首页 > 最新文献

Microbiology-Sgm最新文献

英文 中文
Time-lapse mesoscopy of Candida albicans and Staphylococcus aureus dual-species biofilms reveals a structural role for the hyphae of C. albicans in biofilm formation. 对白色念珠菌和金黄色葡萄球菌双种生物膜的延时介观观察揭示了白色念珠菌菌丝在生物膜形成过程中的结构作用。
IF 2.8 4区 生物学 Q3 Immunology and Microbiology Pub Date : 2024-01-01 DOI: 10.1099/mic.0.001426
Katherine J Baxter, Fiona A Sargison, J Ross Fitzgerald, Gail McConnell, Paul A Hoskisson

Polymicrobial infection with Candida albicans and Staphylococcus aureus may result in a concomitant increase in virulence and resistance to antimicrobial drugs. This enhanced pathogenicity phenotype is mediated by numerous factors, including metabolic processes and direct interaction of S. aureus with C. albicans hyphae. The overall structure of biofilms is known to contribute to their recalcitrance to treatment, although the dynamics of direct interaction between species and how it contributes to pathogenicity is poorly understood. To address this, a novel time-lapse mesoscopic optical imaging method was developed to enable the formation of C. albicans/S. aureus whole dual-species biofilms to be followed. It was found that yeast-form or hyphal-form C. albicans in the biofilm founder population profoundly affects the structure of the biofilm as it matures. Different sub-populations of C. albicans and S. aureus arise within each biofilm as a result of the different C. albicans morphotypes, resulting in distinct sub-regions. These data reveal that C. albicans cell morphology is pivotal in the development of global biofilm architecture and the emergence of colony macrostructures and may temporally influence synergy in infection.

白色念珠菌和金黄色葡萄球菌的多微生物感染可能会导致致病力和抗菌药物耐药性的同时增强。这种致病性增强的表型由多种因素介导,包括新陈代谢过程和金黄色葡萄球菌与白念珠菌菌丝的直接相互作用。众所周知,生物膜的整体结构会导致其对治疗的不耐受性,但人们对物种间直接相互作用的动态及其如何导致致病性却知之甚少。为了解决这个问题,我们开发了一种新型的延时介观光学成像方法,以跟踪白僵菌/金黄色葡萄球菌整个双菌种生物膜的形成过程。研究发现,生物膜创始种群中的酵母型白僵菌或吸虫型白僵菌会在生物膜成熟时对其结构产生深远影响。由于白僵菌形态的不同,每个生物膜中会出现不同的白僵菌和金黄色葡萄球菌亚群,从而形成不同的亚区域。这些数据表明,白僵菌细胞形态在全球生物膜结构的发展和菌落大结构的出现中起着关键作用,并可能在时间上影响感染的协同作用。
{"title":"Time-lapse mesoscopy of <i>Candida albicans</i> and <i>Staphylococcus aureus</i> dual-species biofilms reveals a structural role for the hyphae of <i>C. albicans</i> in biofilm formation.","authors":"Katherine J Baxter, Fiona A Sargison, J Ross Fitzgerald, Gail McConnell, Paul A Hoskisson","doi":"10.1099/mic.0.001426","DOIUrl":"10.1099/mic.0.001426","url":null,"abstract":"<p><p>Polymicrobial infection with <i>Candida albicans</i> and <i>Staphylococcus aureus</i> may result in a concomitant increase in virulence and resistance to antimicrobial drugs. This enhanced pathogenicity phenotype is mediated by numerous factors, including metabolic processes and direct interaction of <i>S. aureus</i> with <i>C. albicans</i> hyphae. The overall structure of biofilms is known to contribute to their recalcitrance to treatment, although the dynamics of direct interaction between species and how it contributes to pathogenicity is poorly understood. To address this, a novel time-lapse mesoscopic optical imaging method was developed to enable the formation of <i>C. albicans</i>/<i>S. aureus</i> whole dual-species biofilms to be followed. It was found that yeast-form or hyphal-form <i>C. albicans</i> in the biofilm founder population profoundly affects the structure of the biofilm as it matures. Different sub-populations of <i>C. albicans</i> and <i>S. aureus</i> arise within each biofilm as a result of the different <i>C. albicans</i> morphotypes, resulting in distinct sub-regions. These data reveal that <i>C. albicans</i> cell morphology is pivotal in the development of global biofilm architecture and the emergence of colony macrostructures and may temporally influence synergy in infection.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866020/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139543325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of a system for hydroxamate xenosiderophore-mediated iron transport in Burkholderia cenocepacia. 确定伯克霍尔德氏菌(Burkholderia cenocepacia)中由羟基氨基甲酸酯异苷酸盐介导的铁运输系统。
IF 2.8 4区 生物学 Q3 Immunology and Microbiology Pub Date : 2024-01-01 DOI: 10.1099/mic.0.001425
Syakira Mohammed Hussein, Aderonke Sofoluwe, Ameya Paleja, Anne Duhme-Klair, Mark S Thomas

One of the mechanisms employed by the opportunistic pathogen Burkholderia cenocepacia to acquire the essential element iron is the production and release of two ferric iron chelating compounds (siderophores), ornibactin and pyochelin. Here we show that B. cenocepacia is also able to take advantage of a range of siderophores produced by other bacteria and fungi ('xenosiderophores') that chelate iron exclusively by means of hydroxamate groups. These include the tris-hydroxamate siderophores ferrioxamine B, ferrichrome, ferricrocin and triacetylfusarinine C, the bis-hydroxamates alcaligin and rhodotorulic acid, and the monohydroxamate siderophore cepabactin. We also show that of the 24 TonB-dependent transporters encoded by the B. cenocepacia genome, two (FhuA and FeuA) are involved in the uptake of hydroxamate xenosiderophores, with FhuA serving as the exclusive transporter of iron-loaded ferrioxamine B, triacetylfusarinine C, alcaligin and rhodotorulic acid, while both FhuA and FeuA are able to translocate ferrichrome-type siderophores across the outer membrane. Finally, we identified FhuB, a putative cytoplasmic membrane-anchored ferric-siderophore reductase, as being obligatory for utilization of all of the tested bis- and tris-hydroxamate xenosiderophores apart from alcaligin.

机会性病原体伯克霍尔德氏原虫(Burkholderia cenocepacia)获取必需元素铁的机制之一是产生和释放两种铁螯合化合物(嗜铁素)--奥尼巴坦素(ornibactin)和吡咯啉(pyochelin)。在这里,我们展示了肠杆菌还能利用其他细菌和真菌产生的一系列苷元("异苷元"),这些苷元完全通过羟基氨基甲酸酯基团螯合铁。其中包括三羟酰胺嗜铁物铁氧胺 B、铁铬、铁霉素和三乙酰呋喃西林 C,双羟酰胺嗜铁物 alcaligin 和 rhodotorulic acid,以及单羟酰胺嗜铁物 cepabactin。我们还发现,在由 B. cenocepacia 基因组编码的 24 个依赖于 TonB 的转运体中,有两个(FhuA 和 FeuA)参与了羟氨酸盐类嗜苷酸盐的吸收,其中 FhuA 是铁负荷的铁氧胺 B、三乙酰呋喃西林 C、alcaligin 和 rhodotorulic acid 的唯一转运体,而 FhuA 和 FeuA 都能将亚铁铬型嗜苷酸盐转运过外膜。最后,我们确定了 FhuB(一种假定的细胞质膜锚定铁-苷元还原酶),它是利用所有测试过的二羟基和三羟基氨基甲酸酯类苷元的必要条件,但不包括金合欢苷。
{"title":"Identification of a system for hydroxamate xenosiderophore-mediated iron transport in <i>Burkholderia cenocepacia</i>.","authors":"Syakira Mohammed Hussein, Aderonke Sofoluwe, Ameya Paleja, Anne Duhme-Klair, Mark S Thomas","doi":"10.1099/mic.0.001425","DOIUrl":"10.1099/mic.0.001425","url":null,"abstract":"<p><p>One of the mechanisms employed by the opportunistic pathogen <i>Burkholderia cenocepacia</i> to acquire the essential element iron is the production and release of two ferric iron chelating compounds (siderophores), ornibactin and pyochelin. Here we show that <i>B. cenocepacia</i> is also able to take advantage of a range of siderophores produced by other bacteria and fungi ('xenosiderophores') that chelate iron exclusively by means of hydroxamate groups. These include the tris-hydroxamate siderophores ferrioxamine B, ferrichrome, ferricrocin and triacetylfusarinine C, the bis-hydroxamates alcaligin and rhodotorulic acid, and the monohydroxamate siderophore cepabactin. We also show that of the 24 TonB-dependent transporters encoded by the <i>B. cenocepacia</i> genome, two (FhuA and FeuA) are involved in the uptake of hydroxamate xenosiderophores, with FhuA serving as the exclusive transporter of iron-loaded ferrioxamine B, triacetylfusarinine C, alcaligin and rhodotorulic acid, while both FhuA and FeuA are able to translocate ferrichrome-type siderophores across the outer membrane. Finally, we identified FhuB, a putative cytoplasmic membrane-anchored ferric-siderophore reductase, as being obligatory for utilization of all of the tested bis- and tris-hydroxamate xenosiderophores apart from alcaligin.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866019/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139378666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial Primer: The bacterial flagellum - how bacteria swim. 微生物入门:细菌鞭毛--细菌如何游泳。
IF 2.8 4区 生物学 Q3 Immunology and Microbiology Pub Date : 2024-01-01 DOI: 10.1099/mic.0.001406
Judith P Armitage

Bacteria swim using membrane-spanning, electrochemical gradient-powered motors that rotate semi-rigid helical filaments. This primer provides a brief overview of the basic synthesis, structure and operation of these nanomachines. Details and variations on the basic system can be found in suggested further reading.

细菌利用横跨膜的电化学梯度动力马达旋转半刚性螺旋丝来游泳。本简介简要介绍了这些纳米机器的基本合成、结构和运行。有关基本系统的详细信息和变化,请参阅建议的进一步阅读内容。
{"title":"Microbial Primer: The bacterial flagellum - how bacteria swim.","authors":"Judith P Armitage","doi":"10.1099/mic.0.001406","DOIUrl":"10.1099/mic.0.001406","url":null,"abstract":"<p><p>Bacteria swim using membrane-spanning, electrochemical gradient-powered motors that rotate semi-rigid helical filaments. This primer provides a brief overview of the basic synthesis, structure and operation of these nanomachines. Details and variations on the basic system can be found in suggested further reading.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866024/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139472502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction and characterisation of a structured, tuneable, and transparent 3D culture platform for soil bacteria. 构建结构化、可调节和透明的土壤细菌三维培养平台并确定其特性。
IF 2.8 4区 生物学 Q3 Immunology and Microbiology Pub Date : 2024-01-01 DOI: 10.1099/mic.0.001429
Liam M Rooney, Lionel X Dupuy, Paul A Hoskisson, Gail McConnell

We have developed a tuneable workflow for the study of soil microbes in an imitative 3D soil environment that is compatible with routine and advanced optical imaging, is chemically customisable, and is reliably refractive index matched based on the carbon catabolism of the study organism. We demonstrate our transparent soil pipeline with two representative soil organisms, Bacillus subtilis and Streptomyces coelicolor, and visualise their colonisation behaviours using fluorescence microscopy and mesoscopy. This spatially structured, 3D approach to microbial culture has the potential to further study the behaviour of bacteria in conditions matching their native environment and could be expanded to study microbial interactions, such as competition and warfare.

我们开发了一种可调整的工作流程,用于在仿真三维土壤环境中研究土壤微生物,该流程与常规和高级光学成像兼容,可进行化学定制,并根据研究生物的碳分解代谢情况可靠地匹配折射率。我们用两种具有代表性的土壤生物--枯草芽孢杆菌(Bacillus subtilis)和棕褐色链霉菌(Streptomyces coelicolor)--演示了我们的透明土壤管道,并使用荧光显微镜和中透镜观察了它们的定殖行为。这种空间结构的三维微生物培养方法有望进一步研究细菌在与其原生环境相匹配的条件下的行为,并可扩展到研究微生物之间的相互作用,如竞争和战争。
{"title":"Construction and characterisation of a structured, tuneable, and transparent 3D culture platform for soil bacteria.","authors":"Liam M Rooney, Lionel X Dupuy, Paul A Hoskisson, Gail McConnell","doi":"10.1099/mic.0.001429","DOIUrl":"10.1099/mic.0.001429","url":null,"abstract":"<p><p>We have developed a tuneable workflow for the study of soil microbes in an imitative 3D soil environment that is compatible with routine and advanced optical imaging, is chemically customisable, and is reliably refractive index matched based on the carbon catabolism of the study organism. We demonstrate our transparent soil pipeline with two representative soil organisms, <i>Bacillus subtilis</i> and <i>Streptomyces coelicolor</i>, and visualise their colonisation behaviours using fluorescence microscopy and mesoscopy. This spatially structured, 3D approach to microbial culture has the potential to further study the behaviour of bacteria in conditions matching their native environment and could be expanded to study microbial interactions, such as competition and warfare.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866023/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139576397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An assessment of the airborne longevity of group A Streptococcus. 评估 A 群链球菌在空气中的寿命。
IF 2.6 4区 生物学 Q3 MICROBIOLOGY Pub Date : 2024-01-01 DOI: 10.1099/mic.0.001421
Henry P Oswin, Evie Blake, Allen E Haddrell, Adam Finn, Shiranee Sriskandan, Jonathan P Reid, Alice Halliday, Anu Goenka

Group A streptococcus (GAS) infections result in more than 500 000 deaths annually. Despite mounting evidence for airborne transmission of GAS, little is known about its stability in aerosol. Measurements of GAS airborne stability were carried out using the Controlled Electrodynamic Levitation and Extraction of Bioaerosols onto a Substrate (CELEBS) instrument. CELEBS measurements with two different isolates of GAS suggest that it is aerostable, with approximately 70 % of bacteria remaining viable after 20 min of levitation at 50 % relative humidity (RH), with lower survival as RH was reduced. GAS airborne viability loss was driven primarily by desiccation and efflorescence (i.e. salt crystallization), with high pH also potentially playing a role, given reduced survival in bicarbonate containing droplet compositions. At low enough RH for efflorescence to occur, a greater proportion of organic components in the droplet appeared to protect the bacteria from efflorescence. These first insights into the aerosol stability of GAS indicate that airborne transmission of these respiratory tract bacteria may occur, and that both the composition of the droplet containing the bacteria, and the RH of the air affect the duration of bacterial survival in this environment. Future studies will explore a broader range of droplet and air compositions and include a larger selection of GAS strains.

A 组链球菌(GAS)感染每年导致 50 多万人死亡。尽管有越来越多的证据表明 GAS 通过空气传播,但人们对其在气溶胶中的稳定性却知之甚少。我们使用受控电动悬浮和提取生物气溶胶到基质(CELEBS)仪器对 GAS 在空气中的稳定性进行了测量。通过对两种不同的 GAS 分离物进行 CELEBS 测量,结果表明 GAS 具有空气稳定性,在相对湿度(RH)为 50% 的条件下悬浮 20 分钟后,仍有约 70% 的细菌存活,随着相对湿度的降低,存活率也会降低。GAS 在空气中的存活率下降主要是由于干燥和风化(即盐结晶)造成的,高 pH 值也可能起到一定作用,因为在含有碳酸氢盐的液滴成分中存活率会降低。在相对湿度足够低的情况下,液滴中有机成分的比例越高,细菌就越能免受侵蚀。这些对 GAS 气溶胶稳定性的初步认识表明,这些呼吸道细菌可能会通过空气传播,而含有细菌的液滴成分和空气相对湿度都会影响细菌在这种环境中的存活时间。未来的研究将探索更广泛的液滴和空气成分,并选择更多的 GAS 菌株。
{"title":"An assessment of the airborne longevity of group A Streptococcus.","authors":"Henry P Oswin, Evie Blake, Allen E Haddrell, Adam Finn, Shiranee Sriskandan, Jonathan P Reid, Alice Halliday, Anu Goenka","doi":"10.1099/mic.0.001421","DOIUrl":"10.1099/mic.0.001421","url":null,"abstract":"<p><p>Group A streptococcus (GAS) infections result in more than 500 000 deaths annually. Despite mounting evidence for airborne transmission of GAS, little is known about its stability in aerosol. Measurements of GAS airborne stability were carried out using the Controlled Electrodynamic Levitation and Extraction of Bioaerosols onto a Substrate (CELEBS) instrument. CELEBS measurements with two different isolates of GAS suggest that it is aerostable, with approximately 70 % of bacteria remaining viable after 20 min of levitation at 50 % relative humidity (RH), with lower survival as RH was reduced. GAS airborne viability loss was driven primarily by desiccation and efflorescence (i.e. salt crystallization), with high pH also potentially playing a role, given reduced survival in bicarbonate containing droplet compositions. At low enough RH for efflorescence to occur, a greater proportion of organic components in the droplet appeared to protect the bacteria from efflorescence. These first insights into the aerosol stability of GAS indicate that airborne transmission of these respiratory tract bacteria may occur, and that both the composition of the droplet containing the bacteria, and the RH of the air affect the duration of bacterial survival in this environment. Future studies will explore a broader range of droplet and air compositions and include a larger selection of GAS strains.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866022/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139099081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic and functional insights into antibiotic resistance genes floR and strA linked with the SXT element of Vibrio cholerae non-O1/non-O139. 与霍乱弧菌非 O1/ 非 O139 的 SXT 基因相连的抗生素耐药基因 floR 和 strA 的基因组和功能研究。
IF 2.8 4区 生物学 Q3 Immunology and Microbiology Pub Date : 2024-01-01 DOI: 10.1099/mic.0.001424
Mousumi Saha, Agila Kumari Pragasam, Shashi Kumari, Jyoti Verma, Bhabatosh Das, Rupak K Bhadra

The emergence and spread of antibiotic-resistant bacterial pathogens are a critical public health concern across the globe. Mobile genetic elements (MGEs) play an important role in the horizontal acquisition of antimicrobial resistance genes (ARGs) in bacteria. In this study, we have decoded the whole genome sequences of multidrug-resistant Vibrio cholerae clinical isolates carrying the ARG-linked SXT, an integrative and conjugative element, in their large chromosomes. As in others, the SXT element has been found integrated into the 5'-end of the prfC gene (which encodes peptide chain release factor 3 involved in translational regulation) on the large chromosome of V. cholerae non-O1/non-O139 strains. Further, we demonstrate the functionality of SXT-linked floR and strAB genes, which confer resistance to chloramphenicol and streptomycin, respectively. The floR gene-encoded protein FloR belongs to the major facilitator superfamily efflux transporter containing 12 transmembrane domains (TMDs). Deletion analysis confirmed that even a single TMD of FloR is critical for the export function of chloramphenicol. The floR gene has two putative promoters, P1 and P2. Sequential deletions reveal that P2 is responsible for the expression of the floR. Deletion analysis of the N- and/or C-terminal coding regions of strA established their importance for conferring resistance against streptomycin. Interestingly, qPCR analysis of the floR and strA genes indicated that both of the genes are constitutively expressed in V. cholerae cells. Further, whole genome-based global phylogeography confirmed the presence of the integrative and conjugative element SXT in non-O1/non-O139 strains despite being non-multidrug resistant by lacking antimicrobial resistance (AMR) gene cassettes, which needs monitoring.

耐抗生素细菌病原体的出现和传播是全球公共卫生的一个重大问题。移动遗传元件(MGEs)在细菌横向获取抗菌药耐药基因(ARGs)的过程中发挥着重要作用。在这项研究中,我们解码了耐多药霍乱弧菌临床分离株的全基因组序列,这些分离株的大染色体中携带与 ARG 相关的 SXT(一种整合和共轭元件)。与其他菌株一样,在霍乱弧菌非 O1 型/非 O139 型菌株的大染色体上,SXT 基因被发现整合到了 prfC 基因(该基因编码参与翻译调控的肽链释放因子 3)的 5'- 端。此外,我们还证明了与 SXT 连接的 floR 和 strAB 基因的功能,这两个基因分别赋予了霍乱弧菌对氯霉素和链霉素的抗性。floR基因编码的蛋白FloR属于主要促进剂超家族外排转运体,含有12个跨膜结构域(TMD)。缺失分析证实,即使是 FloR 的一个 TMD 也对氯霉素的输出功能至关重要。FloR 基因有两个推定启动子,即 P1 和 P2。序列缺失显示,P2 负责 floR 的表达。对 strA 的 N 端和/或 C 端编码区的缺失分析确定了它们在赋予链霉素抗性方面的重要性。有趣的是,对 floR 和 strA 基因的 qPCR 分析表明,这两个基因在霍乱弧菌细胞中都是组成型表达的。此外,基于全基因组的全球系统地理学研究证实,非 O1/ 非 O139 菌株中存在整合和共轭元件 SXT,尽管这些菌株缺乏抗菌素耐药性(AMR)基因盒,不具有多药耐药性,但仍需要对其进行监测。
{"title":"Genomic and functional insights into antibiotic resistance genes <i>floR</i> and <i>strA</i> linked with the SXT element of <i>Vibrio cholerae</i> non-O1/non-O139.","authors":"Mousumi Saha, Agila Kumari Pragasam, Shashi Kumari, Jyoti Verma, Bhabatosh Das, Rupak K Bhadra","doi":"10.1099/mic.0.001424","DOIUrl":"10.1099/mic.0.001424","url":null,"abstract":"<p><p>The emergence and spread of antibiotic-resistant bacterial pathogens are a critical public health concern across the globe. Mobile genetic elements (MGEs) play an important role in the horizontal acquisition of antimicrobial resistance genes (ARGs) in bacteria. In this study, we have decoded the whole genome sequences of multidrug-resistant <i>Vibrio cholerae</i> clinical isolates carrying the ARG-linked SXT, an integrative and conjugative element, in their large chromosomes. As in others, the SXT element has been found integrated into the 5'-end of the <i>prfC</i> gene (which encodes peptide chain release factor 3 involved in translational regulation) on the large chromosome of <i>V. cholerae</i> non-O1/non-O139 strains. Further, we demonstrate the functionality of SXT-linked <i>floR</i> and <i>strAB</i> genes, which confer resistance to chloramphenicol and streptomycin, respectively. The <i>floR</i> gene-encoded protein FloR belongs to the major facilitator superfamily efflux transporter containing 12 transmembrane domains (TMDs). Deletion analysis confirmed that even a single TMD of FloR is critical for the export function of chloramphenicol. The <i>floR</i> gene has two putative promoters, P1 and P2. Sequential deletions reveal that P2 is responsible for the expression of the <i>floR</i>. Deletion analysis of the N- and/or C-terminal coding regions of <i>strA</i> established their importance for conferring resistance against streptomycin. Interestingly, qPCR analysis of the <i>floR</i> and <i>strA</i> genes indicated that both of the genes are constitutively expressed in <i>V. cholerae</i> cells. Further, whole genome-based global phylogeography confirmed the presence of the integrative and conjugative element SXT in non-O1/non-O139 strains despite being non-multidrug resistant by lacking antimicrobial resistance (AMR) gene cassettes, which needs monitoring.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866021/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139099082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A toolbox for manipulating the genome of the major goat pathogen, Mycoplasma capricolum subsp. capripneumoniae. 操纵山羊主要病原体冠突支原体冠突肺炎亚种基因组的工具箱。
IF 2.8 4区 生物学 Q3 Immunology and Microbiology Pub Date : 2024-01-01 DOI: 10.1099/mic.0.001423
Géraldine Gourgues, Lucía Manso-Silván, Catherine Chamberland, Pascal Sirand-Pugnet, François Thiaucourt, Alain Blanchard, Vincent Baby, Carole Lartigue

Mycoplasma capricolum subspecies capripneumoniae (Mccp) is the causative agent of contagious caprine pleuropneumonia (CCPP), a devastating disease listed by the World Organisation for Animal Health (WOAH) as a notifiable disease and threatening goat production in Africa and Asia. Although a few commercial inactivated vaccines are available, they do not comply with WOAH standards and there are serious doubts regarding their efficacy. One of the limiting factors to comprehend the molecular pathogenesis of CCPP and develop improved vaccines has been the lack of tools for Mccp genome engineering. In this work, key synthetic biology techniques recently developed for closely related mycoplasmas were adapted to Mccp. CReasPy-Cloning was used to simultaneously clone and engineer the Mccp genome in yeast, prior to whole-genome transplantation into M. capricolum subsp. capricolum recipient cells. This approach was used to knock out an S41 serine protease gene recently identified as a potential virulence factor, leading to the generation of the first site-specific Mccp mutants. The Cre-lox recombination system was then applied to remove all DNA sequences added during genome engineering. Finally, the resulting unmarked S41 serine protease mutants were validated by whole-genome sequencing and their non-caseinolytic phenotype was confirmed by casein digestion assay on milk agar. The synthetic biology tools that have been successfully implemented in Mccp allow the addition and removal of genes and other genetic features for the construction of seamless targeted mutants at ease, which will pave the way for both the identification of key pathogenicity determinants of Mccp and the rational design of novel, improved vaccines for the control of CCPP.

冠状支原体冠状病毒亚种(Mccp)是传染性山羊胸膜肺炎(CCPP)的病原体,这种毁灭性疾病被世界动物卫生组织(WOAH)列为应通报的疾病,威胁着非洲和亚洲的山羊生产。虽然市面上有一些商业灭活疫苗,但它们并不符合 WOAH 的标准,而且人们对它们的功效存在严重怀疑。理解 CCPP 分子致病机理和开发改良疫苗的限制因素之一是缺乏 Mccp 基因组工程工具。在这项工作中,最近针对密切相关的支原体开发的关键合成生物学技术被应用于 Mccp。在将全基因组移植到 M. capricolum subsp. capricolum 受体细胞之前,利用 CReasPy-Cloning 在酵母中同时克隆和设计 Mccp 基因组。这种方法被用来敲除最近被确定为潜在毒力因子的 S41 丝氨酸蛋白酶基因,从而产生了第一个位点特异性 Mccp 突变体。然后利用 Cre-lox 重组系统去除基因组工程中添加的所有 DNA 序列。最后,通过全基因组测序验证了所产生的无标记 S41 丝氨酸蛋白酶突变体,并通过牛奶琼脂上的酪蛋白消化试验证实了它们的非酪蛋白溶解表型。在 Mccp 中成功实施的合成生物学工具允许添加和删除基因和其他遗传特征,从而轻松构建无缝定向突变体,这将为鉴定 Mccp 的关键致病性决定因素和合理设计新型改良疫苗以控制 CCPP 铺平道路。
{"title":"A toolbox for manipulating the genome of the major goat pathogen, <i>Mycoplasma capricolum</i> subsp. <i>capripneumoniae</i>.","authors":"Géraldine Gourgues, Lucía Manso-Silván, Catherine Chamberland, Pascal Sirand-Pugnet, François Thiaucourt, Alain Blanchard, Vincent Baby, Carole Lartigue","doi":"10.1099/mic.0.001423","DOIUrl":"10.1099/mic.0.001423","url":null,"abstract":"<p><p><i>Mycoplasma capricolum</i> subspecies <i>capripneumoniae</i> (<i>Mccp</i>) is the causative agent of contagious caprine pleuropneumonia (CCPP), a devastating disease listed by the World Organisation for Animal Health (WOAH) as a notifiable disease and threatening goat production in Africa and Asia. Although a few commercial inactivated vaccines are available, they do not comply with WOAH standards and there are serious doubts regarding their efficacy. One of the limiting factors to comprehend the molecular pathogenesis of CCPP and develop improved vaccines has been the lack of tools for <i>Mccp</i> genome engineering. In this work, key synthetic biology techniques recently developed for closely related mycoplasmas were adapted to <i>Mccp</i>. CReasPy-Cloning was used to simultaneously clone and engineer the <i>Mccp</i> genome in yeast, prior to whole-genome transplantation into <i>M. capricolum</i> subsp. <i>capricolum</i> recipient cells. This approach was used to knock out an S41 serine protease gene recently identified as a potential virulence factor, leading to the generation of the first site-specific <i>Mccp</i> mutants. The Cre-lox recombination system was then applied to remove all DNA sequences added during genome engineering. Finally, the resulting unmarked S41 serine protease mutants were validated by whole-genome sequencing and their non-caseinolytic phenotype was confirmed by casein digestion assay on milk agar. The synthetic biology tools that have been successfully implemented in <i>Mccp</i> allow the addition and removal of genes and other genetic features for the construction of seamless targeted mutants at ease, which will pave the way for both the identification of key pathogenicity determinants of <i>Mccp</i> and the rational design of novel, improved vaccines for the control of CCPP.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866025/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139404998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbe Profile: The Lactobacillaceae. 微生物简介:乳酸菌科
IF 2.8 4区 生物学 Q3 Immunology and Microbiology Pub Date : 2023-12-01 DOI: 10.1099/mic.0.001414
Jens Walter, Paul W O'Toole
{"title":"Microbe Profile: The <i>Lactobacillaceae</i>.","authors":"Jens Walter, Paul W O'Toole","doi":"10.1099/mic.0.001414","DOIUrl":"10.1099/mic.0.001414","url":null,"abstract":"","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10765037/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138806852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial Primer: In vivo biofilm. 微生物入门:体内生物膜。
IF 2.8 4区 生物学 Q3 Immunology and Microbiology Pub Date : 2023-12-01 DOI: 10.1099/mic.0.001407
Kendra P Rumbaugh, Thomas Bjarnsholt

In this primer on biofilms and their role in infections, we trace the historical roots of microbial understanding from Van Leeuwenhoek's observations to Bill Costerton's groundbreaking work, which solidified biofilms' significance in infections. In vivo biofilm research, investigating patient samples and utilizing diverse host models, has yielded invaluable insights into these complex microbial communities. However, it comes with several challenges, particularly regarding replicating biofilm infections accurately in the laboratory. In vivo biofilm analyses involve various techniques, revealing biofilm architecture, composition, and behaviour, while gaps in knowledge persist regarding infection initiation and source, diversity, and the Infectious Microenvironment (IME). Ultimately, the study of biofilms in infections remains a dynamic and evolving field poised to transform our approach to combat biofilm-associated diseases.

在这本关于生物膜及其在感染中的作用的入门读物中,我们追溯了从范-列文虎克(Van Leeuwenhoek)的观察到比尔-科斯特顿(Bill Costerton)的开创性工作等微生物认识的历史根源,这些工作巩固了生物膜在感染中的重要性。体内生物膜研究通过调查病人样本和利用不同的宿主模型,对这些复杂的微生物群落产生了宝贵的见解。然而,这项研究也面临着一些挑战,尤其是在实验室中准确复制生物膜感染方面。体内生物膜分析涉及各种技术,揭示了生物膜的结构、组成和行为,而在感染的起始和来源、多样性和感染微环境(IME)方面的知识仍然存在差距。归根结底,对感染中生物膜的研究仍是一个充满活力、不断发展的领域,有望改变我们对抗生物膜相关疾病的方法。
{"title":"Microbial Primer: <i>In vivo</i> biofilm.","authors":"Kendra P Rumbaugh, Thomas Bjarnsholt","doi":"10.1099/mic.0.001407","DOIUrl":"10.1099/mic.0.001407","url":null,"abstract":"<p><p>In this primer on biofilms and their role in infections, we trace the historical roots of microbial understanding from Van Leeuwenhoek's observations to Bill Costerton's groundbreaking work, which solidified biofilms' significance in infections. <i>In vivo</i> biofilm research, investigating patient samples and utilizing diverse host models, has yielded invaluable insights into these complex microbial communities. However, it comes with several challenges, particularly regarding replicating biofilm infections accurately in the laboratory. <i>In vivo</i> biofilm analyses involve various techniques, revealing biofilm architecture, composition, and behaviour, while gaps in knowledge persist regarding infection initiation and source, diversity, and the Infectious Microenvironment (IME). Ultimately, the study of biofilms in infections remains a dynamic and evolving field poised to transform our approach to combat biofilm-associated diseases.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10765038/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138488918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomistic modelling and NMR studies reveal that gallium can target the ferric PQS uptake system in P. aeruginosa biofilms. 原子模型和核磁共振研究显示,镓可以靶向铜绿微囊藻生物膜中的铁质 PQS 吸收系统。
IF 2.8 4区 生物学 Q3 Immunology and Microbiology Pub Date : 2023-12-01 DOI: 10.1099/mic.0.001422
Oliver J Hills, Isaac O K Noble, Alex Heyam, Andrew J Scott, James Smith, Helen F Chappell

Intravenous gallium nitrate therapy is a novel therapeutic strategy deployed to combat chronic Pseudomonas aeruginosa biofilm infections in the lungs of cystic fibrosis (CF) patients by interfering with iron (Fe3+) uptake. The therapy is a source of Ga3+, which competes with Fe3+ for siderophore binding, subsequently disrupting iron metabolism and inhibiting biofilm proliferation in vivo. It was recently demonstrated that the Pseudomonas quinolone signal (PQS) can chelate Fe3+ to assist in bacterial iron uptake. However, it is unknown whether exogenous gallium also targets [Fe(PQS)3] uptake, which, in turn, would extend the mechanism of gallium therapy beyond siderophore competition, potentially supporting use of the therapy against P. aeruginosa mutants deficient in siderophore uptake proteins. To that end, the thermodynamic feasibility of iron-for-gallium cation exchange into [Fe(PQS)3] was evaluated using quantum chemical density functional theory (DFT) modelling and verified experimentally using 1H nuclear magnetic resonance (NMR). We demonstrate here that Ga3+ can strongly bind to three PQS molecules and, furthermore, displace and substitute Fe3+ from the native chelate pocket within PQS complexes, through a Trojan horse mechanism, retaining the key structural features present within the native ferric complex. As such, [Fe(PQS)3] complexes, in addition to ferric-siderophore complexes, represent another target for gallium therapy.

静脉注射硝酸镓疗法是一种新的治疗策略,通过干扰铁(Fe3+)的吸收来对抗囊性纤维化(CF)患者肺部的慢性铜绿假单胞菌生物膜感染。这种疗法是 Ga3+ 的一种来源,Ga3+ 与 Fe3+ 竞争苷元结合,从而破坏铁代谢,抑制体内生物膜的增殖。最近有研究表明,假单胞菌喹诺酮信号(PQS)可以螯合 Fe3+,帮助细菌吸收铁。然而,外源镓是否也能靶向[Fe(PQS)3]摄取尚不得而知,而这反过来又会将镓疗法的机制扩展到嗜苷酸竞争之外,从而有可能支持利用这种疗法来对付缺乏嗜苷酸盐摄取蛋白的铜绿假单胞菌突变体。为此,我们利用量子化学密度泛函理论(DFT)建模评估了[Fe(PQS)3]中铁-镓阳离子交换的热力学可行性,并利用 1H 核磁共振(NMR)进行了实验验证。我们在此证明,Ga3+ 能与三个 PQS 分子紧密结合,而且还能通过特洛伊木马机制将 Fe3+ 从 PQS 复合物的原生螯合剂袋中置换出来,并保留原生铁复合物的关键结构特征。因此,[Fe(PQS)3] 复合物是除铁苷复合物之外的另一个镓治疗目标。
{"title":"Atomistic modelling and NMR studies reveal that gallium can target the ferric PQS uptake system in <i>P. aeruginosa</i> biofilms.","authors":"Oliver J Hills, Isaac O K Noble, Alex Heyam, Andrew J Scott, James Smith, Helen F Chappell","doi":"10.1099/mic.0.001422","DOIUrl":"10.1099/mic.0.001422","url":null,"abstract":"<p><p>Intravenous gallium nitrate therapy is a novel therapeutic strategy deployed to combat chronic <i>Pseudomonas aeruginosa</i> biofilm infections in the lungs of cystic fibrosis (CF) patients by interfering with iron (Fe<sup>3+</sup>) uptake. The therapy is a source of Ga<sup>3+</sup>, which competes with Fe<sup>3+</sup> for siderophore binding, subsequently disrupting iron metabolism and inhibiting biofilm proliferation <i>in vivo</i>. It was recently demonstrated that the <i>Pseudomonas</i> quinolone signal (PQS) can chelate Fe<sup>3+</sup> to assist in bacterial iron uptake. However, it is unknown whether exogenous gallium also targets [Fe(PQS)<sub>3</sub>] uptake, which, in turn, would extend the mechanism of gallium therapy beyond siderophore competition, potentially supporting use of the therapy against <i>P. aeruginosa</i> mutants deficient in siderophore uptake proteins. To that end, the thermodynamic feasibility of iron-for-gallium cation exchange into [Fe(PQS)<sub>3</sub>] was evaluated using quantum chemical density functional theory (DFT) modelling and verified experimentally using <sup>1</sup>H nuclear magnetic resonance (NMR). We demonstrate here that Ga<sup>3+</sup> can strongly bind to three PQS molecules and, furthermore, displace and substitute Fe<sup>3+</sup> from the native chelate pocket within PQS complexes, through a Trojan horse mechanism, retaining the key structural features present within the native ferric complex. As such, [Fe(PQS)<sub>3</sub>] complexes, in addition to ferric-siderophore complexes, represent another target for gallium therapy.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10765035/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138806790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microbiology-Sgm
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1