Ecological dependencies - where organisms rely on other organisms for survival - are a ubiquitous feature of life on earth. Multicellular hosts rely on symbionts to provide essential vitamins and amino acids. Legume plants similarly rely on nitrogen-fixing rhizobia to convert atmospheric nitrogen to ammonia. In some cases, dependencies can arise via loss-of-function mutations that allow one partner to benefit from the actions of another. It is common in microbiology to label ecological dependencies between species as cooperation - making it necessary to invoke cooperation-specific frameworks to explain the phenomenon. However, in many cases, such traits are not (at least initially) cooperative, because they are not selected for because of the benefits they confer on a partner species. In contrast, dependencies in microbial communities may originate from fitness benefits gained from genomic-streamlining (i.e. Black Queen Dynamics). Here, we outline how the Black Queen Hypothesis predicts the formation of metabolic dependencies via loss-of-function mutations in microbial communities, without needing to invoke any cooperation-specific explanations. Furthermore we outline how the Black Queen Hypothesis can act as a blueprint for true cooperation as well as discuss key outstanding questions in the field. The nature of interactions in microbial communities can predict the ability of natural communities to withstand and recover from disturbances. Hence, it is vital to gain a deeper understanding of the factors driving these dynamic interactions over evolutionary time.
{"title":"Ecological dependencies and the illusion of cooperation in microbial communities.","authors":"Elze Hesse, Siobhán O'Brien","doi":"10.1099/mic.0.001442","DOIUrl":"10.1099/mic.0.001442","url":null,"abstract":"<p><p>Ecological dependencies - where organisms rely on other organisms for survival - are a ubiquitous feature of life on earth. Multicellular hosts rely on symbionts to provide essential vitamins and amino acids. Legume plants similarly rely on nitrogen-fixing rhizobia to convert atmospheric nitrogen to ammonia. In some cases, dependencies can arise via loss-of-function mutations that allow one partner to benefit from the actions of another. It is common in microbiology to label ecological dependencies between species as cooperation - making it necessary to invoke cooperation-specific frameworks to explain the phenomenon. However, in many cases, such traits are not (at least initially) cooperative, because they are not selected for because of the benefits they confer on a partner species. In contrast, dependencies in microbial communities may originate from fitness benefits gained from genomic-streamlining (i.e. Black Queen Dynamics). Here, we outline how the Black Queen Hypothesis predicts the formation of metabolic dependencies via loss-of-function mutations in microbial communities, without needing to invoke any cooperation-specific explanations. Furthermore we outline how the Black Queen Hypothesis can act as a blueprint for true cooperation as well as discuss key outstanding questions in the field. The nature of interactions in microbial communities can predict the ability of natural communities to withstand and recover from disturbances. Hence, it is vital to gain a deeper understanding of the factors driving these dynamic interactions over evolutionary time.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 2","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139933821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fifty years of research has transformed our understanding of bacterial movement from one of description, based on a limited number of electron micrographs and some low-magnification studies of cells moving towards or away from chemical effectors, to probably the best understood behavioural system in biology. We have a molecular understanding of how bacteria sense and respond to changes in their environment and detailed structural insights into the workings of one of the most complex motor structures we know of. Thanks to advances in genomics we also understand how, through evolution, different species have tuned and adapted a core shared system to optimize behaviour in their specific environment. In this review, I will highlight some of the unexpected findings we made during my over 40-year career, how those findings changed some of our understanding of bacterial behaviour and biochemistry and some of the battles to have those observations accepted.
{"title":"Twists and turns: 40 years of investigating how and why bacteria swim.","authors":"Judith P Armitage","doi":"10.1099/mic.0.001432","DOIUrl":"10.1099/mic.0.001432","url":null,"abstract":"<p><p>Fifty years of research has transformed our understanding of bacterial movement from one of description, based on a limited number of electron micrographs and some low-magnification studies of cells moving towards or away from chemical effectors, to probably the best understood behavioural system in biology. We have a molecular understanding of how bacteria sense and respond to changes in their environment and detailed structural insights into the workings of one of the most complex motor structures we know of. Thanks to advances in genomics we also understand how, through evolution, different species have tuned and adapted a core shared system to optimize behaviour in their specific environment. In this review, I will highlight some of the unexpected findings we made during my over 40-year career, how those findings changed some of our understanding of bacterial behaviour and biochemistry and some of the battles to have those observations accepted.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 2","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924463/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lorena T Fernández-Martínez, Arnaud Javelle, Paul A Hoskisson
tGrowth of microorganisms and interpretation of growth data are core skills required by microbiologists. While science moves forward, it is of paramount importance that essential skills are not lost. The bacterial growth curve and the information that can gleaned from it is of great value to all of microbiology, whether this be a simple growth experiment, comparison of mutant strains or the establishment of conditions for a large-scale multi-omics experiment. Increasingly, the basics of plotting and interpreting growth curves and growth data are being overlooked. This primer article serves as a refresher for microbiologists on the fundamentals of microbial growth kinetics.
{"title":"Microbial Primer: Bacterial growth kinetics.","authors":"Lorena T Fernández-Martínez, Arnaud Javelle, Paul A Hoskisson","doi":"10.1099/mic.0.001428","DOIUrl":"10.1099/mic.0.001428","url":null,"abstract":"<p><p>tGrowth of microorganisms and interpretation of growth data are core skills required by microbiologists. While science moves forward, it is of paramount importance that essential skills are not lost. The bacterial growth curve and the information that can gleaned from it is of great value to all of microbiology, whether this be a simple growth experiment, comparison of mutant strains or the establishment of conditions for a large-scale multi-omics experiment. Increasingly, the basics of plotting and interpreting growth curves and growth data are being overlooked. This primer article serves as a refresher for microbiologists on the fundamentals of microbial growth kinetics.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 2","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924458/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eric G Romanowski, Kimberly M Brothers, Rachel C Calvario, Nicholas A Stella, Tami Kim, Mennat Elsayed, Daniel E Kadouri, Robert M Q Shanks
Endogenous endophthalmitis caused by Gram-negative bacteria is an intra-ocular infection that can rapidly progress to irreversible loss of vision. While most endophthalmitis isolates are susceptible to antibiotic therapy, the emergence of resistant bacteria necessitates alternative approaches to combat intraocular bacterial proliferation. In this study the ability of predatory bacteria to limit intraocular growth of Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus aureus was evaluated in a New Zealand white rabbit endophthalmitis prevention model. Predatory bacteria Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus were able to reduce proliferation of keratitis isolates of P. aeruginosa and to a lesser extent S. marcescens. However, it was not able to significantly reduce the number of intraocular S. aureus, which is not a productive prey for these predatory bacteria, suggesting that the inhibitory effect on P. aeruginosa and S. marcescens requires active predation rather than an antimicrobial immune response. Similarly, UV-inactivated B. bacteriovorus were unable to prevent proliferation of P. aeruginosa. Together, these data indicate in vivo inhibition of Gram-negative bacteria proliferation within the intra-ocular environment by predatory bacteria.
{"title":"Predatory bacteria prevent the proliferation of intraocular <i>Serratia marcescens</i> and fluoroquinolone-resistant <i>Pseudomonas aeruginosa</i>.","authors":"Eric G Romanowski, Kimberly M Brothers, Rachel C Calvario, Nicholas A Stella, Tami Kim, Mennat Elsayed, Daniel E Kadouri, Robert M Q Shanks","doi":"10.1099/mic.0.001433","DOIUrl":"10.1099/mic.0.001433","url":null,"abstract":"<p><p>Endogenous endophthalmitis caused by Gram-negative bacteria is an intra-ocular infection that can rapidly progress to irreversible loss of vision. While most endophthalmitis isolates are susceptible to antibiotic therapy, the emergence of resistant bacteria necessitates alternative approaches to combat intraocular bacterial proliferation. In this study the ability of predatory bacteria to limit intraocular growth of <i>Pseudomonas aeruginosa</i>, <i>Serratia marcescens</i>, and <i>Staphylococcus aureus</i> was evaluated in a New Zealand white rabbit endophthalmitis prevention model. Predatory bacteria <i>Bdellovibrio bacteriovorus</i> and <i>Micavibrio aeruginosavorus</i> were able to reduce proliferation of keratitis isolates of <i>P. aeruginosa</i> and to a lesser extent <i>S. marcescens</i>. However, it was not able to significantly reduce the number of intraocular <i>S. aureus,</i> which is not a productive prey for these predatory bacteria, suggesting that the inhibitory effect on <i>P. aeruginosa</i> and <i>S. marcescens</i> requires active predation rather than an antimicrobial immune response. Similarly, UV-inactivated <i>B. bacteriovorus</i> were unable to prevent proliferation of <i>P. aeruginosa</i>. Together, these data indicate <i>in vivo</i> inhibition of Gram-negative bacteria proliferation within the intra-ocular environment by predatory bacteria.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 2","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924457/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139736556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bryony K Ackroyd, Eleanor J Dodson, Javeria Mehboob, Adam A Dowle, Gavin H Thomas, Anthony J Wilkinson
YejABEF is an ATP-binding cassette transporter that is implicated in the sensitivity of Escherichia coli to anti-microbial peptides, the best-characterized example being microcin C, a peptide-nucleotide antibiotic that targets aspartyl-tRNA synthetase. Here the structure of the extracellular solute binding protein, YejA, has been determined, revealing an oligopeptide-binding protein fold enclosing a ligand-binding pocket larger than those of other peptide-binding proteins of known structure. Prominent electron density in this cavity defines an undecapeptide sequence LGEPRYAFNFN, an observation that is confirmed by mass spectrometry. In the structure, the peptide interactions with the protein are mediated by main chain hydrogen bonds with the exception of Arg5 whose guanidinium side chain makes a set of defining polar interactions with four YejA residues. More detailed characterization of purified recombinant YejA, by a combination of ESI and MALDI-mass spectrometry as well as thermal shift assays, reveals a set of YejA complexes containing overlapping peptides 10-19 residues in length. All contain the sequence LGEPRYAFN. Curiously, these peptides correspond to residues 8-26 of the mature YejA protein, which belong to a unique N-terminal extension that distinguishes YejA from other cluster C oligopeptide binding proteins of known structure. This 35-residue extension is well-ordered and packs across the surface of the protein. The undecapeptide ligand occupies only a fraction of the enclosed pocket volume suggesting the possibility that much larger peptides or peptide conjugates could be accommodated, though thermal shift assays of YejA binding to antimicrobial peptides and peptides unrelated to LGEPRYAFNFN have not provided evidence of binding. While the physiological significance of this 'auto-binding' is not clear, the experimental data suggest that it is not an artefact of the crystallization process and that it may have a function in the sensing of periplasmic or membrane stress.
{"title":"Structure and ligand binding in the putative anti-microbial peptide transporter protein, YejA.","authors":"Bryony K Ackroyd, Eleanor J Dodson, Javeria Mehboob, Adam A Dowle, Gavin H Thomas, Anthony J Wilkinson","doi":"10.1099/mic.0.001430","DOIUrl":"10.1099/mic.0.001430","url":null,"abstract":"<p><p>YejABEF is an ATP-binding cassette transporter that is implicated in the sensitivity of <i>Escherichia coli</i> to anti-microbial peptides, the best-characterized example being microcin C, a peptide-nucleotide antibiotic that targets aspartyl-tRNA synthetase. Here the structure of the extracellular solute binding protein, YejA, has been determined, revealing an oligopeptide-binding protein fold enclosing a ligand-binding pocket larger than those of other peptide-binding proteins of known structure. Prominent electron density in this cavity defines an undecapeptide sequence LGEPRYAFNFN, an observation that is confirmed by mass spectrometry. In the structure, the peptide interactions with the protein are mediated by main chain hydrogen bonds with the exception of Arg5 whose guanidinium side chain makes a set of defining polar interactions with four YejA residues. More detailed characterization of purified recombinant YejA, by a combination of ESI and MALDI-mass spectrometry as well as thermal shift assays, reveals a set of YejA complexes containing overlapping peptides 10-19 residues in length. All contain the sequence LGEPRYAFN. Curiously, these peptides correspond to residues 8-26 of the mature YejA protein, which belong to a unique N-terminal extension that distinguishes YejA from other cluster C oligopeptide binding proteins of known structure. This 35-residue extension is well-ordered and packs across the surface of the protein. The undecapeptide ligand occupies only a fraction of the enclosed pocket volume suggesting the possibility that much larger peptides or peptide conjugates could be accommodated, though thermal shift assays of YejA binding to antimicrobial peptides and peptides unrelated to LGEPRYAFNFN have not provided evidence of binding. While the physiological significance of this 'auto-binding' is not clear, the experimental data suggest that it is not an artefact of the crystallization process and that it may have a function in the sensing of periplasmic or membrane stress.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 2","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10924461/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139708383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katherine J Baxter, Fiona A Sargison, J Ross Fitzgerald, Gail McConnell, Paul A Hoskisson
Polymicrobial infection with Candida albicans and Staphylococcus aureus may result in a concomitant increase in virulence and resistance to antimicrobial drugs. This enhanced pathogenicity phenotype is mediated by numerous factors, including metabolic processes and direct interaction of S. aureus with C. albicans hyphae. The overall structure of biofilms is known to contribute to their recalcitrance to treatment, although the dynamics of direct interaction between species and how it contributes to pathogenicity is poorly understood. To address this, a novel time-lapse mesoscopic optical imaging method was developed to enable the formation of C. albicans/S. aureus whole dual-species biofilms to be followed. It was found that yeast-form or hyphal-form C. albicans in the biofilm founder population profoundly affects the structure of the biofilm as it matures. Different sub-populations of C. albicans and S. aureus arise within each biofilm as a result of the different C. albicans morphotypes, resulting in distinct sub-regions. These data reveal that C. albicans cell morphology is pivotal in the development of global biofilm architecture and the emergence of colony macrostructures and may temporally influence synergy in infection.
{"title":"Time-lapse mesoscopy of <i>Candida albicans</i> and <i>Staphylococcus aureus</i> dual-species biofilms reveals a structural role for the hyphae of <i>C. albicans</i> in biofilm formation.","authors":"Katherine J Baxter, Fiona A Sargison, J Ross Fitzgerald, Gail McConnell, Paul A Hoskisson","doi":"10.1099/mic.0.001426","DOIUrl":"10.1099/mic.0.001426","url":null,"abstract":"<p><p>Polymicrobial infection with <i>Candida albicans</i> and <i>Staphylococcus aureus</i> may result in a concomitant increase in virulence and resistance to antimicrobial drugs. This enhanced pathogenicity phenotype is mediated by numerous factors, including metabolic processes and direct interaction of <i>S. aureus</i> with <i>C. albicans</i> hyphae. The overall structure of biofilms is known to contribute to their recalcitrance to treatment, although the dynamics of direct interaction between species and how it contributes to pathogenicity is poorly understood. To address this, a novel time-lapse mesoscopic optical imaging method was developed to enable the formation of <i>C. albicans</i>/<i>S. aureus</i> whole dual-species biofilms to be followed. It was found that yeast-form or hyphal-form <i>C. albicans</i> in the biofilm founder population profoundly affects the structure of the biofilm as it matures. Different sub-populations of <i>C. albicans</i> and <i>S. aureus</i> arise within each biofilm as a result of the different <i>C. albicans</i> morphotypes, resulting in distinct sub-regions. These data reveal that <i>C. albicans</i> cell morphology is pivotal in the development of global biofilm architecture and the emergence of colony macrostructures and may temporally influence synergy in infection.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866020/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139543325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Syakira Mohammed Hussein, Aderonke Sofoluwe, Ameya Paleja, Anne Duhme-Klair, Mark S Thomas
One of the mechanisms employed by the opportunistic pathogen Burkholderia cenocepacia to acquire the essential element iron is the production and release of two ferric iron chelating compounds (siderophores), ornibactin and pyochelin. Here we show that B. cenocepacia is also able to take advantage of a range of siderophores produced by other bacteria and fungi ('xenosiderophores') that chelate iron exclusively by means of hydroxamate groups. These include the tris-hydroxamate siderophores ferrioxamine B, ferrichrome, ferricrocin and triacetylfusarinine C, the bis-hydroxamates alcaligin and rhodotorulic acid, and the monohydroxamate siderophore cepabactin. We also show that of the 24 TonB-dependent transporters encoded by the B. cenocepacia genome, two (FhuA and FeuA) are involved in the uptake of hydroxamate xenosiderophores, with FhuA serving as the exclusive transporter of iron-loaded ferrioxamine B, triacetylfusarinine C, alcaligin and rhodotorulic acid, while both FhuA and FeuA are able to translocate ferrichrome-type siderophores across the outer membrane. Finally, we identified FhuB, a putative cytoplasmic membrane-anchored ferric-siderophore reductase, as being obligatory for utilization of all of the tested bis- and tris-hydroxamate xenosiderophores apart from alcaligin.
{"title":"Identification of a system for hydroxamate xenosiderophore-mediated iron transport in <i>Burkholderia cenocepacia</i>.","authors":"Syakira Mohammed Hussein, Aderonke Sofoluwe, Ameya Paleja, Anne Duhme-Klair, Mark S Thomas","doi":"10.1099/mic.0.001425","DOIUrl":"10.1099/mic.0.001425","url":null,"abstract":"<p><p>One of the mechanisms employed by the opportunistic pathogen <i>Burkholderia cenocepacia</i> to acquire the essential element iron is the production and release of two ferric iron chelating compounds (siderophores), ornibactin and pyochelin. Here we show that <i>B. cenocepacia</i> is also able to take advantage of a range of siderophores produced by other bacteria and fungi ('xenosiderophores') that chelate iron exclusively by means of hydroxamate groups. These include the tris-hydroxamate siderophores ferrioxamine B, ferrichrome, ferricrocin and triacetylfusarinine C, the bis-hydroxamates alcaligin and rhodotorulic acid, and the monohydroxamate siderophore cepabactin. We also show that of the 24 TonB-dependent transporters encoded by the <i>B. cenocepacia</i> genome, two (FhuA and FeuA) are involved in the uptake of hydroxamate xenosiderophores, with FhuA serving as the exclusive transporter of iron-loaded ferrioxamine B, triacetylfusarinine C, alcaligin and rhodotorulic acid, while both FhuA and FeuA are able to translocate ferrichrome-type siderophores across the outer membrane. Finally, we identified FhuB, a putative cytoplasmic membrane-anchored ferric-siderophore reductase, as being obligatory for utilization of all of the tested bis- and tris-hydroxamate xenosiderophores apart from alcaligin.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866019/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139378666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bacteria swim using membrane-spanning, electrochemical gradient-powered motors that rotate semi-rigid helical filaments. This primer provides a brief overview of the basic synthesis, structure and operation of these nanomachines. Details and variations on the basic system can be found in suggested further reading.
{"title":"Microbial Primer: The bacterial flagellum - how bacteria swim.","authors":"Judith P Armitage","doi":"10.1099/mic.0.001406","DOIUrl":"10.1099/mic.0.001406","url":null,"abstract":"<p><p>Bacteria swim using membrane-spanning, electrochemical gradient-powered motors that rotate semi-rigid helical filaments. This primer provides a brief overview of the basic synthesis, structure and operation of these nanomachines. Details and variations on the basic system can be found in suggested further reading.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866024/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139472502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Henry P Oswin, Evie Blake, Allen E Haddrell, Adam Finn, Shiranee Sriskandan, Jonathan P Reid, Alice Halliday, Anu Goenka
Group A streptococcus (GAS) infections result in more than 500 000 deaths annually. Despite mounting evidence for airborne transmission of GAS, little is known about its stability in aerosol. Measurements of GAS airborne stability were carried out using the Controlled Electrodynamic Levitation and Extraction of Bioaerosols onto a Substrate (CELEBS) instrument. CELEBS measurements with two different isolates of GAS suggest that it is aerostable, with approximately 70 % of bacteria remaining viable after 20 min of levitation at 50 % relative humidity (RH), with lower survival as RH was reduced. GAS airborne viability loss was driven primarily by desiccation and efflorescence (i.e. salt crystallization), with high pH also potentially playing a role, given reduced survival in bicarbonate containing droplet compositions. At low enough RH for efflorescence to occur, a greater proportion of organic components in the droplet appeared to protect the bacteria from efflorescence. These first insights into the aerosol stability of GAS indicate that airborne transmission of these respiratory tract bacteria may occur, and that both the composition of the droplet containing the bacteria, and the RH of the air affect the duration of bacterial survival in this environment. Future studies will explore a broader range of droplet and air compositions and include a larger selection of GAS strains.
A 组链球菌(GAS)感染每年导致 50 多万人死亡。尽管有越来越多的证据表明 GAS 通过空气传播,但人们对其在气溶胶中的稳定性却知之甚少。我们使用受控电动悬浮和提取生物气溶胶到基质(CELEBS)仪器对 GAS 在空气中的稳定性进行了测量。通过对两种不同的 GAS 分离物进行 CELEBS 测量,结果表明 GAS 具有空气稳定性,在相对湿度(RH)为 50% 的条件下悬浮 20 分钟后,仍有约 70% 的细菌存活,随着相对湿度的降低,存活率也会降低。GAS 在空气中的存活率下降主要是由于干燥和风化(即盐结晶)造成的,高 pH 值也可能起到一定作用,因为在含有碳酸氢盐的液滴成分中存活率会降低。在相对湿度足够低的情况下,液滴中有机成分的比例越高,细菌就越能免受侵蚀。这些对 GAS 气溶胶稳定性的初步认识表明,这些呼吸道细菌可能会通过空气传播,而含有细菌的液滴成分和空气相对湿度都会影响细菌在这种环境中的存活时间。未来的研究将探索更广泛的液滴和空气成分,并选择更多的 GAS 菌株。
{"title":"An assessment of the airborne longevity of group A Streptococcus.","authors":"Henry P Oswin, Evie Blake, Allen E Haddrell, Adam Finn, Shiranee Sriskandan, Jonathan P Reid, Alice Halliday, Anu Goenka","doi":"10.1099/mic.0.001421","DOIUrl":"10.1099/mic.0.001421","url":null,"abstract":"<p><p>Group A streptococcus (GAS) infections result in more than 500 000 deaths annually. Despite mounting evidence for airborne transmission of GAS, little is known about its stability in aerosol. Measurements of GAS airborne stability were carried out using the Controlled Electrodynamic Levitation and Extraction of Bioaerosols onto a Substrate (CELEBS) instrument. CELEBS measurements with two different isolates of GAS suggest that it is aerostable, with approximately 70 % of bacteria remaining viable after 20 min of levitation at 50 % relative humidity (RH), with lower survival as RH was reduced. GAS airborne viability loss was driven primarily by desiccation and efflorescence (i.e. salt crystallization), with high pH also potentially playing a role, given reduced survival in bicarbonate containing droplet compositions. At low enough RH for efflorescence to occur, a greater proportion of organic components in the droplet appeared to protect the bacteria from efflorescence. These first insights into the aerosol stability of GAS indicate that airborne transmission of these respiratory tract bacteria may occur, and that both the composition of the droplet containing the bacteria, and the RH of the air affect the duration of bacterial survival in this environment. Future studies will explore a broader range of droplet and air compositions and include a larger selection of GAS strains.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866022/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139099081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liam M Rooney, Lionel X Dupuy, Paul A Hoskisson, Gail McConnell
We have developed a tuneable workflow for the study of soil microbes in an imitative 3D soil environment that is compatible with routine and advanced optical imaging, is chemically customisable, and is reliably refractive index matched based on the carbon catabolism of the study organism. We demonstrate our transparent soil pipeline with two representative soil organisms, Bacillus subtilis and Streptomyces coelicolor, and visualise their colonisation behaviours using fluorescence microscopy and mesoscopy. This spatially structured, 3D approach to microbial culture has the potential to further study the behaviour of bacteria in conditions matching their native environment and could be expanded to study microbial interactions, such as competition and warfare.
{"title":"Construction and characterisation of a structured, tuneable, and transparent 3D culture platform for soil bacteria.","authors":"Liam M Rooney, Lionel X Dupuy, Paul A Hoskisson, Gail McConnell","doi":"10.1099/mic.0.001429","DOIUrl":"10.1099/mic.0.001429","url":null,"abstract":"<p><p>We have developed a tuneable workflow for the study of soil microbes in an imitative 3D soil environment that is compatible with routine and advanced optical imaging, is chemically customisable, and is reliably refractive index matched based on the carbon catabolism of the study organism. We demonstrate our transparent soil pipeline with two representative soil organisms, <i>Bacillus subtilis</i> and <i>Streptomyces coelicolor</i>, and visualise their colonisation behaviours using fluorescence microscopy and mesoscopy. This spatially structured, 3D approach to microbial culture has the potential to further study the behaviour of bacteria in conditions matching their native environment and could be expanded to study microbial interactions, such as competition and warfare.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866023/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139576397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}