首页 > 最新文献

Mechatronics最新文献

英文 中文
Gait self-learning control based on reference trajectory generation online for an asymmetric limb rehabilitation exoskeleton 基于参考轨迹在线生成的步态自学习控制,用于非对称肢体康复外骨骼
IF 3.1 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-10-09 DOI: 10.1016/j.mechatronics.2024.103262
Qiang Zhang, Qingcong Wu, Bai Chen, Yanghui Zhu
Lower limb exoskeleton (LEX) are widely used to assist stoke survivors with walking dysfunction, which is lack of a more flexible trajectory and fails to address the control challenge posed by gait variability and asymmetry in rehabilitation training. This paper introduces an asymmetric self-learning lower exoskeleton (AS-LEX) based on reference trajectory generation for the affected side. Motor intent of the unaffected limb based on thresholds was identified to classify the gait phase of stance and swing. A parameterized gait trajectory was generated online, namely a combination of circular trajectory in the stance phase and an elliptical trajectory in the swing phase. Gait self-learning control is presented to make the affected limb adaptively learn the gait parameters generated by the unaffected limb. Feasibility of the AS-LEX is demonstrated experimentally using three healthy subjects. Resuls demonstrate that overground walking in a more natural speed (with a stride length 600 mm and 700 mm) make subjects more actively learn gait of the affected side from the unaffected side. Additionally, experiments of the fatigue level of the affected limb and human-robot interaction torques were carried out, and the results indicate a more natural gait and reduced interaction forces with the AS-LEX.
下肢外骨骼(LEX)被广泛用于辅助有行走功能障碍的脑卒中幸存者,但它缺乏更灵活的轨迹,也无法解决康复训练中步态多变和不对称所带来的控制挑战。本文介绍了一种基于患侧参考轨迹生成的非对称自学习下肢外骨骼(AS-LEX)。根据阈值确定未受影响肢体的运动意向,从而对站立和摆动的步态阶段进行分类。在线生成参数化的步态轨迹,即站立阶段的圆形轨迹和摆动阶段的椭圆形轨迹的组合。通过步态自学习控制,患肢可以自适应地学习未受影响肢体生成的步态参数。AS-LEX 的可行性通过三名健康受试者进行了实验验证。实验结果表明,以更自然的速度(步长分别为 600 毫米和 700 毫米)在地面行走时,受试者能更积极地从未受损伤的一侧学习患侧的步态。此外,还对受影响肢体的疲劳程度和人机交互扭矩进行了实验,结果表明 AS-LEX 的步态更自然,交互力更小。
{"title":"Gait self-learning control based on reference trajectory generation online for an asymmetric limb rehabilitation exoskeleton","authors":"Qiang Zhang,&nbsp;Qingcong Wu,&nbsp;Bai Chen,&nbsp;Yanghui Zhu","doi":"10.1016/j.mechatronics.2024.103262","DOIUrl":"10.1016/j.mechatronics.2024.103262","url":null,"abstract":"<div><div>Lower limb exoskeleton (LEX) are widely used to assist stoke survivors with walking dysfunction, which is lack of a more flexible trajectory and fails to address the control challenge posed by gait variability and asymmetry in rehabilitation training. This paper introduces an asymmetric self-learning lower exoskeleton (AS-LEX) based on reference trajectory generation for the affected side. Motor intent of the unaffected limb based on thresholds was identified to classify the gait phase of stance and swing. A parameterized gait trajectory was generated online, namely a combination of circular trajectory in the stance phase and an elliptical trajectory in the swing phase. Gait self-learning control is presented to make the affected limb adaptively learn the gait parameters generated by the unaffected limb. Feasibility of the AS-LEX is demonstrated experimentally using three healthy subjects. Resuls demonstrate that overground walking in a more natural speed (with a stride length 600 mm and 700 mm) make subjects more actively learn gait of the affected side from the unaffected side. Additionally, experiments of the fatigue level of the affected limb and human-robot interaction torques were carried out, and the results indicate a more natural gait and reduced interaction forces with the AS-LEX.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"104 ","pages":"Article 103262"},"PeriodicalIF":3.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model-free control for an industrial long-stroke motion system with a nonlinear micropositioning actuator 使用非线性微定位执行器的工业长行程运动系统的无模型控制
IF 3.1 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-10-09 DOI: 10.1016/j.mechatronics.2024.103257
Yazan M. Al-Rawashdeh , Mohammad Al Saaideh , Marcel F. Heertjes , Tom Oomen , Mohammad Al Janaideh
Fine positioning stages based on piezoceramic materials have found widespread success in various applications due to their attractive features. However, the inherent hard nonlinear behavior of piezoelectric actuators complicates modeling, control, and synchronization processes. In this study, adopting an input–output perspective, we propose and experimentally verify a model-free control and synchronization technique for these stages. Specifically, our approach introduces a model-free trajectory generator that adjusts the desired trajectory using position measurement data to minimize tracking errors. We validate this technique using a representative precision motion system, consisting of a planner stage and a uni-axial fine stage, under step-and-scan trajectories commonly employed in wafer scanners. Remarkably, despite its simplicity, the proposed design procedure can be seamlessly extended to other robotics and automation applications.
基于压电陶瓷材料的精细定位平台因其极具吸引力的特性而在各种应用中取得了广泛的成功。然而,压电致动器固有的硬非线性行为使建模、控制和同步过程变得复杂。在本研究中,我们从输入输出的角度出发,为这些阶段提出了一种无模型控制和同步技术,并进行了实验验证。具体来说,我们的方法引入了一种无模型轨迹生成器,可利用位置测量数据调整所需的轨迹,从而最大限度地减少跟踪误差。我们使用了一个具有代表性的精密运动系统来验证这种技术,该系统由一个规划台和一个单轴精细台组成,在晶圆扫描仪常用的步进扫描轨迹下运行。值得注意的是,尽管简单,但所提出的设计程序可以无缝扩展到其他机器人和自动化应用中。
{"title":"Model-free control for an industrial long-stroke motion system with a nonlinear micropositioning actuator","authors":"Yazan M. Al-Rawashdeh ,&nbsp;Mohammad Al Saaideh ,&nbsp;Marcel F. Heertjes ,&nbsp;Tom Oomen ,&nbsp;Mohammad Al Janaideh","doi":"10.1016/j.mechatronics.2024.103257","DOIUrl":"10.1016/j.mechatronics.2024.103257","url":null,"abstract":"<div><div>Fine positioning stages based on piezoceramic materials have found widespread success in various applications due to their attractive features. However, the inherent hard nonlinear behavior of piezoelectric actuators complicates modeling, control, and synchronization processes. In this study, adopting an input–output perspective, we propose and experimentally verify a model-free control and synchronization technique for these stages. Specifically, our approach introduces a model-free trajectory generator that adjusts the desired trajectory using position measurement data to minimize tracking errors. We validate this technique using a representative precision motion system, consisting of a planner stage and a uni-axial fine stage, under step-and-scan trajectories commonly employed in wafer scanners. Remarkably, despite its simplicity, the proposed design procedure can be seamlessly extended to other robotics and automation applications.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"104 ","pages":"Article 103257"},"PeriodicalIF":3.1,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal visual control of tendon-sheath-driven continuum robots with robust Jacobian estimation in confined environments 在密闭环境中通过鲁棒雅各布估计实现腱鞘驱动连续机器人的最佳视觉控制
IF 3.1 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-10-03 DOI: 10.1016/j.mechatronics.2024.103260
Chuanchuan Pan , Zhen Deng , Chao Zeng , Bingwei He , Jianwei Zhang
Accurate control of continuum robots in confined environments presents a significant challenge due to the need for a precise kinematic model, which is susceptible to external interference. This paper introduces a model-less optimal visual control (MLOVC) method that enables a tendon-sheath-driven continuum robot (TSDCR) to effectively track visual targets in a confined environment while ensuring stability. The method allows for intraluminal navigation of TSDCRs along narrow lumens. To account for the presence of external outliers, a robust Jacobian estimation method is proposed, wherein improved iterative reweighted least squares with sliding windows are used to online calculate the robot’s Jacobian matrix from sensing data. The estimated Jacobian establishes the motion relationship between the visual feature and the actuation. Furthermore, an optimal visual control method based on quadratic programming (QP) is designed for visual target tracking, while considering the robot’s physical constraint and control constraints. The MLOVC method for visual tracking provides a reliable alternative that does not rely on the precise kinematics of TSDCRs and takes into consideration the impact of outliers. The control stability of the proposed approach is demonstrated through Lyapunov analysis. Simulations and experiments are conducted to evaluate the effectiveness of the MLOVC method, and the results demonstrate that it enhances tracking performance in terms of accuracy and stability.
由于需要精确的运动学模型,而该模型容易受到外部干扰,因此在密闭环境中对连续机器人进行精确控制是一项重大挑战。本文介绍了一种无模型最优视觉控制(MLOVC)方法,该方法可使腱鞘驱动连续机器人(TSDCR)在密闭环境中有效跟踪视觉目标,同时确保稳定性。该方法允许 TSDCR 沿着狭窄的管腔进行管腔内导航。为了考虑外部异常值的存在,我们提出了一种稳健的雅各布估计方法,其中使用了改进的迭代重加权最小二乘法和滑动窗口,以便根据传感数据在线计算机器人的雅各布矩阵。估计的雅各布矩阵建立了视觉特征与执行之间的运动关系。此外,还设计了一种基于二次编程(QP)的最佳视觉控制方法,用于视觉目标跟踪,同时考虑机器人的物理约束和控制约束。用于视觉跟踪的 MLOVC 方法提供了一种可靠的替代方法,它不依赖于 TSDCR 的精确运动学,并考虑了异常值的影响。通过 Lyapunov 分析,证明了所提方法的控制稳定性。通过模拟和实验评估了 MLOVC 方法的有效性,结果表明该方法在精度和稳定性方面提高了跟踪性能。
{"title":"Optimal visual control of tendon-sheath-driven continuum robots with robust Jacobian estimation in confined environments","authors":"Chuanchuan Pan ,&nbsp;Zhen Deng ,&nbsp;Chao Zeng ,&nbsp;Bingwei He ,&nbsp;Jianwei Zhang","doi":"10.1016/j.mechatronics.2024.103260","DOIUrl":"10.1016/j.mechatronics.2024.103260","url":null,"abstract":"<div><div>Accurate control of continuum robots in confined environments presents a significant challenge due to the need for a precise kinematic model, which is susceptible to external interference. This paper introduces a model-less optimal visual control (MLOVC) method that enables a tendon-sheath-driven continuum robot (TSDCR) to effectively track visual targets in a confined environment while ensuring stability. The method allows for intraluminal navigation of TSDCRs along narrow lumens. To account for the presence of external outliers, a robust Jacobian estimation method is proposed, wherein improved iterative reweighted least squares with sliding windows are used to online calculate the robot’s Jacobian matrix from sensing data. The estimated Jacobian establishes the motion relationship between the visual feature and the actuation. Furthermore, an optimal visual control method based on quadratic programming (QP) is designed for visual target tracking, while considering the robot’s physical constraint and control constraints. The MLOVC method for visual tracking provides a reliable alternative that does not rely on the precise kinematics of TSDCRs and takes into consideration the impact of outliers. The control stability of the proposed approach is demonstrated through Lyapunov analysis. Simulations and experiments are conducted to evaluate the effectiveness of the MLOVC method, and the results demonstrate that it enhances tracking performance in terms of accuracy and stability.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"104 ","pages":"Article 103260"},"PeriodicalIF":3.1,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning to detect slip through tactile estimation of the contact force field and its entropy properties 通过对接触力场及其熵属性的触觉估计学习检测滑移
IF 3.1 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-10-01 DOI: 10.1016/j.mechatronics.2024.103258
Xiaohai Hu , Aparajit Venkatesh , Yusen Wan , Guiliang Zheng , Neel Jawale , Navneet Kaur , Xu Chen , Paul Birkmeyer
Slip detection during object grasping and manipulation plays a vital role in object handling. Visual feedback can help devise a strategy for grasping. However, for robotic systems to attain a proficiency comparable to humans, integrating artificial tactile sensing is increasingly essential, especially in consistently handling unfamiliar objects. We introduce a novel physics-informed, data-driven approach to detect slip continuously for control-oriented tasks. Our work leverages the inhomogeneity of tactile sensor readings during slip events to develop distinct features and formulates slip detection as a classification problem. We test multiple data-driven models on 10 common objects under different loading conditions, textures, and materials to evaluate our approach. The resulting best classification algorithm achieves a high average accuracy of 95.61%. Practical application in dynamic robotic manipulation demonstrates the effectiveness of the proposed real-time slip detection and prevention.
物体抓取和操作过程中的滑动检测在物体处理过程中起着至关重要的作用。视觉反馈有助于制定抓取策略。然而,要使机器人系统达到与人类相媲美的熟练程度,整合人工触觉传感越来越重要,尤其是在持续处理不熟悉的物体时。我们介绍了一种新颖的物理信息数据驱动方法,用于持续检测滑移,以完成面向控制的任务。我们的工作利用滑动事件中触觉传感器读数的不均匀性来开发不同的特征,并将滑动检测作为一个分类问题。我们在 10 个常见物体上测试了不同负载条件、纹理和材料下的多个数据驱动模型,以评估我们的方法。最终得出的最佳分类算法平均准确率高达 95.61%。在动态机器人操纵中的实际应用证明了所提出的实时滑移检测和预防方法的有效性。
{"title":"Learning to detect slip through tactile estimation of the contact force field and its entropy properties","authors":"Xiaohai Hu ,&nbsp;Aparajit Venkatesh ,&nbsp;Yusen Wan ,&nbsp;Guiliang Zheng ,&nbsp;Neel Jawale ,&nbsp;Navneet Kaur ,&nbsp;Xu Chen ,&nbsp;Paul Birkmeyer","doi":"10.1016/j.mechatronics.2024.103258","DOIUrl":"10.1016/j.mechatronics.2024.103258","url":null,"abstract":"<div><div>Slip detection during object grasping and manipulation plays a vital role in object handling. Visual feedback can help devise a strategy for grasping. However, for robotic systems to attain a proficiency comparable to humans, integrating artificial tactile sensing is increasingly essential, especially in consistently handling unfamiliar objects. We introduce a novel physics-informed, data-driven approach to detect slip continuously for control-oriented tasks. Our work leverages the inhomogeneity of tactile sensor readings during slip events to develop distinct features and formulates slip detection as a classification problem. We test multiple data-driven models on 10 common objects under different loading conditions, textures, and materials to evaluate our approach. The resulting best classification algorithm achieves a high average accuracy of 95.61%. Practical application in dynamic robotic manipulation demonstrates the effectiveness of the proposed real-time slip detection and prevention.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"104 ","pages":"Article 103258"},"PeriodicalIF":3.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic equivalent circuit modeling of a permanent magnet linear synchronous motor composed of curved segments 由曲线段组成的永磁直线同步电机的磁等效电路建模
IF 3.1 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-09-30 DOI: 10.1016/j.mechatronics.2024.103256
Gerd Fuchs , Andreas Kugi , Wolfgang Kemmetmüller
This paper advances magnetic equivalent circuit (MEC) modeling for permanent magnet linear synchronous motors (PMLSMs) with arbitrarily curved segments. As PMLSMs are increasingly utilized in industrial applications, accurate and computationally efficient modeling techniques are paramount. This research proposes a novel approach that meets these requirements and paves the way for real-time model-based control, observers, and estimation strategies. Existing MEC models for PMLSMs primarily consider straight stator segments, neglecting the impact of the curvature of curved segments commonly used in modern PMLSM designs. The approach proposed in this paper systematically incorporates these effects into the MEC model for PMLSMs to address this limitation. As demonstrated by several validation experiments, a calibration concept based on measurements further enhances the model’s accuracy. Finally, a method for efficiently implementing the proposed MEC model for a whole PMLSM setup significantly reduces the computation time compared to the standard implementation.
本文推进了具有任意弯曲线段的永磁直线同步电机(PMLSM)的磁等效电路(MEC)建模。随着 PMLSM 在工业应用中的使用越来越多,精确且计算效率高的建模技术至关重要。本研究提出了一种满足这些要求的新方法,并为基于模型的实时控制、观测器和估计策略铺平了道路。现有的 PMLSM MEC 模型主要考虑直线定子段,忽略了现代 PMLSM 设计中常用的曲线段曲率的影响。本文提出的方法系统地将这些影响纳入 PMLSM 的 MEC 模型,以解决这一局限性。正如几个验证实验所证明的那样,基于测量的校准概念进一步提高了模型的准确性。最后,针对整个 PMLSM 设置有效实施所提出的 MEC 模型的方法与标准实施方法相比,大大减少了计算时间。
{"title":"Magnetic equivalent circuit modeling of a permanent magnet linear synchronous motor composed of curved segments","authors":"Gerd Fuchs ,&nbsp;Andreas Kugi ,&nbsp;Wolfgang Kemmetmüller","doi":"10.1016/j.mechatronics.2024.103256","DOIUrl":"10.1016/j.mechatronics.2024.103256","url":null,"abstract":"<div><div>This paper advances magnetic equivalent circuit (MEC) modeling for permanent magnet linear synchronous motors (PMLSMs) with arbitrarily curved segments. As PMLSMs are increasingly utilized in industrial applications, accurate and computationally efficient modeling techniques are paramount. This research proposes a novel approach that meets these requirements and paves the way for real-time model-based control, observers, and estimation strategies. Existing MEC models for PMLSMs primarily consider straight stator segments, neglecting the impact of the curvature of curved segments commonly used in modern PMLSM designs. The approach proposed in this paper systematically incorporates these effects into the MEC model for PMLSMs to address this limitation. As demonstrated by several validation experiments, a calibration concept based on measurements further enhances the model’s accuracy. Finally, a method for efficiently implementing the proposed MEC model for a whole PMLSM setup significantly reduces the computation time compared to the standard implementation.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"104 ","pages":"Article 103256"},"PeriodicalIF":3.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding friction and superelasticity in tendon-driven continuum robots 了解肌腱驱动连续机器人中的摩擦和超弹性
IF 3.1 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-09-05 DOI: 10.1016/j.mechatronics.2024.103241
Luca Raimondi, Matteo Russo, Xin Dong, Dragos Axinte

Tendon-driven continuum robots are conventionally modeled with either discrete or differential representations of their shapes, which neglect the physical design of the robot itself. As each segment of these robotic systems is usually realized by alternating compliant elements and rigid disks for tendon routing, these discontinuities cause non-negligible position and orientation errors. Although the factors that cause these curvature errors have often been identified in the mechanical behavior of the compliant element (usually made of superelastic alloys), tendon routing, and friction, no study available in the open literature gives a satisfactory explanation of these phenomena. In this article, a Finite Element (FE) model is proposed in conjunction with a bottom-up approach to study the physical behavior of this class of robots and ultimately to quantify the impact of these factors on the shape of a tendon-driven continuum robot. The model proved capable of approximating the experimental data with good accuracy, showing an average percentage error of 0.80% and a peak percentage error at the maximum curvature of the continuum robot of 1.30%, significantly smaller than the average error of 4.1% and peak error of 13.86% obtained with a conventional model.

传统的肌腱驱动连续机器人模型采用离散或差分的形状表示法,忽略了机器人本身的物理设计。由于这些机器人系统的每个部分通常都是通过交替使用顺从元件和刚性盘来实现肌腱路由,这些不连续性会导致不可忽略的位置和方向误差。虽然导致这些曲率误差的因素通常被认为是顺应元件(通常由超弹性合金制成)的机械行为、肌腱布线和摩擦力,但公开文献中没有任何研究能对这些现象做出令人满意的解释。本文提出了一种有限元(FE)模型,结合自下而上的方法来研究这类机器人的物理行为,并最终量化这些因素对肌腱驱动连续机器人形状的影响。事实证明,该模型能够以良好的精度逼近实验数据,其平均百分比误差为 0.80%,连续机器人最大曲率处的峰值百分比误差为 1.30%,明显小于传统模型获得的平均误差 4.1%和峰值误差 13.86%。
{"title":"Understanding friction and superelasticity in tendon-driven continuum robots","authors":"Luca Raimondi,&nbsp;Matteo Russo,&nbsp;Xin Dong,&nbsp;Dragos Axinte","doi":"10.1016/j.mechatronics.2024.103241","DOIUrl":"10.1016/j.mechatronics.2024.103241","url":null,"abstract":"<div><p>Tendon-driven continuum robots are conventionally modeled with either discrete or differential representations of their shapes, which neglect the physical design of the robot itself. As each segment of these robotic systems is usually realized by alternating compliant elements and rigid disks for tendon routing, these discontinuities cause non-negligible position and orientation errors. Although the factors that cause these curvature errors have often been identified in the mechanical behavior of the compliant element (usually made of superelastic alloys), tendon routing, and friction, no study available in the open literature gives a satisfactory explanation of these phenomena. In this article, a Finite Element (FE) model is proposed in conjunction with a bottom-up approach to study the physical behavior of this class of robots and ultimately to quantify the impact of these factors on the shape of a tendon-driven continuum robot. The model proved capable of approximating the experimental data with good accuracy, showing an average percentage error of 0.80% and a peak percentage error at the maximum curvature of the continuum robot of 1.30%, significantly smaller than the average error of 4.1% and peak error of 13.86% obtained with a conventional model.</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"104 ","pages":"Article 103241"},"PeriodicalIF":3.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0957415824001065/pdfft?md5=7183d1ac1de5f156425285c5e712bf58&pid=1-s2.0-S0957415824001065-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FalconScan: A hybrid UAV-crawler system for NDT inspection of elevated pipes in industrial plants FalconScan:用于工业厂房高架管道无损检测的无人机-爬虫混合系统
IF 3.1 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-08-30 DOI: 10.1016/j.mechatronics.2024.103239
Fadl Abdellatif , Ali J. Alrasheed , Amjad Felemban , Ahmed Al Brahim , Hesham Jifri , Mohamed Abdelkader , Shehab Ahmed , Jeff S. Shamma

Periodic non-destructive testing (NDT) of pipes and tanks is vital in industrial plants, such as Oil & Gas facilities, to proactively detect defects and corrosion before leaks and forced shutdowns occur. This paper presents a hybrid system, consisting of a UAV and a crawler, which enables detailed contact-based inspection of elevated pipes, in pursuit of eliminating the need for dangerous scaffolding and manual inspection to improve safety and reduce cost. Similar to avian animals, the UAV autonomously perches on the pipe to conserve energy. A small inspection crawling robot is carried by the UAV, and is subsequently released onto the pipe’s surface to inspect its health. The crawler uses magnetic wheels for agile mobility and houses an ultrasonic testing (UT) sensor to thoroughly scan the pipe and detect wall thinning, which is a precursor for leaks. Finally, the crawler re-docks with the UAV, which in turn detaches from the pipe to fly back home or inspect another pipe. The multi-robot system is designed for and tested on pipe diameters as small as 8 in.

定期对管道和储罐进行无损检测(NDT)对石油天然气设施等工业厂房至关重要,可以在发生泄漏和被迫停产之前主动检测出缺陷和腐蚀。本文介绍了一种由无人机和爬行器组成的混合系统,该系统可对高架管道进行详细的接触式检测,从而消除了对危险的脚手架和人工检测的需求,提高了安全性并降低了成本。与鸟类动物类似,无人机可自主栖息在管道上,以节省能源。无人机携带一个小型检查爬行机器人,随后将其释放到管道表面,检查管道的健康状况。爬行器使用磁轮实现灵活移动,并装有一个超声波检测(UT)传感器,用于彻底扫描管道并检测管壁变薄,这是泄漏的前兆。最后,爬行器与无人机重新对接,然后无人机脱离管道飞回家或检查另一条管道。多机器人系统的设计和测试对象是直径小至 8 英寸的管道。
{"title":"FalconScan: A hybrid UAV-crawler system for NDT inspection of elevated pipes in industrial plants","authors":"Fadl Abdellatif ,&nbsp;Ali J. Alrasheed ,&nbsp;Amjad Felemban ,&nbsp;Ahmed Al Brahim ,&nbsp;Hesham Jifri ,&nbsp;Mohamed Abdelkader ,&nbsp;Shehab Ahmed ,&nbsp;Jeff S. Shamma","doi":"10.1016/j.mechatronics.2024.103239","DOIUrl":"10.1016/j.mechatronics.2024.103239","url":null,"abstract":"<div><p>Periodic non-destructive testing (NDT) of pipes and tanks is vital in industrial plants, such as Oil &amp; Gas facilities, to proactively detect defects and corrosion before leaks and forced shutdowns occur. This paper presents a hybrid system, consisting of a UAV and a crawler, which enables detailed contact-based inspection of elevated pipes, in pursuit of eliminating the need for dangerous scaffolding and manual inspection to improve safety and reduce cost. Similar to avian animals, the UAV autonomously perches on the pipe to conserve energy. A small inspection crawling robot is carried by the UAV, and is subsequently released onto the pipe’s surface to inspect its health. The crawler uses magnetic wheels for agile mobility and houses an ultrasonic testing (UT) sensor to thoroughly scan the pipe and detect wall thinning, which is a precursor for leaks. Finally, the crawler re-docks with the UAV, which in turn detaches from the pipe to fly back home or inspect another pipe. The multi-robot system is designed for and tested on pipe diameters as small as 8 in.</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"103 ","pages":"Article 103239"},"PeriodicalIF":3.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142094899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A robust design of time-varying internal model principle-based control for ultra-precision tracking in a direct-drive servo stage 基于时变内部模型原理的稳健控制设计,用于直接驱动伺服平台的超精确跟踪
IF 3.1 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-08-28 DOI: 10.1016/j.mechatronics.2024.103249
Yue Cao, Zhen Zhang

This paper proposes a robust design of the time-varying internal model principle-based control (TV-IMPC) for tracking sophisticated references generated by linear time-varying (LTV) autonomous systems. The existing TV-IMPC design usually requires a complete knowledge of the plant I/O (input/output) model, leading to the lack of structural robustness. To tackle this issue, we, in this paper, design a gray-box extended state observer (ESO) to estimate and compensate unknown model uncertainties and external disturbances. By means of the ESO feedback, the plant model is kept as nominal, and hence the structural robustness is achieved for the time-varying internal model. It is shown that the proposed design has bounded ESO estimation errors, which can be further adjusted by modifying the corresponding control gains. To stabilize the ESO-based TV-IMPC, a time-varying stabilizer is developed by employing Linear Matrix Inequalities (LMIs). Extensive simulation and experimental studies are conducted on a direct-drive servo stage to validate the proposed robust TV-IMPC with ultra-precision tracking performance (60nm RMSE out of ±80mm stroke).

本文提出了一种基于时变内部模型原理的稳健控制(TV-IMPC)设计,用于跟踪线性时变(LTV)自主系统产生的复杂基准。现有的 TV-IMPC 设计通常需要完全了解工厂的 I/O(输入/输出)模型,从而导致缺乏结构鲁棒性。为解决这一问题,我们在本文中设计了一种灰盒扩展状态观测器(ESO),用于估计和补偿未知的模型不确定性和外部干扰。通过 ESO 反馈,工厂模型保持为标称模型,从而实现了内部模型时变的结构鲁棒性。结果表明,所提出的设计具有有界的 ESO 估计误差,可以通过修改相应的控制增益来进一步调整误差。为了稳定基于 ESO 的 TV-IMPC,利用线性矩阵不等式(LMI)开发了时变稳定器。在直接驱动伺服平台上进行了广泛的仿真和实验研究,验证了所提出的稳健型 TV-IMPC 具有超高精度跟踪性能(±80 毫米行程中的 RMSE 为 60 纳米)。
{"title":"A robust design of time-varying internal model principle-based control for ultra-precision tracking in a direct-drive servo stage","authors":"Yue Cao,&nbsp;Zhen Zhang","doi":"10.1016/j.mechatronics.2024.103249","DOIUrl":"10.1016/j.mechatronics.2024.103249","url":null,"abstract":"<div><p>This paper proposes a robust design of the time-varying internal model principle-based control (TV-IMPC) for tracking sophisticated references generated by linear time-varying (LTV) autonomous systems. The existing TV-IMPC design usually requires a complete knowledge of the plant I/O (input/output) model, leading to the lack of structural robustness. To tackle this issue, we, in this paper, design a gray-box extended state observer (ESO) to estimate and compensate unknown model uncertainties and external disturbances. By means of the ESO feedback, the plant model is kept as nominal, and hence the structural robustness is achieved for the time-varying internal model. It is shown that the proposed design has bounded ESO estimation errors, which can be further adjusted by modifying the corresponding control gains. To stabilize the ESO-based TV-IMPC, a time-varying stabilizer is developed by employing Linear Matrix Inequalities (LMIs). Extensive simulation and experimental studies are conducted on a direct-drive servo stage to validate the proposed robust TV-IMPC with ultra-precision tracking performance (<span><math><mrow><mo>∼</mo><mn>60</mn><mspace></mspace><mi>nm</mi></mrow></math></span> RMSE out of <span><math><mrow><mo>±</mo><mn>80</mn><mspace></mspace><mi>mm</mi></mrow></math></span> stroke).</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"103 ","pages":"Article 103249"},"PeriodicalIF":3.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An active SLAM with multi-sensor fusion for snake robots based on deep reinforcement learning 基于深度强化学习的蛇形机器人多传感器融合主动式 SLAM
IF 3.1 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-08-23 DOI: 10.1016/j.mechatronics.2024.103248
Xin Liu , Shuhuan Wen , Yaohua Hu , Fei Han , Hong Zhang , Hamid Reza Karimi

Snake-like robots can imitate the movement patterns of animals in nature and enter the space that traditional robots cannot enter, which adapt to environments that humans cannot reach, and expand the field of human exploration. However, it is often challenging to realize autonomous navigation and simultaneously avoid obstacles under an unknown environment, that is, active SLAM (Simultaneous Localization and Mapping). This paper proposes an autonomous obstacle avoidance method combined with SLAM based on deep reinforcement learning for a wheeled snake robot by using a multi-sensor. Firstly, we design a modular wheeled snake robot structure with lightweight materials based on orthogonal joints and build a three-dimensional model of a snake robot in Gazebo. Secondly, the SLAM based on two-dimensional LiDAR and IMU is used to realize autonomous navigation under an unknown environment and detect obstacles. At the same time, a Deep Q-Learning-based path planning method of the snake robot is proposed to realize obstacles avoidance during navigation. Finally, simulation studies and experiments show that the designed snake-like robot can realize effective path planning and environmental mapping in environments with obstacles. The proposed active SLAM algorithm improves the success rate of snake-like robot path planning, has better obstacle avoidance ability for obstacles, and reduces the number of collisions compared with the traditional A* and the sampling-based RRT* algorithms.

仿蛇机器人可以模仿自然界动物的运动规律,进入传统机器人无法进入的空间,适应人类无法到达的环境,拓展人类的探索领域。然而,如何在未知环境下实现自主导航并同时避开障碍物,即主动式 SLAM(同时定位与绘图),往往是一项挑战。本文提出了一种基于深度强化学习的轮式蛇形机器人自主避障方法。首先,我们设计了基于正交关节的轻质材料模块化轮式蛇形机器人结构,并在 Gazebo 中构建了蛇形机器人的三维模型。其次,利用基于二维激光雷达和 IMU 的 SLAM 实现未知环境下的自主导航和障碍物检测。同时,提出了一种基于深度 Q 学习的蛇形机器人路径规划方法,以实现导航过程中的避障。最后,仿真研究和实验表明,所设计的蛇形机器人能在有障碍物的环境中实现有效的路径规划和环境映射。与传统的 A* 算法和基于采样的 RRT* 算法相比,所提出的主动 SLAM 算法提高了蛇形机器人路径规划的成功率,对障碍物有更好的避障能力,并减少了碰撞次数。
{"title":"An active SLAM with multi-sensor fusion for snake robots based on deep reinforcement learning","authors":"Xin Liu ,&nbsp;Shuhuan Wen ,&nbsp;Yaohua Hu ,&nbsp;Fei Han ,&nbsp;Hong Zhang ,&nbsp;Hamid Reza Karimi","doi":"10.1016/j.mechatronics.2024.103248","DOIUrl":"10.1016/j.mechatronics.2024.103248","url":null,"abstract":"<div><p>Snake-like robots can imitate the movement patterns of animals in nature and enter the space that traditional robots cannot enter, which adapt to environments that humans cannot reach, and expand the field of human exploration. However, it is often challenging to realize autonomous navigation and simultaneously avoid obstacles under an unknown environment, that is, active SLAM (Simultaneous Localization and Mapping). This paper proposes an autonomous obstacle avoidance method combined with SLAM based on deep reinforcement learning for a wheeled snake robot by using a multi-sensor. Firstly, we design a modular wheeled snake robot structure with lightweight materials based on orthogonal joints and build a three-dimensional model of a snake robot in Gazebo. Secondly, the SLAM based on two-dimensional LiDAR and IMU is used to realize autonomous navigation under an unknown environment and detect obstacles. At the same time, a Deep Q-Learning-based path planning method of the snake robot is proposed to realize obstacles avoidance during navigation. Finally, simulation studies and experiments show that the designed snake-like robot can realize effective path planning and environmental mapping in environments with obstacles. The proposed active SLAM algorithm improves the success rate of snake-like robot path planning, has better obstacle avoidance ability for obstacles, and reduces the number of collisions compared with the traditional A* and the sampling-based RRT* algorithms.</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"103 ","pages":"Article 103248"},"PeriodicalIF":3.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142050119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DBSCAN and Yolov5 based 3D object detection and its adaptation to a mobile platform 基于 DBSCAN 和 Yolov5 的 3D 物体检测及其与移动平台的适配
IF 3.1 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-08-15 DOI: 10.1016/j.mechatronics.2024.103238
Dong Gyu Park , Tae Nam Jung , Jin Gahk Kim , Sang Hun Lee , Eun Su Oh , Dong Hwan Kim

This study presents a 3D object detection technology for mobile platforms and its application. Rather than an innovative high-performance model, we proposed a “useable” model for the robot industry at the current technology stage by combining various techniques. To reduce computation time, a 2D region proposal was obtained using a RGB image-based CNN model. By applying the DBSCAN clustering technique to the point cloud corresponding to the 2D region proposal, a method of obtaining a 3D region proposal was proposed. This allowed for 3D object detection using an RGB image dataset, which has been widely researched, while reducing the computation load to a level suitable for use in mobile robots. Furthermore, the 3D object detection was integrated into a ROS 2-based mobile platform, which was used to perform pedestrian-safe avoidance tasks and elevator button operation tasks. The performance was confirmed through experiments.

本研究介绍了用于移动平台的三维物体检测技术及其应用。与其说我们提出了一个创新的高性能模型,不如说我们结合了各种技术,为机器人行业提出了一个在当前技术阶段 "可用 "的模型。为了减少计算时间,我们使用基于 RGB 图像的 CNN 模型获得了二维区域建议。通过将 DBSCAN 聚类技术应用于与二维区域提案相对应的点云,提出了一种获得三维区域提案的方法。这样,就可以使用已被广泛研究的 RGB 图像数据集进行三维物体检测,同时将计算负荷降低到适合移动机器人使用的水平。此外,三维物体检测被集成到基于 ROS 2 的移动平台中,用于执行行人安全避让任务和电梯按钮操作任务。实验证实了其性能。
{"title":"DBSCAN and Yolov5 based 3D object detection and its adaptation to a mobile platform","authors":"Dong Gyu Park ,&nbsp;Tae Nam Jung ,&nbsp;Jin Gahk Kim ,&nbsp;Sang Hun Lee ,&nbsp;Eun Su Oh ,&nbsp;Dong Hwan Kim","doi":"10.1016/j.mechatronics.2024.103238","DOIUrl":"10.1016/j.mechatronics.2024.103238","url":null,"abstract":"<div><p>This study presents a 3D object detection technology for mobile platforms and its application. Rather than an innovative high-performance model, we proposed a “useable” model for the robot industry at the current technology stage by combining various techniques. To reduce computation time, a 2D region proposal was obtained using a RGB image-based CNN model. By applying the DBSCAN clustering technique to the point cloud corresponding to the 2D region proposal, a method of obtaining a 3D region proposal was proposed. This allowed for 3D object detection using an RGB image dataset, which has been widely researched, while reducing the computation load to a level suitable for use in mobile robots. Furthermore, the 3D object detection was integrated into a ROS 2-based mobile platform, which was used to perform pedestrian-safe avoidance tasks and elevator button operation tasks. The performance was confirmed through experiments.</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"103 ","pages":"Article 103238"},"PeriodicalIF":3.1,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141990938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mechatronics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1