In Robotized Incremental Sheet Forming (ISF), achieving precise geometrical accuracy is a challenging task due to trajectory tool center point (TCP) position errors at the forming tool attached to the robot’s end-effector. These errors primarily arise from external disturbance forces and torques generated during the interaction between the forming tool and the elastic metal sheet. While joint-torque space controllers can mitigate reaction forces and torques through dynamic modeling, joint-space control has inherent limitations, particularly for industrial high-load robots like the ABB IRB 8700. To overcome these challenges, this work implements an external force/torque (F/T) compensator in task-space using a deep neural network. The network predicts trajectory errors induced by reaction forces and torques measured via a 6-axis F/T sensor. Additionally, the forming tool’s trajectory is precisely monitored using a laser tracker, which serves as a feedback mechanism in a closed-loop task-space error-tracking controller. This controller detects and corrects trajectory deviations in real time. By integrating the F/T compensator and the task-space error-tracking controller, the proposed approach effectively compensates for reaction forces and torques while addressing additional errors introduced by other process-related factors. This integration results in significantly enhanced accuracy in robotic incremental forming processes.
扫码关注我们
求助内容:
应助结果提醒方式:
