首页 > 最新文献

Nagoya Mathematical Journal最新文献

英文 中文
TOPICS SURROUNDING THE COMBINATORIAL ANABELIAN GEOMETRY OF HYPERBOLIC CURVES IV: DISCRETENESS AND SECTIONS 围绕双曲线的组合阿那伯几何的专题 IV:离散性和截面
IF 0.8 2区 数学 Q2 MATHEMATICS Pub Date : 2024-01-18 DOI: 10.1017/nmj.2023.39
YUICHIRO HOSHI, SHINICHI MOCHIZUKI
Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0027763023000399_inline1.png" /> <jats:tex-math> $Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a nonempty subset of the set of prime numbers which is either equal to the entire set of prime numbers or of cardinality one. In the present paper, we continue our study of the pro-<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0027763023000399_inline2.png" /> <jats:tex-math> $Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> fundamental groups of hyperbolic curves and their associated configuration spaces over algebraically closed fields in which the primes of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0027763023000399_inline3.png" /> <jats:tex-math> $Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are invertible. The present paper focuses on the topic of <jats:italic>comparison</jats:italic> between the theory developed in earlier papers concerning <jats:italic>pro-</jats:italic><jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0027763023000399_inline4.png" /> <jats:tex-math> $Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> fundamental groups and various <jats:italic>discrete</jats:italic> versions of this theory. We begin by developing a theory concerning certain combinatorial analogues of the <jats:italic>section conjecture</jats:italic> and <jats:italic>Grothendieck conjecture</jats:italic>. This portion of the theory is <jats:italic>purely combinatorial</jats:italic> and essentially follows from a result concerning the <jats:italic>existence of fixed points</jats:italic> of actions of finite groups on finite graphs (satisfying certain conditions). We then examine various applications of this purely combinatorial theory to <jats:italic>scheme theory</jats:italic>. Next, we verify various results in the theory of discrete fundamental groups of hyperbolic topological surfaces to the effect that various properties of <jats:italic>(discrete) subgroups</jats:italic> of such groups hold if and only if analogous properties hold for the closures of these subgroups in the <jats:italic>profinite completions</jats:italic> of the discrete fundamental groups under consideration. These results make possible a fairly <jats:italic>straightforward translation</jats:italic>, into <jats:italic>discrete versions</jats:italic>, of pro-<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0027763023000399_inline5.png" /> <jats:tex-math> $Sigma $ </jats:tex-math> </jats:alternatives> </jats:inl
让 $Sigma $ 是素数集的一个非空子集,它要么等于整个素数集,要么心数为一。在本文中,我们将继续研究双曲曲线的亲 $Sigma $ 基本群及其在代数闭域上的相关配置空间,其中 $Sigma $ 的素数是可逆的。本文的重点是比较早期论文中发展的关于亲$Sigma $基群的理论和这一理论的各种离散版本。我们首先发展了关于截面猜想和格罗根第克猜想的某些组合类似理论。这部分理论纯粹是组合理论,本质上源于有限图上有限群作用定点存在的结果(满足某些条件)。然后,我们研究了这一纯组合理论在方案理论中的各种应用。接下来,我们验证了双曲拓扑曲面离散基本群理论中的各种结果,其大意是:当且仅当这些子群的闭包在所考虑的离散基本群的无穷完备性中成立时,这些群的(离散)子群的各种性质才成立。这些结果使得作者在以前的论文中获得的亲 $Sigma $ 结果可以相当直接地转换成离散版本。最后,我们从本文的角度讨论了波吉(M. Boggi)以前在离散情况下考虑过的一个构造。
{"title":"TOPICS SURROUNDING THE COMBINATORIAL ANABELIAN GEOMETRY OF HYPERBOLIC CURVES IV: DISCRETENESS AND SECTIONS","authors":"YUICHIRO HOSHI, SHINICHI MOCHIZUKI","doi":"10.1017/nmj.2023.39","DOIUrl":"https://doi.org/10.1017/nmj.2023.39","url":null,"abstract":"Let &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000399_inline1.png\" /&gt; &lt;jats:tex-math&gt; $Sigma $ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; be a nonempty subset of the set of prime numbers which is either equal to the entire set of prime numbers or of cardinality one. In the present paper, we continue our study of the pro-&lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000399_inline2.png\" /&gt; &lt;jats:tex-math&gt; $Sigma $ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; fundamental groups of hyperbolic curves and their associated configuration spaces over algebraically closed fields in which the primes of &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000399_inline3.png\" /&gt; &lt;jats:tex-math&gt; $Sigma $ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; are invertible. The present paper focuses on the topic of &lt;jats:italic&gt;comparison&lt;/jats:italic&gt; between the theory developed in earlier papers concerning &lt;jats:italic&gt;pro-&lt;/jats:italic&gt;&lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000399_inline4.png\" /&gt; &lt;jats:tex-math&gt; $Sigma $ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; fundamental groups and various &lt;jats:italic&gt;discrete&lt;/jats:italic&gt; versions of this theory. We begin by developing a theory concerning certain combinatorial analogues of the &lt;jats:italic&gt;section conjecture&lt;/jats:italic&gt; and &lt;jats:italic&gt;Grothendieck conjecture&lt;/jats:italic&gt;. This portion of the theory is &lt;jats:italic&gt;purely combinatorial&lt;/jats:italic&gt; and essentially follows from a result concerning the &lt;jats:italic&gt;existence of fixed points&lt;/jats:italic&gt; of actions of finite groups on finite graphs (satisfying certain conditions). We then examine various applications of this purely combinatorial theory to &lt;jats:italic&gt;scheme theory&lt;/jats:italic&gt;. Next, we verify various results in the theory of discrete fundamental groups of hyperbolic topological surfaces to the effect that various properties of &lt;jats:italic&gt;(discrete) subgroups&lt;/jats:italic&gt; of such groups hold if and only if analogous properties hold for the closures of these subgroups in the &lt;jats:italic&gt;profinite completions&lt;/jats:italic&gt; of the discrete fundamental groups under consideration. These results make possible a fairly &lt;jats:italic&gt;straightforward translation&lt;/jats:italic&gt;, into &lt;jats:italic&gt;discrete versions&lt;/jats:italic&gt;, of pro-&lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000399_inline5.png\" /&gt; &lt;jats:tex-math&gt; $Sigma $ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inl","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"35 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139499121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DILOGARITHM IDENTITIES IN CLUSTER SCATTERING DIAGRAMS 群集散射图中的稀对数等式
IF 0.8 2区 数学 Q2 MATHEMATICS Pub Date : 2023-12-21 DOI: 10.1017/nmj.2023.15
TOMOKI NAKANISHI

We extend the notion of y-variables (coefficients) in cluster algebras to cluster scattering diagrams (CSDs). Accordingly, we extend the dilogarithm identity associated with a period in a cluster pattern to the one associated with a loop in a CSD. We show that these identities are constructed from and reduced to trivial ones by applying the pentagon identity possibly infinitely many times.

我们将簇代数中 y 变量(系数)的概念扩展到簇散射图(CSD)。相应地,我们将与簇模式中的周期相关的稀对数特性扩展为与 CSD 中的环相关的稀对数特性。我们证明,通过应用可能无限次的五边形特征,这些特征可以构造并简化为微不足道的特征。
{"title":"DILOGARITHM IDENTITIES IN CLUSTER SCATTERING DIAGRAMS","authors":"TOMOKI NAKANISHI","doi":"10.1017/nmj.2023.15","DOIUrl":"https://doi.org/10.1017/nmj.2023.15","url":null,"abstract":"<p>We extend the notion of <span>y</span>-variables (coefficients) in cluster algebras to cluster scattering diagrams (CSDs). Accordingly, we extend the dilogarithm identity associated with a period in a cluster pattern to the one associated with a loop in a CSD. We show that these identities are constructed from and reduced to trivial ones by applying the pentagon identity possibly infinitely many times.</p>","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"29 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138826458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LOCAL SECTIONS OF ARITHMETIC FUNDAMENTAL GROUPS OF p-ADIC CURVES p-ADIC 曲线算术基本群的局部段
IF 0.8 2区 数学 Q2 MATHEMATICS Pub Date : 2023-12-20 DOI: 10.1017/nmj.2023.33
MOHAMED SAÏDI

We investigate sections of the arithmetic fundamental group $pi _1(X)$ where X is either a smooth affinoid p-adic curve, or a formal germ of a p-adic curve, and prove that they can be lifted (unconditionally) to sections of cuspidally abelian Galois groups. As a consequence, if X admits a compactification Y, and the exact sequence of $pi _1(X)$ splits, then $text {index} (Y)=1$. We also exhibit a necessary and sufficient condition for a section of $pi _1(X)$ to arise from a rational point of Y. One of the key ingredients in our investigation is the fact, we prove in this paper in case X is affinoid, that the Picard group of X is finite.

我们研究了算术基本群 $pi _1(X)$的截面,其中 X 是光滑的affinoid p-adic曲线,或者是 p-adic曲线的形式胚芽,并证明它们可以(无条件地)提升到簕杜鹃无边际伽罗瓦群的截面。因此,如果 X 允许一个紧凑化 Y,并且 $pi _1(X)$ 的精确序列分裂,那么 $text {index} (Y)=1$ 。我们还展示了 $pi _1(X)$ 的一个部分从 Y 的一个有理点产生的必要条件和充分条件。我们研究的一个关键因素是,我们在本文中证明了在 X 是affinoid的情况下,X 的 Picard 群是有限的。
{"title":"LOCAL SECTIONS OF ARITHMETIC FUNDAMENTAL GROUPS OF p-ADIC CURVES","authors":"MOHAMED SAÏDI","doi":"10.1017/nmj.2023.33","DOIUrl":"https://doi.org/10.1017/nmj.2023.33","url":null,"abstract":"<p>We investigate <span>sections</span> of the arithmetic fundamental group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219130139179-0193:S0027763023000338:S0027763023000338_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$pi _1(X)$</span></span></img></span></span> where <span>X</span> is either a <span>smooth affinoid p-adic curve</span>, or a <span>formal germ of a p-adic curve</span>, and prove that they can be lifted (unconditionally) to sections of cuspidally abelian Galois groups. As a consequence, if <span>X</span> admits a compactification <span>Y</span>, and the exact sequence of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219130139179-0193:S0027763023000338:S0027763023000338_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$pi _1(X)$</span></span></img></span></span> <span>splits</span>, then <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219130139179-0193:S0027763023000338:S0027763023000338_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$text {index} (Y)=1$</span></span></img></span></span>. We also exhibit a necessary and sufficient condition for a section of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219130139179-0193:S0027763023000338:S0027763023000338_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$pi _1(X)$</span></span></img></span></span> to arise from a <span>rational point</span> of <span>Y</span>. One of the key ingredients in our investigation is the fact, we prove in this paper in case <span>X</span> is affinoid, that the Picard group of <span>X</span> is <span>finite</span>.</p>","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"38 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138821352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
COEFFICIENT QUIVERS, -REPRESENTATIONS, AND EULER CHARACTERISTICS OF QUIVER GRASSMANNIANS 系数簇、-表示和簇草曼的欧拉特性
IF 0.8 2区 数学 Q2 MATHEMATICS Pub Date : 2023-12-13 DOI: 10.1017/nmj.2023.37
JAIUNG JUN, ALEXANDER SISTKO
<p>A quiver representation assigns a vector space to each vertex, and a linear map to each arrow of a quiver. When one considers the category <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline2.png"><span data-mathjax-type="texmath"><span>$mathrm {Vect}(mathbb {F}_1)$</span></span></img></span></span> of vector spaces “over <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline3.png"><span data-mathjax-type="texmath"><span>$mathbb {F}_1$</span></span></img></span></span>” (the field with one element), one obtains <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline4.png"><span data-mathjax-type="texmath"><span>$mathbb {F}_1$</span></span></img></span></span>-representations of a quiver. In this paper, we study representations of a quiver over the field with one element in connection to coefficient quivers. To be precise, we prove that the category <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline5.png"><span data-mathjax-type="texmath"><span>$mathrm {Rep}(Q,mathbb {F}_1)$</span></span></img></span></span> is equivalent to the (suitably defined) category of coefficient quivers over <span>Q</span>. This provides a conceptual way to see Euler characteristics of a class of quiver Grassmannians as the number of “<span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline6.png"><span data-mathjax-type="texmath"><span>$mathbb {F}_1$</span></span></img></span></span>-rational points” of quiver Grassmannians. We generalize techniques originally developed for string and band modules to compute the Euler characteristics of quiver Grassmannians associated with <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline7.png"><span data-mathjax-type="texmath"><span>$mathbb {F}_1$</span></span></img></span></span>-representations. These techniques apply to a large class of <span><span><img data-mimesubtype="png" data-type="" src="https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline8.png"><span data-mathjax-type="texmath"><span>$mathbb {F}_1$</span></span></img></span></span>-representations, which we call the <span><span><img
箭簇表示法为箭簇的每个顶点分配了一个向量空间,为每个箭头分配了一个线性映射。当我们考虑 "在 $mathbb {F}_1$上"(有一个元素的域)的向量空间的类别 $mathrm {Vect}(mathbb {F}_1)$时,我们就得到了掤的$mathbb {F}_1$表示。在本文中,我们将研究与系数簇相关的单元素域上的簇的表示。准确地说,我们证明了$mathrm {Rep}(Q,mathbb {F}_1)$ 类别等价于(适当定义的)Q 上的系数簇类别。这就提供了一种概念上的方法,把一类簇格拉斯曼的欧拉特征看作簇格拉斯曼的"$mathbb {F}_1$ 理点 "的数目。我们将最初为弦和带模块开发的技术推广应用于计算与 $mathbb {F}_1$ 表示相关的四维格拉斯曼的欧拉特征。这些技术适用于一大类 $mathbb {F}_1$ 表示,我们称之为具有有限漂亮长度的 $mathbb {F}_1$ 表示:我们证明了 $mathbb {F}_1$ 表示具有有限漂亮长度的充分条件,并为某些四元组族分类了这类表示。最后,我们探讨了与 quivers 的 $mathbb {F}_1$ 表示相关的霍尔代数。我们回答了一个问题:方向的改变如何影响具有有界表示类型的簇的零势 $mathbb {F}_1$ 表示的霍尔代数。我们还讨论了与具有有限漂亮长度的表征相关的霍尔代数,并计算了它们对某些四元组家族的影响。
{"title":"COEFFICIENT QUIVERS, -REPRESENTATIONS, AND EULER CHARACTERISTICS OF QUIVER GRASSMANNIANS","authors":"JAIUNG JUN, ALEXANDER SISTKO","doi":"10.1017/nmj.2023.37","DOIUrl":"https://doi.org/10.1017/nmj.2023.37","url":null,"abstract":"&lt;p&gt;A quiver representation assigns a vector space to each vertex, and a linear map to each arrow of a quiver. When one considers the category &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline2.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathrm {Vect}(mathbb {F}_1)$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; of vector spaces “over &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline3.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathbb {F}_1$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;” (the field with one element), one obtains &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline4.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathbb {F}_1$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-representations of a quiver. In this paper, we study representations of a quiver over the field with one element in connection to coefficient quivers. To be precise, we prove that the category &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline5.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathrm {Rep}(Q,mathbb {F}_1)$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt; is equivalent to the (suitably defined) category of coefficient quivers over &lt;span&gt;Q&lt;/span&gt;. This provides a conceptual way to see Euler characteristics of a class of quiver Grassmannians as the number of “&lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline6.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathbb {F}_1$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-rational points” of quiver Grassmannians. We generalize techniques originally developed for string and band modules to compute the Euler characteristics of quiver Grassmannians associated with &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline7.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathbb {F}_1$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-representations. These techniques apply to a large class of &lt;span&gt;&lt;span&gt;&lt;img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231212132346299-0928:S0027763023000375:S0027763023000375_inline8.png\"&gt;&lt;span data-mathjax-type=\"texmath\"&gt;&lt;span&gt;$mathbb {F}_1$&lt;/span&gt;&lt;/span&gt;&lt;/img&gt;&lt;/span&gt;&lt;/span&gt;-representations, which we call the &lt;span&gt;&lt;span&gt;&lt;img","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"99 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138581377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
-ZARISKI PAIRS OF SURFACE SINGULARITIES -zariski曲面奇点对
IF 0.8 2区 数学 Q2 MATHEMATICS Pub Date : 2023-12-05 DOI: 10.1017/nmj.2023.34
CHRISTOPHE EYRAL, MUTSUO OKA
Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S002776302300034X_inline2.png" /> <jats:tex-math> $f_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S002776302300034X_inline3.png" /> <jats:tex-math> $f_1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be two homogeneous polynomials of degree <jats:italic>d</jats:italic> in three complex variables <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S002776302300034X_inline4.png" /> <jats:tex-math> $z_1,z_2,z_3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that the Lê–Yomdin surface singularities defined by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S002776302300034X_inline5.png" /> <jats:tex-math> $g_0:=f_0+z_i^{d+m}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S002776302300034X_inline6.png" /> <jats:tex-math> $g_1:=f_1+z_i^{d+m}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> have the same abstract topology, the same monodromy zeta-function, the same <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S002776302300034X_inline7.png" /> <jats:tex-math> $mu ^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-invariant, but lie in distinct path-connected components of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S002776302300034X_inline8.png" /> <jats:tex-math> $mu ^*$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-constant stratum if their projective tangent cones (defined by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S002776302300034X_inline9.png" /> <jats:tex-math> $f_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S002776302300034X_inline10.png" /> <jats:tex-math> $f_1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, respectively) make a Zariski pair of curves in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S002776302300034X_inline11.png" /> <jats:tex-math> $mathbb {P}^2$ </jats:tex-math> </jats:alternatives> </jat
设$f_0$和$f_1$是三个复变量$z_1,z_2,z_3$的两个d次齐次多项式。我们证明了$g_0:=f_0+z_i^{d+m}$和$g_1:=f_1+z_i^{d+m}$定义的Lê-Yomdin曲面奇点具有相同的抽象拓扑,相同的单ζ函数,相同的$mu ^*$ -不变量,但如果它们的投影切锥(分别由$f_0$和$f_1$定义)在$mathbb {P}^2$中形成Zariski对曲线,则它们位于$mu ^*$ -常数层的不同路径连通分量中。奇点是牛顿非简并的。在这种情况下,我们说$V(g_0):=g_0^{-1}(0)$和$V(g_1):=g_1^{-1}(0)$构成$mu ^*$ -Zariski曲面奇点对。作为这样的一对是细菌$V(g_0)$和$V(g_1)$具有不同嵌入拓扑的必要条件。
{"title":"-ZARISKI PAIRS OF SURFACE SINGULARITIES","authors":"CHRISTOPHE EYRAL, MUTSUO OKA","doi":"10.1017/nmj.2023.34","DOIUrl":"https://doi.org/10.1017/nmj.2023.34","url":null,"abstract":"Let &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302300034X_inline2.png\" /&gt; &lt;jats:tex-math&gt; $f_0$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302300034X_inline3.png\" /&gt; &lt;jats:tex-math&gt; $f_1$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; be two homogeneous polynomials of degree &lt;jats:italic&gt;d&lt;/jats:italic&gt; in three complex variables &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302300034X_inline4.png\" /&gt; &lt;jats:tex-math&gt; $z_1,z_2,z_3$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;. We show that the Lê–Yomdin surface singularities defined by &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302300034X_inline5.png\" /&gt; &lt;jats:tex-math&gt; $g_0:=f_0+z_i^{d+m}$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302300034X_inline6.png\" /&gt; &lt;jats:tex-math&gt; $g_1:=f_1+z_i^{d+m}$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; have the same abstract topology, the same monodromy zeta-function, the same &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302300034X_inline7.png\" /&gt; &lt;jats:tex-math&gt; $mu ^*$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;-invariant, but lie in distinct path-connected components of the &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302300034X_inline8.png\" /&gt; &lt;jats:tex-math&gt; $mu ^*$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;-constant stratum if their projective tangent cones (defined by &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302300034X_inline9.png\" /&gt; &lt;jats:tex-math&gt; $f_0$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302300034X_inline10.png\" /&gt; &lt;jats:tex-math&gt; $f_1$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, respectively) make a Zariski pair of curves in &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S002776302300034X_inline11.png\" /&gt; &lt;jats:tex-math&gt; $mathbb {P}^2$ &lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jat","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"359 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ON A COMPARISON BETWEEN DWORK AND RIGID COHOMOLOGIES OF PROJECTIVE COMPLEMENTS 射影补的网络与刚性上同的比较
IF 0.8 2区 数学 Q2 MATHEMATICS Pub Date : 2023-12-01 DOI: 10.1017/nmj.2023.32
JUNYEONG PARK
For homogeneous polynomials $G_1,ldots ,G_k$ over a finite field, their Dwork complex is defined by Adolphson and Sperber, based on Dwork’s theory. In this article, we will construct an explicit cochain map from the Dwork complex of $G_1,ldots ,G_k$ to the Monsky–Washnitzer complex associated with some affine bundle over the complement $mathbb {P}^nsetminus X_G$ of the common zero $X_G$ of $G_1,ldots ,G_k$ , which computes the rigid cohomology of $mathbb {P}^nsetminus X_G$ . We verify that this cochain map realizes the rigid cohomology of $mathbb {P}^nsetminus X_G$ as a direct summand of the Dwork cohomology of $G_1,ldots ,G_k$ . We also verify that the comparison map is compatible with the Frobenius and the Dwork operator defined on both complexes, respectively. Consequently, we extend Katz’s comparison results in [19] for projective hypersurface complements to arbitrary projective complements.
对于有限域上的齐次多项式$G_1,ldots,G_k$,它们的Dwork复形由Adolphson和Sperber根据Dwork理论定义。在本文中,我们将构造一个显式的协链映射,从$G_1,ldots,G_k$的Dwork复形到$G_1,ldots,G_k$的公零$X_G$的补$mathbb {P} n set- X_G$上与某个仿射束相关联的Monsky-Washnitzer复形,计算$mathbb {P} n set- X_G$的刚性上同调。我们证明了这个协链映射实现了$mathbb {P}^n set- X_G$的刚性上同调作为$G_1,ldots,G_k$的Dwork上同调的直接和。我们还验证了比较映射分别与两个复合体上定义的Frobenius算子和Dwork算子兼容。因此,我们将Katz在[19]中关于射影超曲面补的比较结果推广到任意射影补。
{"title":"ON A COMPARISON BETWEEN DWORK AND RIGID COHOMOLOGIES OF PROJECTIVE COMPLEMENTS","authors":"JUNYEONG PARK","doi":"10.1017/nmj.2023.32","DOIUrl":"https://doi.org/10.1017/nmj.2023.32","url":null,"abstract":"For homogeneous polynomials <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline1.png\" /> <jats:tex-math> $G_1,ldots ,G_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> over a finite field, their Dwork complex is defined by Adolphson and Sperber, based on Dwork’s theory. In this article, we will construct an explicit cochain map from the Dwork complex of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline2.png\" /> <jats:tex-math> $G_1,ldots ,G_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to the Monsky–Washnitzer complex associated with some affine bundle over the complement <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline3.png\" /> <jats:tex-math> $mathbb {P}^nsetminus X_G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of the common zero <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline4.png\" /> <jats:tex-math> $X_G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline5.png\" /> <jats:tex-math> $G_1,ldots ,G_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, which computes the rigid cohomology of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline6.png\" /> <jats:tex-math> $mathbb {P}^nsetminus X_G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We verify that this cochain map realizes the rigid cohomology of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline7.png\" /> <jats:tex-math> $mathbb {P}^nsetminus X_G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> as a direct summand of the Dwork cohomology of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000326_inline8.png\" /> <jats:tex-math> $G_1,ldots ,G_k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also verify that the comparison map is compatible with the Frobenius and the Dwork operator defined on both complexes, respectively. Consequently, we extend Katz’s comparison results in [19] for projective hypersurface complements to arbitrary projective complements.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"220 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138543526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HOW TO EXTEND CLOSURE AND INTERIOR OPERATIONS TO MORE MODULES 如何将闭包和内部操作扩展到更多模块
IF 0.8 2区 数学 Q2 MATHEMATICS Pub Date : 2023-12-01 DOI: 10.1017/nmj.2023.36
NEIL EPSTEIN, REBECCA R. G., JANET VASSILEV
There are several ways to convert a closure or interior operation to a different operation that has particular desirable properties. In this paper, we axiomatize three ways to do so, drawing on disparate examples from the literature, including tight closure, basically full closure, and various versions of integral closure. In doing so, we explore several such desirable properties, including hereditary, residual, and cofunctorial, and see how they interact with other properties such as the finitistic property.
有几种方法可以将闭包或内部操作转换为具有特定期望属性的不同操作。在本文中,我们公化了三种方法来做到这一点,从文献中吸取不同的例子,包括紧闭包,基本完全闭包和各种版本的积分闭包。在这样做的过程中,我们探索了几个这样的理想性质,包括遗传、剩余和共同的,并看到它们如何与其他性质(如有限性质)相互作用。
{"title":"HOW TO EXTEND CLOSURE AND INTERIOR OPERATIONS TO MORE MODULES","authors":"NEIL EPSTEIN, REBECCA R. G., JANET VASSILEV","doi":"10.1017/nmj.2023.36","DOIUrl":"https://doi.org/10.1017/nmj.2023.36","url":null,"abstract":"There are several ways to convert a closure or interior operation to a different operation that has particular desirable properties. In this paper, we axiomatize three ways to do so, drawing on disparate examples from the literature, including tight closure, basically full closure, and various versions of integral closure. In doing so, we explore several such desirable properties, including <jats:italic>hereditary</jats:italic>, <jats:italic>residual</jats:italic>, and <jats:italic>cofunctorial</jats:italic>, and see how they interact with other properties such as the <jats:italic>finitistic</jats:italic> property.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"377 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
GENUS CURVES WITH BAD REDUCTION AT ONE ODD PRIME 在一个奇素数处约化不良的属曲线
IF 0.8 2区 数学 Q2 MATHEMATICS Pub Date : 2023-11-29 DOI: 10.1017/nmj.2023.35
ANDRZEJ DĄBROWSKI, MOHAMMAD SADEK
The problem of classifying elliptic curves over $mathbb Q$ with a given discriminant has received much attention. The analogous problem for genus $2$ curves has only been tackled when the absolute discriminant is a power of $2$ . In this article, we classify genus $2$ curves C defined over ${mathbb Q}$ with at least two rational Weierstrass points and whose absolute discriminant is an odd prime. In fact, we show that such a curve C must be isomorphic to a specialization of one of finitely many $1$ -parameter families of genus $2$ curves. In particular, we provide genus $2$ analogues to Neumann–Setzer families of elliptic curves over the rationals.
用给定的判别式对$mathbb Q$上的椭圆曲线进行分类的问题受到了广泛的关注。对于$2$曲线的类似问题,只有在绝对判别式是$2$的幂次时才得到解决。在这篇文章中,我们对定义在${mathbb Q}$上的$2$曲线C进行了分类,这些曲线C至少有两个有理Weierstrass点,其绝对判别式是奇素数。事实上,我们证明了这样的曲线C必须同构于有限多个$1$参数族的$2$曲线中的一个的专门化。特别地,我们提供了在有理数上的椭圆曲线的Neumann-Setzer族的属$2类似物。
{"title":"GENUS CURVES WITH BAD REDUCTION AT ONE ODD PRIME","authors":"ANDRZEJ DĄBROWSKI, MOHAMMAD SADEK","doi":"10.1017/nmj.2023.35","DOIUrl":"https://doi.org/10.1017/nmj.2023.35","url":null,"abstract":"The problem of classifying elliptic curves over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline2.png\" /> <jats:tex-math> $mathbb Q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with a given discriminant has received much attention. The analogous problem for genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline3.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> curves has only been tackled when the absolute discriminant is a power of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline4.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this article, we classify genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline5.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> curves <jats:italic>C</jats:italic> defined over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline6.png\" /> <jats:tex-math> ${mathbb Q}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with at least two rational Weierstrass points and whose absolute discriminant is an odd prime. In fact, we show that such a curve <jats:italic>C</jats:italic> must be isomorphic to a specialization of one of finitely many <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline7.png\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-parameter families of genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline8.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> curves. In particular, we provide genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000351_inline9.png\" /> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> analogues to Neumann–Setzer families of elliptic curves over the rationals.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"13 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138539100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NMJ volume 252 Cover and Back matter NMJ卷252封面和封底
2区 数学 Q2 MATHEMATICS Pub Date : 2023-10-31 DOI: 10.1017/nmj.2023.31
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
此内容的摘要不可用,因此提供了预览。当您可以访问此内容时,可以通过“保存PDF”操作按钮获得完整的PDF。
{"title":"NMJ volume 252 Cover and Back matter","authors":"","doi":"10.1017/nmj.2023.31","DOIUrl":"https://doi.org/10.1017/nmj.2023.31","url":null,"abstract":"An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"82 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135863973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NMJ volume 252 Cover and Front matter NMJ卷252封面和正面问题
2区 数学 Q2 MATHEMATICS Pub Date : 2023-10-31 DOI: 10.1017/nmj.2023.30
{"title":"NMJ volume 252 Cover and Front matter","authors":"","doi":"10.1017/nmj.2023.30","DOIUrl":"https://doi.org/10.1017/nmj.2023.30","url":null,"abstract":"","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"17 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135870900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nagoya Mathematical Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1