For homogeneous polynomials $G_1,ldots ,G_k$ over a finite field, their Dwork complex is defined by Adolphson and Sperber, based on Dwork’s theory. In this article, we will construct an explicit cochain map from the Dwork complex of $G_1,ldots ,G_k$ to the Monsky–Washnitzer complex associated with some affine bundle over the complement $mathbb {P}^nsetminus X_G$ of the common zero $X_G$ of $G_1,ldots ,G_k$ , which computes the rigid cohomology of $mathbb {P}^nsetminus X_G$ . We verify that this cochain map realizes the rigid cohomology of $mathbb {P}^nsetminus X_G$ as a direct summand of the Dwork cohomology of $G_1,ldots ,G_k$ . We also verify that the comparison map is compatible with the Frobenius and the Dwork operator defined on both complexes, respectively. Consequently, we extend Katz’s comparison results in [19] for projective hypersurface complements to arbitrary projective complements.
对于有限域上的齐次多项式$G_1,ldots,G_k$,它们的Dwork复形由Adolphson和Sperber根据Dwork理论定义。在本文中,我们将构造一个显式的协链映射,从$G_1,ldots,G_k$的Dwork复形到$G_1,ldots,G_k$的公零$X_G$的补$mathbb {P} n set- X_G$上与某个仿射束相关联的Monsky-Washnitzer复形,计算$mathbb {P} n set- X_G$的刚性上同调。我们证明了这个协链映射实现了$mathbb {P}^n set- X_G$的刚性上同调作为$G_1,ldots,G_k$的Dwork上同调的直接和。我们还验证了比较映射分别与两个复合体上定义的Frobenius算子和Dwork算子兼容。因此,我们将Katz在[19]中关于射影超曲面补的比较结果推广到任意射影补。
{"title":"ON A COMPARISON BETWEEN DWORK AND RIGID COHOMOLOGIES OF PROJECTIVE COMPLEMENTS","authors":"JUNYEONG PARK","doi":"10.1017/nmj.2023.32","DOIUrl":"https://doi.org/10.1017/nmj.2023.32","url":null,"abstract":"For homogeneous polynomials <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline1.png\" /> <jats:tex-math> $G_1,ldots ,G_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> over a finite field, their Dwork complex is defined by Adolphson and Sperber, based on Dwork’s theory. In this article, we will construct an explicit cochain map from the Dwork complex of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline2.png\" /> <jats:tex-math> $G_1,ldots ,G_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to the Monsky–Washnitzer complex associated with some affine bundle over the complement <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline3.png\" /> <jats:tex-math> $mathbb {P}^nsetminus X_G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of the common zero <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline4.png\" /> <jats:tex-math> $X_G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline5.png\" /> <jats:tex-math> $G_1,ldots ,G_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, which computes the rigid cohomology of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline6.png\" /> <jats:tex-math> $mathbb {P}^nsetminus X_G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We verify that this cochain map realizes the rigid cohomology of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline7.png\" /> <jats:tex-math> $mathbb {P}^nsetminus X_G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as a direct summand of the Dwork cohomology of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline8.png\" /> <jats:tex-math> $G_1,ldots ,G_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also verify that the comparison map is compatible with the Frobenius and the Dwork operator defined on both complexes, respectively. Consequently, we extend Katz’s comparison results in [19] for projective hypersurface complements to arbitrary projective complements.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138543526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
There are several ways to convert a closure or interior operation to a different operation that has particular desirable properties. In this paper, we axiomatize three ways to do so, drawing on disparate examples from the literature, including tight closure, basically full closure, and various versions of integral closure. In doing so, we explore several such desirable properties, including hereditary, residual, and cofunctorial, and see how they interact with other properties such as the finitistic property.
{"title":"HOW TO EXTEND CLOSURE AND INTERIOR OPERATIONS TO MORE MODULES","authors":"NEIL EPSTEIN, REBECCA R. G., JANET VASSILEV","doi":"10.1017/nmj.2023.36","DOIUrl":"https://doi.org/10.1017/nmj.2023.36","url":null,"abstract":"There are several ways to convert a closure or interior operation to a different operation that has particular desirable properties. In this paper, we axiomatize three ways to do so, drawing on disparate examples from the literature, including tight closure, basically full closure, and various versions of integral closure. In doing so, we explore several such desirable properties, including <jats:italic>hereditary</jats:italic>, <jats:italic>residual</jats:italic>, and <jats:italic>cofunctorial</jats:italic>, and see how they interact with other properties such as the <jats:italic>finitistic</jats:italic> property.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The problem of classifying elliptic curves over $mathbb Q$ with a given discriminant has received much attention. The analogous problem for genus $2$ curves has only been tackled when the absolute discriminant is a power of $2$ . In this article, we classify genus $2$ curves C defined over ${mathbb Q}$ with at least two rational Weierstrass points and whose absolute discriminant is an odd prime. In fact, we show that such a curve C must be isomorphic to a specialization of one of finitely many $1$ -parameter families of genus $2$ curves. In particular, we provide genus $2$ analogues to Neumann–Setzer families of elliptic curves over the rationals.
{"title":"GENUS CURVES WITH BAD REDUCTION AT ONE ODD PRIME","authors":"ANDRZEJ DĄBROWSKI, MOHAMMAD SADEK","doi":"10.1017/nmj.2023.35","DOIUrl":"https://doi.org/10.1017/nmj.2023.35","url":null,"abstract":"The problem of classifying elliptic curves over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline2.png\" /> <jats:tex-math> $mathbb Q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with a given discriminant has received much attention. The analogous problem for genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline3.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> curves has only been tackled when the absolute discriminant is a power of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline4.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this article, we classify genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline5.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> curves <jats:italic>C</jats:italic> defined over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline6.png\" /> <jats:tex-math> ${mathbb Q}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with at least two rational Weierstrass points and whose absolute discriminant is an odd prime. In fact, we show that such a curve <jats:italic>C</jats:italic> must be isomorphic to a specialization of one of finitely many <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline7.png\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-parameter families of genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline8.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> curves. In particular, we provide genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline9.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> analogues to Neumann–Setzer families of elliptic curves over the rationals.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138539100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
{"title":"NMJ volume 252 Cover and Back matter","authors":"","doi":"10.1017/nmj.2023.31","DOIUrl":"https://doi.org/10.1017/nmj.2023.31","url":null,"abstract":"An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135863973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"NMJ volume 252 Cover and Front matter","authors":"","doi":"10.1017/nmj.2023.30","DOIUrl":"https://doi.org/10.1017/nmj.2023.30","url":null,"abstract":"","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135870900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SEBASTIAN CASALAINA-MARTIN, SAMUEL GRUSHEVSKY, KLAUS HULEK, RADU LAZA
Abstract The well-studied moduli space of complex cubic surfaces has three different, but isomorphic, compact realizations: as a GIT quotient ${mathcal {M}}^{operatorname {GIT}}$ , as a Baily–Borel compactification of a ball quotient ${(mathcal {B}_4/Gamma )^*}$ , and as a compactified K -moduli space. From all three perspectives, there is a unique boundary point corresponding to non-stable surfaces. From the GIT point of view, to deal with this point, it is natural to consider the Kirwan blowup ${mathcal {M}}^{operatorname {K}}rightarrow {mathcal {M}}^{operatorname {GIT}}$ , whereas from the ball quotient point of view, it is natural to consider the toroidal compactification ${overline {mathcal {B}_4/Gamma }}rightarrow {(mathcal {B}_4/Gamma )^*}$ . The spaces ${mathcal {M}}^{operatorname {K}}$ and ${overline {mathcal {B}_4/Gamma }}$ have the same cohomology, and it is therefore natural to ask whether they are isomorphic. Here, we show that this is in fact not the case. Indeed, we show the more refined statement that ${mathcal {M}}^{operatorname {K}}$ and ${overline {mathcal {B}_4/Gamma }}$ are equivalent in the Grothendieck ring, but not K -equivalent. Along the way, we establish a number of results and techniques for dealing with singularities and canonical classes of Kirwan blowups and toroidal compactifications of ball quotients.
{"title":"NON-ISOMORPHIC SMOOTH COMPACTIFICATIONS OF THE MODULI SPACE OF CUBIC SURFACES","authors":"SEBASTIAN CASALAINA-MARTIN, SAMUEL GRUSHEVSKY, KLAUS HULEK, RADU LAZA","doi":"10.1017/nmj.2023.27","DOIUrl":"https://doi.org/10.1017/nmj.2023.27","url":null,"abstract":"Abstract The well-studied moduli space of complex cubic surfaces has three different, but isomorphic, compact realizations: as a GIT quotient ${mathcal {M}}^{operatorname {GIT}}$ , as a Baily–Borel compactification of a ball quotient ${(mathcal {B}_4/Gamma )^*}$ , and as a compactified K -moduli space. From all three perspectives, there is a unique boundary point corresponding to non-stable surfaces. From the GIT point of view, to deal with this point, it is natural to consider the Kirwan blowup ${mathcal {M}}^{operatorname {K}}rightarrow {mathcal {M}}^{operatorname {GIT}}$ , whereas from the ball quotient point of view, it is natural to consider the toroidal compactification ${overline {mathcal {B}_4/Gamma }}rightarrow {(mathcal {B}_4/Gamma )^*}$ . The spaces ${mathcal {M}}^{operatorname {K}}$ and ${overline {mathcal {B}_4/Gamma }}$ have the same cohomology, and it is therefore natural to ask whether they are isomorphic. Here, we show that this is in fact not the case. Indeed, we show the more refined statement that ${mathcal {M}}^{operatorname {K}}$ and ${overline {mathcal {B}_4/Gamma }}$ are equivalent in the Grothendieck ring, but not K -equivalent. Along the way, we establish a number of results and techniques for dealing with singularities and canonical classes of Kirwan blowups and toroidal compactifications of ball quotients.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135738766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Let $({cal{A}},{cal{E}})$ be an exact category. We establish basic results that allow one to identify sub(bi)functors of ${operatorname{Ext}}_{cal{E}}(-,-)$ using additivity of numerical functions and restriction to subcategories. We also study a small number of these new functors over commutative local rings in detail and find a range of applications from detecting regularity to understanding Ulrich modules.
{"title":"EXACT SUBCATEGORIES, SUBFUNCTORS OF , AND SOME APPLICATIONS","authors":"HAILONG DAO, SOUVIK DEY, MONALISA DUTTA","doi":"10.1017/nmj.2023.29","DOIUrl":"https://doi.org/10.1017/nmj.2023.29","url":null,"abstract":"Abstract Let $({cal{A}},{cal{E}})$ be an exact category. We establish basic results that allow one to identify sub(bi)functors of ${operatorname{Ext}}_{cal{E}}(-,-)$ using additivity of numerical functions and restriction to subcategories. We also study a small number of these new functors over commutative local rings in detail and find a range of applications from detecting regularity to understanding Ulrich modules.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135538812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We consider the moduli space of genus 4 curves endowed with a $g^1_3$ (which maps with degree 2 onto the moduli space of genus 4 curves). We prove that it defines a degree $frac {1}{2}(3^{10}-1)$ cover of the nine-dimensional Deligne–Mostow ball quotient such that the natural divisors that live on that moduli space become totally geodesic (their normalizations are eight-dimensional ball quotients). This isomorphism differs from the one considered by S. Kondō, and its construction is perhaps more elementary, as it does not involve K3 surfaces and their Torelli theorem: the Deligne–Mostow ball quotient parametrizes certain cyclic covers of degree 6 of a projective line and we show how a level structure on such a cover produces a degree 3 cover of that line with the same discriminant, yielding a genus 4 curve endowed with a $g^1_3$ .
{"title":"A BALL QUOTIENT PARAMETRIZING TRIGONAL GENUS 4 CURVES","authors":"EDUARD LOOIJENGA","doi":"10.1017/nmj.2023.28","DOIUrl":"https://doi.org/10.1017/nmj.2023.28","url":null,"abstract":"Abstract We consider the moduli space of genus 4 curves endowed with a $g^1_3$ (which maps with degree 2 onto the moduli space of genus 4 curves). We prove that it defines a degree $frac {1}{2}(3^{10}-1)$ cover of the nine-dimensional Deligne–Mostow ball quotient such that the natural divisors that live on that moduli space become totally geodesic (their normalizations are eight-dimensional ball quotients). This isomorphism differs from the one considered by S. Kondō, and its construction is perhaps more elementary, as it does not involve K3 surfaces and their Torelli theorem: the Deligne–Mostow ball quotient parametrizes certain cyclic covers of degree 6 of a projective line and we show how a level structure on such a cover produces a degree 3 cover of that line with the same discriminant, yielding a genus 4 curve endowed with a $g^1_3$ .","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136155225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We define a one-dimensional family of Bridgeland stability conditions on $mathbb {P}^n$ , named “Euler” stability condition. We conjecture that the “Euler” stability condition converges to Gieseker stability for coherent sheaves. Here, we focus on ${mathbb P}^3$ , first identifying Euler stability conditions with double-tilt stability conditions, and then we consider moduli of one-dimensional sheaves, proving some asymptotic results, boundedness for walls, and then explicitly computing walls and wall-crossings for sheaves supported on rational curves of degrees $3$ and $4$ .
{"title":"NEW MODULI SPACES OF ONE-DIMENSIONAL SHEAVES ON","authors":"DAPENG MU","doi":"10.1017/nmj.2023.26","DOIUrl":"https://doi.org/10.1017/nmj.2023.26","url":null,"abstract":"Abstract We define a one-dimensional family of Bridgeland stability conditions on $mathbb {P}^n$ , named “Euler” stability condition. We conjecture that the “Euler” stability condition converges to Gieseker stability for coherent sheaves. Here, we focus on ${mathbb P}^3$ , first identifying Euler stability conditions with double-tilt stability conditions, and then we consider moduli of one-dimensional sheaves, proving some asymptotic results, boundedness for walls, and then explicitly computing walls and wall-crossings for sheaves supported on rational curves of degrees $3$ and $4$ .","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135153570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}