded the capacity of oxygen delivery by the vascular system, which led these brain tissues to rely on nonoxidative glycolysis for additional energy supply. We draw a link between the resulting lower oxygen tension and its effect on cytoarchitecture, which we posit as a key driver of genetic developmental programs for the human brain-favoring lower intracortical myelination and the presence of biosynthetic materials for synapse turnover. Across biological and temporal scales, this protracted capacity for neural plasticity sets the conditions for cognitive flexibility and ongoing learning, supporting complex group dynamics and intergenerational learning that in turn enabled improved nutrition to fuel the metabolic costs of further cortical expansion. Our proposed model delineates explicit mechanistic links among metabolism, molecular and cellular brain heterogeneity, and behavior, which may lead toward a clearer understanding of brain development and its disorders.

关于人脑功能和失调的科学理论需要了解人脑的发育--从出生前到出生后,从成熟到成年--及其进化过程。在这里,我们通过关注氧气和大脑新陈代谢的核心作用,汇集了关于人脑进化的几种说法。我们认为,人类跨模态关联皮层的进化扩张超过了血管系统的供氧能力,这导致这些脑组织依赖非氧化糖酵解来提供额外能量。我们将由此导致的较低氧张力及其对细胞结构的影响联系起来,并认为这是人类大脑遗传发育程序的一个关键驱动因素--它有利于降低皮层内的髓鞘化程度,并有利于突触周转所需的生物合成材料的存在。在整个生物和时间尺度上,这种神经可塑性的长期能力为认知灵活性和持续学习创造了条件,支持复杂的群体动力学和代际学习,而代际学习反过来又使营养得到改善,从而为皮质进一步扩张的代谢成本提供燃料。我们提出的模型在新陈代谢、分子和细胞大脑异质性以及行为之间建立了明确的机理联系,这可能有助于人们更清楚地了解大脑发育及其疾病。
{"title":"Oxygen and the Spark of Human Brain Evolution: Complex Interactions of Metabolism and Cortical Expansion across Development and Evolution.","authors":"Andrea I Luppi, Fernando E Rosas, MaryAnn P Noonan, Pedro A M Mediano, Morten L Kringelbach, Robin L Carhart-Harris, Emmanuel A Stamatakis, Anthony C Vernon, Federico E Turkheimer","doi":"10.1177/10738584221138032","DOIUrl":"10.1177/10738584221138032","url":null,"abstract":"<p><p>Scientific theories on the functioning and dysfunction of the human brain require an understanding of its development-before and after birth and through maturation to adulthood-and its evolution. Here we bring together several accounts of human brain evolution by focusing on the central role of oxygen and brain metabolism. We argue that evolutionary expansion of human transmodal association cortices exceeded the capacity of oxygen delivery by the vascular system, which led these brain tissues to rely on nonoxidative glycolysis for additional energy supply. We draw a link between the resulting lower oxygen tension and its effect on cytoarchitecture, which we posit as a key driver of genetic developmental programs for the human brain-favoring lower intracortical myelination and the presence of biosynthetic materials for synapse turnover. Across biological and temporal scales, this protracted capacity for neural plasticity sets the conditions for cognitive flexibility and ongoing learning, supporting complex group dynamics and intergenerational learning that in turn enabled improved nutrition to fuel the metabolic costs of further cortical expansion. Our proposed model delineates explicit mechanistic links among metabolism, molecular and cellular brain heterogeneity, and behavior, which may lead toward a clearer understanding of brain development and its disorders.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"173-198"},"PeriodicalIF":5.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928962/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10719887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ask the dust. 问尘埃。
IF 5.6 3区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-04-01 DOI: 10.1177/10738584241236158
{"title":"Ask the dust.","authors":"","doi":"10.1177/10738584241236158","DOIUrl":"10.1177/10738584241236158","url":null,"abstract":"","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"30 2","pages":"153-154"},"PeriodicalIF":5.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140095014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Roles of Neuronal Extracellular Vesicles at the Synapse. 神经元胞外小泡在突触中的新作用
IF 5.6 3区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-04-01 Epub Date: 2023-03-21 DOI: 10.1177/10738584231160521
Ashley J Mason, Christopher Deppmann, Bettina Winckler

Extracellular vesicles (EVs) are secreted from most, if not all, cell types and are implicated in short- and long-distance signaling throughout the body. EVs are also secreted from neurons and represent an emergent neuronal communication platform. Understanding the functional implications of EV signaling to recipient neurons and glia requires understanding the cell biology involved in EV biogenesis, cargo loading, secretion, uptake, and signal transduction in the recipient cell. Here we review these major questions of EV biology while highlighting recent new insights and examples within the nervous system, such as modulating synaptic function or morphogenesis in recipient neurons.

细胞外囊泡(EVs)是从大多数细胞类型(如果不是所有细胞类型的话)分泌出来的,与整个机体的短距离和长距离信号传递有关。EVs 也从神经元分泌,是一种新兴的神经元通信平台。要了解 EV 信号对受体神经元和胶质细胞的功能影响,就必须了解 EV 在受体细胞中的生物发生、货物装载、分泌、摄取和信号转导所涉及的细胞生物学。在此,我们回顾了 EV 生物学的这些主要问题,同时重点介绍了最近在神经系统中的新发现和实例,如调节受体神经元的突触功能或形态发生。
{"title":"Emerging Roles of Neuronal Extracellular Vesicles at the Synapse.","authors":"Ashley J Mason, Christopher Deppmann, Bettina Winckler","doi":"10.1177/10738584231160521","DOIUrl":"10.1177/10738584231160521","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are secreted from most, if not all, cell types and are implicated in short- and long-distance signaling throughout the body. EVs are also secreted from neurons and represent an emergent neuronal communication platform. Understanding the functional implications of EV signaling to recipient neurons and glia requires understanding the cell biology involved in EV biogenesis, cargo loading, secretion, uptake, and signal transduction in the recipient cell. Here we review these major questions of EV biology while highlighting recent new insights and examples within the nervous system, such as modulating synaptic function or morphogenesis in recipient neurons.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"199-213"},"PeriodicalIF":5.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10267399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Art, Intuition, and Identity in Ramón y Cajal. 拉蒙-卡哈尔的艺术、直觉与身份。
IF 3.5 3区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-03-10 DOI: 10.1177/10738584241234049
Dawn Hunter, Javier DeFelipe, Arpan R Mehta, Bevil R Conway

In the history of neuroscience, Cajal stands tall. Many figures in the late 19th and early 20th centuries made major contributions to neuroscience-Sherrington, Ferrier, Jackson, Holmes, Adrian, and Békésy, to name a few. But in the public mind, Cajal is unique. His application of the Golgi method, with an array of histologic stains, unlocked a wealth of new knowledge on the structure and function of the brain. Here we argue that Cajal's success should not only be attributed to the importance of his scientific contributions but also to the artistic visual language that he created and to his pioneering self-branding, which exploited methods of the artist, including classical drawing and the new invention of photography. We argue that Cajal created his distinctive visual language and self-branding strategy by interweaving an ostensibly objective research product with an intimately subjective narrative about the brain and himself. His approach is evident in the use of photography, notably self-portraits, which furthered broad engagement initially inspired by his scientific drawings. Through his visual language, Cajal made an impact in art and culture far beyond the bounds of science, which has sustained his scientific legacy.

在神经科学的历史上,卡亚尔是佼佼者。19世纪末20世纪初,许多人都对神经科学做出了重大贡献--谢林顿、费里尔、杰克逊、霍姆斯、阿德里安和贝凯西等等。但在公众心目中,卡哈尔是独一无二的。他将高尔基方法与一系列组织学染色法相结合,为我们揭开了大脑结构与功能的神秘面纱。在此,我们认为,卡加尔的成功不仅要归功于他在科学上的重要贡献,还要归功于他创造的艺术视觉语言和他开创性的自我品牌,他利用了艺术家的方法,包括古典绘画和新发明的摄影。我们认为,卡哈尔通过将表面上客观的研究成果与关于大脑和他本人的主观叙事交织在一起,创造了他独特的视觉语言和自我品牌战略。他的方法体现在摄影的使用上,尤其是自画像,这进一步促进了最初由他的科学绘图激发的广泛参与。通过他的视觉语言,卡加尔对艺术和文化的影响远远超出了科学的范畴,这也延续了他的科学遗产。
{"title":"Art, Intuition, and Identity in Ramón y Cajal.","authors":"Dawn Hunter, Javier DeFelipe, Arpan R Mehta, Bevil R Conway","doi":"10.1177/10738584241234049","DOIUrl":"10.1177/10738584241234049","url":null,"abstract":"<p><p>In the history of neuroscience, Cajal stands tall. Many figures in the late 19th and early 20th centuries made major contributions to neuroscience-Sherrington, Ferrier, Jackson, Holmes, Adrian, and Békésy, to name a few. But in the public mind, Cajal is unique. His application of the Golgi method, with an array of histologic stains, unlocked a wealth of new knowledge on the structure and function of the brain. Here we argue that Cajal's success should not only be attributed to the importance of his scientific contributions but also to the artistic visual language that he created and to his pioneering self-branding, which exploited methods of the artist, including classical drawing and the new invention of photography. We argue that Cajal created his distinctive visual language and self-branding strategy by interweaving an ostensibly objective research product with an intimately subjective narrative about the brain and himself. His approach is evident in the use of photography, notably self-portraits, which furthered broad engagement initially inspired by his scientific drawings. Through his visual language, Cajal made an impact in art and culture far beyond the bounds of science, which has sustained his scientific legacy.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"10738584241234049"},"PeriodicalIF":3.5,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707675/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140095011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diverging from the Norm: Reevaluating What Miniature Excitatory Postsynaptic Currents Tell Us about Homeostatic Synaptic Plasticity. 偏离常态:重新评估微型兴奋性突触后电流告诉我们的稳态突触可塑性。
IF 5.6 3区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-02-01 Epub Date: 2022-07-29 DOI: 10.1177/10738584221112336
Andrew G Koesters, Mark M Rich, Kathrin L Engisch

The idea that the nervous system maintains a set point of network activity and homeostatically returns to that set point in the face of dramatic disruption-during development, after injury, in pathologic states, and during sleep/wake cycles-is rapidly becoming accepted as a key plasticity behavior, placing it alongside long-term potentiation and depression. The dramatic growth in studies of homeostatic synaptic plasticity of miniature excitatory synaptic currents (mEPSCs) is attributable, in part, to the simple yet elegant mechanism of uniform multiplicative scaling proposed by Turrigiano and colleagues: that neurons sense their own activity and globally multiply the strength of every synapse by a single factor to return activity to the set point without altering established differences in synaptic weights. We have recently shown that for mEPSCs recorded from control and activity-blocked cultures of mouse cortical neurons, the synaptic scaling factor is not uniform but is close to 1 for the smallest mEPSC amplitudes and progressively increases as mEPSC amplitudes increase, which we term divergent scaling. Using insights gained from simulating uniform multiplicative scaling, we review evidence from published studies and conclude that divergent synaptic scaling is the norm rather than the exception. This conclusion has implications for hypotheses about the molecular mechanisms underlying synaptic scaling.

神经系统维持一个网络活动的设定值,并在面对戏剧性的破坏时(在发育过程中、受伤后、病理状态中、睡眠/觉醒周期中)自我平衡地恢复到该设定值,这一观点正迅速被接受为一种关键的可塑性行为,并将其与长期增强和抑郁相提并论。微型兴奋性突触电流(mEPSCs)的稳态突触可塑性研究的显著增长,部分归因于Turrigiano及其同事提出的简单而优雅的均匀乘法标度机制:神经元感知自己的活动,并在不改变突触权重的既定差异的情况下,将每个突触的强度在全局上乘以一个单一因素,以使活动恢复到设定值。我们最近的研究表明,从小鼠皮质神经元的对照和活动阻断培养中记录的mEPSC,突触缩放因子不是均匀的,但对于最小的mEPSC振幅接近1,并随着mEPSC振幅的增加而逐渐增加,我们称之为发散缩放。利用从模拟均匀乘法标度中获得的见解,我们回顾了已发表的研究证据,并得出结论,发散突触标度是常态而不是例外。这一结论为突触尺度的分子机制假说提供了依据。
{"title":"Diverging from the Norm: Reevaluating What Miniature Excitatory Postsynaptic Currents Tell Us about Homeostatic Synaptic Plasticity.","authors":"Andrew G Koesters, Mark M Rich, Kathrin L Engisch","doi":"10.1177/10738584221112336","DOIUrl":"10.1177/10738584221112336","url":null,"abstract":"<p><p>The idea that the nervous system maintains a set point of network activity and homeostatically returns to that set point in the face of dramatic disruption-during development, after injury, in pathologic states, and during sleep/wake cycles-is rapidly becoming accepted as a key plasticity behavior, placing it alongside long-term potentiation and depression. The dramatic growth in studies of homeostatic synaptic plasticity of miniature excitatory synaptic currents (mEPSCs) is attributable, in part, to the simple yet elegant mechanism of uniform multiplicative scaling proposed by Turrigiano and colleagues: that neurons sense their own activity and globally multiply the strength of every synapse by a single factor to return activity to the set point without altering established differences in synaptic weights. We have recently shown that for mEPSCs recorded from control and activity-blocked cultures of mouse cortical neurons, the synaptic scaling factor is not uniform but is close to 1 for the smallest mEPSC amplitudes and progressively increases as mEPSC amplitudes increase, which we term <i>divergent scaling</i>. Using insights gained from simulating uniform multiplicative scaling, we review evidence from published studies and conclude that divergent synaptic scaling is the norm rather than the exception. This conclusion has implications for hypotheses about the molecular mechanisms underlying synaptic scaling.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"49-70"},"PeriodicalIF":5.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9656196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Associative Thalamus: A Switchboard for Cortical Operations and a Promising Target for Schizophrenia. 联合丘脑:皮质操作的交换机和精神分裂症的有希望的目标
IF 3.5 3区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-02-01 Epub Date: 2022-08-08 DOI: 10.1177/10738584221112861
Arghya Mukherjee, Michael M Halassa

Schizophrenia is a brain disorder that profoundly perturbs cognitive processing. Despite the success in treating many of its symptoms, the field lacks effective methods to measure and address its impact on reasoning, inference, and decision making. Prefrontal cortical abnormalities have been well documented in schizophrenia, but additional dysfunction in the interactions between the prefrontal cortex and thalamus have recently been described. This dysfunction may be interpreted in light of parallel advances in neural circuit research based on nonhuman animals, which show critical thalamic roles in maintaining and switching prefrontal activity patterns in various cognitive tasks. Here, we review this basic literature and connect it to emerging innovations in clinical research. We highlight the value of focusing on associative thalamic structures not only to better understand the very nature of cognitive processing but also to leverage these circuits for diagnostic and therapeutic development in schizophrenia. We suggest that the time is right for building close bridges between basic thalamic research and its clinical translation, particularly in the domain of cognition and schizophrenia.

精神分裂症是一种严重干扰认知过程的大脑疾病。尽管在治疗其许多症状方面取得了成功,但该领域缺乏有效的方法来衡量和解决其对推理、推理和决策的影响。精神分裂症患者的前额叶皮层异常已被充分记录,但最近还描述了前额叶皮层和丘脑之间相互作用的额外功能障碍。这种功能障碍可以根据基于非人类动物的神经回路研究的平行进展来解释,这些研究表明丘脑在维持和切换各种认知任务中的前额叶活动模式方面发挥着关键作用。在这里,我们回顾了这些基本文献,并将其与临床研究中的新兴创新联系起来。我们强调了关注关联丘脑结构的价值,这不仅有助于更好地理解认知过程的本质,而且有助于利用这些回路来开发精神分裂症的诊断和治疗。我们认为,现在是在丘脑基础研究及其临床翻译之间建立紧密桥梁的时候了,特别是在认知和精神分裂症领域。
{"title":"The Associative Thalamus: A Switchboard for Cortical Operations and a Promising Target for Schizophrenia.","authors":"Arghya Mukherjee, Michael M Halassa","doi":"10.1177/10738584221112861","DOIUrl":"10.1177/10738584221112861","url":null,"abstract":"<p><p>Schizophrenia is a brain disorder that profoundly perturbs cognitive processing. Despite the success in treating many of its symptoms, the field lacks effective methods to measure and address its impact on reasoning, inference, and decision making. Prefrontal cortical abnormalities have been well documented in schizophrenia, but additional dysfunction in the interactions between the prefrontal cortex and thalamus have recently been described. This dysfunction may be interpreted in light of parallel advances in neural circuit research based on nonhuman animals, which show critical thalamic roles in maintaining and switching prefrontal activity patterns in various cognitive tasks. Here, we review this basic literature and connect it to emerging innovations in clinical research. We highlight the value of focusing on associative thalamic structures not only to better understand the very nature of cognitive processing but also to leverage these circuits for diagnostic and therapeutic development in schizophrenia. We suggest that the time is right for building close bridges between basic thalamic research and its clinical translation, particularly in the domain of cognition and schizophrenia.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"1 1","pages":"132-147"},"PeriodicalIF":3.5,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10822032/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48701450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highlander. 高地人
IF 5.6 3区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-02-01 DOI: 10.1177/10738584231225116
{"title":"Highlander.","authors":"","doi":"10.1177/10738584231225116","DOIUrl":"10.1177/10738584231225116","url":null,"abstract":"","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":"30 1","pages":"7-8"},"PeriodicalIF":5.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139567584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurobehavioral and Clinical Comorbidities in Epilepsy: The Role of White Matter Network Disruption. 癫痫的神经行为和临床并发症:白质网络破坏的作用。
IF 5.6 3区 医学 Q1 CLINICAL NEUROLOGY Pub Date : 2024-02-01 Epub Date: 2022-02-22 DOI: 10.1177/10738584221076133
Alena Stasenko, Christine Lin, Leonardo Bonilha, Boris C Bernhardt, Carrie R McDonald

Epilepsy is a common neurological disorder associated with alterations in cortical and subcortical brain networks. Despite a historical focus on gray matter regions involved in seizure generation and propagation, the role of white matter (WM) network disruption in epilepsy and its comorbidities has sparked recent attention. In this review, we describe patterns of WM alterations observed in focal and generalized epilepsy syndromes and highlight studies linking WM disruption to cognitive and psychiatric comorbidities, drug resistance, and poor surgical outcomes. Both tract-based and connectome-based approaches implicate the importance of extratemporal and temporo-limbic WM disconnection across a range of comorbidities, and an evolving literature reveals the utility of WM patterns for predicting outcomes following epilepsy surgery. We encourage new research employing advanced analytic techniques (e.g., machine learning) that will further shape our understanding of epilepsy as a network disorder and guide individualized treatment decisions. We also address the need for research that examines how neuromodulation and other treatments (e.g., laser ablation) affect WM networks, as well as research that leverages larger and more diverse samples, longitudinal designs, and improved magnetic resonance imaging acquisitions. These steps will be critical to ensuring generalizability of current research and determining the extent to which neuroplasticity within WM networks can influence patient outcomes.

癫痫是一种常见的神经系统疾病,与大脑皮质和皮质下网络的改变有关。尽管灰质区域参与了癫痫发作的产生和传播,但白质(WM)网络破坏在癫痫及其并发症中的作用最近引起了人们的关注。在这篇综述中,我们描述了在局灶性和全身性癫痫综合征中观察到的白质改变模式,并重点介绍了将白质破坏与认知和精神并发症、耐药性和手术效果不佳联系起来的研究。基于神经束和神经连接体的研究方法表明,颞外和颞-边缘 WM 断开在一系列合并症中的重要性,不断发展的文献揭示了 WM 模式在预测癫痫手术后预后方面的效用。我们鼓励采用先进的分析技术(如机器学习)开展新的研究,这将进一步加深我们对癫痫这种网络紊乱的理解,并为个性化治疗决策提供指导。我们还认为有必要开展研究,探讨神经调控和其他治疗方法(如激光消融)如何影响 WM 网络,以及利用更大、更多样化的样本、纵向设计和改进的磁共振成像采集进行研究。这些步骤对于确保当前研究的可推广性以及确定 WM 网络内的神经可塑性能在多大程度上影响患者的预后至关重要。
{"title":"Neurobehavioral and Clinical Comorbidities in Epilepsy: The Role of White Matter Network Disruption.","authors":"Alena Stasenko, Christine Lin, Leonardo Bonilha, Boris C Bernhardt, Carrie R McDonald","doi":"10.1177/10738584221076133","DOIUrl":"10.1177/10738584221076133","url":null,"abstract":"<p><p>Epilepsy is a common neurological disorder associated with alterations in cortical and subcortical brain networks. Despite a historical focus on gray matter regions involved in seizure generation and propagation, the role of white matter (WM) network disruption in epilepsy and its comorbidities has sparked recent attention. In this review, we describe patterns of WM alterations observed in focal and generalized epilepsy syndromes and highlight studies linking WM disruption to cognitive and psychiatric comorbidities, drug resistance, and poor surgical outcomes. Both tract-based and connectome-based approaches implicate the importance of extratemporal and temporo-limbic WM disconnection across a range of comorbidities, and an evolving literature reveals the utility of WM patterns for predicting outcomes following epilepsy surgery. We encourage new research employing advanced analytic techniques (e.g., machine learning) that will further shape our understanding of epilepsy as a network disorder and guide individualized treatment decisions. We also address the need for research that examines how neuromodulation and other treatments (e.g., laser ablation) affect WM networks, as well as research that leverages larger and more diverse samples, longitudinal designs, and improved magnetic resonance imaging acquisitions. These steps will be critical to ensuring generalizability of current research and determining the extent to which neuroplasticity within WM networks can influence patient outcomes.</p>","PeriodicalId":49753,"journal":{"name":"Neuroscientist","volume":" ","pages":"105-131"},"PeriodicalIF":5.6,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9393207/pdf/nihms-1790070.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10099026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Neuroscientist
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1