Pub Date : 2023-08-01DOI: 10.1016/j.matbio.2023.06.002
Hawley C. Pruitt , Ya Guan , Hudson Liu , Alexis E Carey , W. Nathaniel Brennen , Jiayun Lu , Corrine Joshu , Ashani Weeraratna , Tamara L. Lotan , T.S. Karin Eisinger-Mathason , Sharon Gerecht
The tumor extracellular matrix (ECM) is a barrier to anti-tumor immunity in solid tumors by disrupting T cell-tumor cell interaction underlying the need for elucidating mechanisms by which specific ECM proteins impact T cell motility and activity within the desmoplastic stroma of solid tumors. Here, we show that Collagen VI (Col VI) deposition correlates with stromal T cell density in human prostate cancer specimens. Furthermore, motility of CD4+ T cells is completely ablated on purified Col VI surfaces when compared with Fibronectin and Collagen I. Importantly, T cells adhered to Col VI surfaces displayed reduced cell spreading and fibrillar actin, indicating a reduction in traction force generation accompanied by a decrease in integrin β1 clustering. We found that CD4+ T cells largely lack expression of integrin α1 in the prostate tumor microenvironment and that blockade of α1β1 integrin heterodimers inhibited CD8+ T cell motility on prostate fibroblast-derived matrix, while re-expression of ITGA1 improved motility. Taken together, we show that the Col VI-rich microenvironment in prostate cancer reduces the motility of CD4+ T cells lacking integrin α1, leading to their accumulation in the stroma, thus putatively inhibiting anti-tumor T cell responses.
{"title":"Collagen VI deposition mediates stromal T cell trapping through inhibition of T cell motility in the prostate tumor microenvironment","authors":"Hawley C. Pruitt , Ya Guan , Hudson Liu , Alexis E Carey , W. Nathaniel Brennen , Jiayun Lu , Corrine Joshu , Ashani Weeraratna , Tamara L. Lotan , T.S. Karin Eisinger-Mathason , Sharon Gerecht","doi":"10.1016/j.matbio.2023.06.002","DOIUrl":"10.1016/j.matbio.2023.06.002","url":null,"abstract":"<div><p>The tumor extracellular matrix (ECM) is a barrier to anti-tumor immunity in solid tumors by disrupting T cell-tumor cell interaction underlying the need for elucidating mechanisms by which specific ECM proteins impact T cell motility and activity within the desmoplastic stroma of solid tumors. Here, we show that Collagen VI (Col VI) deposition correlates with stromal T cell density in human prostate cancer specimens. Furthermore, motility of CD4+ T cells is completely ablated on purified Col VI surfaces when compared with Fibronectin and Collagen I. Importantly, T cells adhered to Col VI surfaces displayed reduced cell spreading and fibrillar actin, indicating a reduction in traction force generation accompanied by a decrease in integrin β1 clustering. We found that CD4+ T cells largely lack expression of integrin α1 in the prostate tumor microenvironment and that blockade of α1β1 integrin heterodimers inhibited CD8+ T cell motility on prostate fibroblast-derived matrix, while re-expression of ITGA1 improved motility. Taken together, we show that the Col VI-rich microenvironment in prostate cancer reduces the motility of CD4+ T cells lacking integrin α1, leading to their accumulation in the stroma, thus putatively inhibiting anti-tumor T cell responses.</p></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"121 ","pages":"Pages 90-104"},"PeriodicalIF":6.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10232881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1016/j.matbio.2023.06.003
Valentina Daponte , Francesca Tonelli , Cecilia Masiero , Delfien Syx , Chloé Exbrayat-Héritier , Marco Biggiogera , Andy Willaert , Antonio Rossi , Paul J. Coucke , Florence Ruggiero , Antonella Forlino
Osteogenesis imperfecta (OI) is a family of rare heritable skeletal disorders associated with dominant mutations in the collagen type I encoding genes and recessive defects in proteins involved in collagen type I synthesis and processing and in osteoblast differentiation and activity. Historically, it was believed that the OI bone phenotype was only caused by abnormal collagen type I fibrils in the extracellular matrix, but more recently it became clear that the altered bone cell homeostasis, due to mutant collagen retention, plays a relevant role in modulating disease severity in most of the OI forms and it is correlated to impaired bone cell differentiation. Despite in vitro evidence, in vivo data are missing. To better understand the physiopathology of OI, we used two zebrafish models: Chihuahua (Chi/+), carrying a dominant p.G736D substitution in the α1 chain of collagen type I, and the recessive p3h1−/−, lacking prolyl 3-hydroxylase (P3h1) enzyme. Both models share the delay of collagen type I folding, resulting in its overmodification and partial intracellular retention. The regeneration of the bony caudal fin of Chi/+ and p3h1−/− was employed to investigate the impact of abnormal collagen synthesis on bone cell differentiation. Reduced regenerative ability was evident in both models, but it was associated to impaired osteoblast differentiation and osteoblastogenesis/adipogenesis switch only in Chi/+. On the contrary, reduced osteoclast number and activity were found in both models during regeneration. The dominant OI model showed a more detrimental effect in the extracellular matrix organization. Interestingly, the chemical chaperone 4-phenylbutyrate (4-PBA), known to reduce cellular stress and increase collagen secretion, improved bone formation only in p3h1−/− by favoring caudal fin growth without affecting bone cell markers expression. Taken together, our in vivo data proved the negative impact of structurally abnormal collagen type I on bone formation but revealed a gene mutation-specific effect on bone cell differentiation and matrix organization in OI. These, together with the distinct ability to respond to the chaperone treatment, underline the need for precision medicine approaches to properly treat the disease.
{"title":"Cell differentiation and matrix organization are differentially affected during bone formation in osteogenesis imperfecta zebrafish models with different genetic defects impacting collagen type I structure","authors":"Valentina Daponte , Francesca Tonelli , Cecilia Masiero , Delfien Syx , Chloé Exbrayat-Héritier , Marco Biggiogera , Andy Willaert , Antonio Rossi , Paul J. Coucke , Florence Ruggiero , Antonella Forlino","doi":"10.1016/j.matbio.2023.06.003","DOIUrl":"10.1016/j.matbio.2023.06.003","url":null,"abstract":"<div><p>Osteogenesis imperfecta (OI) is a family of rare heritable skeletal disorders associated with dominant mutations in the collagen type I encoding genes and recessive defects in proteins involved in collagen type I synthesis and processing and in osteoblast differentiation and activity. Historically, it was believed that the OI bone phenotype was only caused by abnormal collagen type I fibrils in the extracellular matrix, but more recently it became clear that the altered bone cell homeostasis, due to mutant collagen retention, plays a relevant role in modulating disease severity in most of the OI forms and it is correlated to impaired bone cell differentiation. Despite <em>in vitro</em> evidence, <em>in vivo</em> data are missing. To better understand the physiopathology of OI, we used two zebrafish models: <em>Chihuahua</em> (<em>Chi/+</em>), carrying a dominant p.G736D substitution in the α1 chain of collagen type I, and the recessive <em>p3h1<sup>−/−</sup></em>, lacking prolyl 3-hydroxylase (P3h1) enzyme. Both models share the delay of collagen type I folding, resulting in its overmodification and partial intracellular retention. The regeneration of the bony caudal fin of <em>Chi/+</em> and <em>p3h1<sup>−/−</sup></em> was employed to investigate the impact of abnormal collagen synthesis on bone cell differentiation. Reduced regenerative ability was evident in both models, but it was associated to impaired osteoblast differentiation and osteoblastogenesis/adipogenesis switch only in <em>Chi/+</em>. On the contrary, reduced osteoclast number and activity were found in both models during regeneration. The dominant OI model showed a more detrimental effect in the extracellular matrix organization. Interestingly, the chemical chaperone 4-phenylbutyrate (4-PBA), known to reduce cellular stress and increase collagen secretion, improved bone formation only in <em>p3h1<sup>−/−</sup></em> by favoring caudal fin growth without affecting bone cell markers expression. Taken together, our <em>in vivo</em> data proved the negative impact of structurally abnormal collagen type I on bone formation but revealed a gene mutation-specific effect on bone cell differentiation and matrix organization in OI. These, together with the distinct ability to respond to the chaperone treatment, underline the need for precision medicine approaches to properly treat the disease.</p></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"121 ","pages":"Pages 105-126"},"PeriodicalIF":6.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10177443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1016/j.matbio.2023.05.006
Tiantian Wu , Shanshan Xiong , Mimi Chen , Bjorn T. Tam , Wei Chen , Ke Dong , Zhenling Ma , Zhe Wang , Gaoliang Ouyang
Matrix rigidity is a critical contributor to tumor progression; however, whether and how matrix stiffness modulates the collective invasion of tumor cells remain unknown. Here we demonstrate that increased matrix stiffness activates YAP to promote the secretion of periostin (POSTN) in cancer-associated fibroblasts, which in turn augments the matrix rigidity of mammary glands and breast tumor tissues by facilitating collagen crosslinking. Moreover, decreased tissue stiffening resulted from the POSTN deficiency impairs peritoneal metastatic potential of orthotopic breast tumors. Increased matrix stiffness also promotes three-dimensional (3D) collective breast tumor cell invasion via multicellular cytoskeleton remodeling. POSTN triggers the integrin/FAK/ERK/Cdc42/Rac1 mechanotransduction pathway during 3D collective invasion of breast tumor. Clinically, high POSTN expression correlates with high collagen levels in breast tumors and cooperatively determines the metastatic recurrence potential in breast cancer patients. Collectively, these findings indicate that matrix rigidity promotes 3D collective invasion of breast tumor cells via the YAP-POSTN-integrin mechanotransduction signaling.
{"title":"Matrix stiffening facilitates the collective invasion of breast cancer through the periostin-integrin mechanotransduction pathway","authors":"Tiantian Wu , Shanshan Xiong , Mimi Chen , Bjorn T. Tam , Wei Chen , Ke Dong , Zhenling Ma , Zhe Wang , Gaoliang Ouyang","doi":"10.1016/j.matbio.2023.05.006","DOIUrl":"10.1016/j.matbio.2023.05.006","url":null,"abstract":"<div><p>Matrix rigidity is a critical contributor to tumor progression; however, whether and how matrix stiffness modulates the collective invasion of tumor cells remain unknown. Here we demonstrate that increased matrix stiffness activates YAP to promote the secretion of periostin (POSTN) in cancer-associated fibroblasts, which in turn augments the matrix rigidity of mammary glands and breast tumor tissues by facilitating collagen crosslinking. Moreover, decreased tissue stiffening resulted from the POSTN deficiency impairs peritoneal metastatic potential of orthotopic breast tumors. Increased matrix stiffness also promotes three-dimensional (3D) collective breast tumor cell invasion via multicellular cytoskeleton remodeling. POSTN triggers the integrin/FAK/ERK/Cdc42/Rac1 mechanotransduction pathway during 3D collective invasion of breast tumor. Clinically, high POSTN expression correlates with high collagen levels in breast tumors and cooperatively determines the metastatic recurrence potential in breast cancer patients. Collectively, these findings indicate that matrix rigidity promotes 3D collective invasion of breast tumor cells via the YAP-POSTN-integrin mechanotransduction signaling.</p></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"121 ","pages":"Pages 22-40"},"PeriodicalIF":6.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10175107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1016/j.matbio.2023.06.008
Wencheng Zhang , Yongmei Xu , Xicheng Wang , Tsunekazu Oikawa , Guowei Su , Eliane Wauthier , Guoxiu Wu , Praveen Sethupathy , Zhiying He , Jian Liu , Lola M. Reid
Fibrolamellar carcinomas (FLCs), lethal tumors occurring in children to young adults, have genetic signatures implicating derivation from biliary tree stem cell (BTSC) subpopulations, co-hepato/pancreatic stem cells, involved in hepatic and pancreatic regeneration. FLCs and BTSCs express pluripotency genes, endodermal transcription factors, and stem cell surface, cytoplasmic and proliferation biomarkers.
The FLC-PDX model, FLC-TD-2010, is driven ex vivo to express pancreatic acinar traits, hypothesized responsible for this model's propensity for enzymatic degradation of cultures. A stable ex vivo model of FLC-TD-2010 was achieved using organoids in serum-free Kubota's Medium (KM) supplemented with 0.1% hyaluronans (KM/HA). Heparins (10 ng/ml) caused slow expansion of organoids with doubling times of ∼7–9 days. Spheroids, organoids depleted of mesenchymal cells, survived indefinitely in KM/HA in a state of growth arrest for more than 2 months. Expansion was restored with FLCs co-cultured with mesenchymal cell precursors in a ratio of 3:7, implicating paracrine signaling. Signals identified included FGFs, VEGFs, EGFs, Wnts, and others, produced by associated stellate and endothelial cell precursors.
Fifty-three, unique heparan sulfate (HS) oligosaccharides were synthesized, assessed for formation of high affinity complexes with paracrine signals, and each complex screened for biological activity(ies) on organoids. Ten distinct HS-oligosaccharides, all 10–12 mers or larger, and in specific paracrine signal complexes elicited particular biological responses. Of note, complexes of paracrine signals and 3-O sulfated HS-oligosaccharides elicited slowed growth, and with Wnt3a, elicited growth arrest of organoids for months. If future efforts are used to prepare HS-oligosaccharides resistant to breakdown in vivo, then [paracrine signal—HS-oligosaccharide] complexes are potential therapeutic agents for clinical treatments of FLCs, an exciting prospect for a deadly disease.
{"title":"Fibrolamellar carcinomas–growth arrested by paracrine signals complexed with synthesized 3-O sulfated heparan sulfate oligosaccharides","authors":"Wencheng Zhang , Yongmei Xu , Xicheng Wang , Tsunekazu Oikawa , Guowei Su , Eliane Wauthier , Guoxiu Wu , Praveen Sethupathy , Zhiying He , Jian Liu , Lola M. Reid","doi":"10.1016/j.matbio.2023.06.008","DOIUrl":"10.1016/j.matbio.2023.06.008","url":null,"abstract":"<div><p>Fibrolamellar carcinomas (FLCs), lethal tumors occurring in children to young adults, have genetic signatures implicating derivation from biliary tree stem cell (BTSC) subpopulations, co-hepato/pancreatic stem cells, involved in hepatic and pancreatic regeneration. FLCs and BTSCs express pluripotency genes, endodermal transcription factors, and stem cell surface, cytoplasmic and proliferation biomarkers.</p><p>The FLC-PDX model, FLC-TD-2010, is driven <em>ex vivo</em> to express pancreatic acinar traits, hypothesized responsible for this model's propensity for enzymatic degradation of cultures. A stable <em>ex vivo</em> model of FLC-TD-2010 was achieved using organoids in serum-free Kubota's Medium (KM) supplemented with 0.1% hyaluronans (KM/HA). Heparins (10 ng/ml) caused slow expansion of organoids with doubling times of ∼7–9 days. Spheroids, organoids depleted of mesenchymal cells, survived indefinitely in KM/HA in a state of growth arrest for more than 2 months. Expansion was restored with FLCs co-cultured with mesenchymal cell precursors in a ratio of 3:7, implicating paracrine signaling. Signals identified included FGFs, VEGFs, EGFs, Wnts, and others, produced by associated stellate and endothelial cell precursors.</p><p>Fifty-three, unique heparan sulfate (HS) oligosaccharides were synthesized, assessed for formation of high affinity complexes with paracrine signals, and each complex screened for biological activity(ies) on organoids. Ten distinct HS-oligosaccharides, all 10–12 mers or larger, and in specific paracrine signal complexes elicited particular biological responses. Of note, complexes of paracrine signals and 3-<em>O</em> sulfated HS-oligosaccharides elicited slowed growth, and with Wnt3a, elicited growth arrest of organoids for months. If future efforts are used to prepare HS-oligosaccharides resistant to breakdown <em>in vivo</em>, then [paracrine signal—HS-oligosaccharide] complexes are potential therapeutic agents for clinical treatments of FLCs, an exciting prospect for a deadly disease.</p></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"121 ","pages":"Pages 194-216"},"PeriodicalIF":6.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10176584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1016/j.matbio.2023.05.004
Nalani Sachan , Colin K.L. Phoon , Lior Zilberberg , Matthias C. Kugler , Taylor Ene , Shana B. Mintz , Sae-Il Murtada , Dar Weiss , Glenn I. Fishman , Jay D. Humphrey , Daniel B. Rifkin
To assess the contribution of individual TGF-β isoforms to aortopathy in Marfan syndrome (MFS), we quantified the survival and phenotypes of mice with a combined fibrillin1 (the gene defective in MFS) hypomorphic mutation and a TGF-β1, 2, or 3 heterozygous null mutation. The loss of TGF-β2, and only TGF-β2, resulted in 80% of the double mutant animals dying earlier, by postnatal day 20, than MFS only mice. Death was not from thoracic aortic rupture, as observed in MFS mice, but was associated with hyperplastic aortic valve leaflets, aortic regurgitation, enlarged aortic root, increased heart weight, and impaired lung alveolar septation. Thus, there appears to be a relationship between loss of fibrillin1 and TGF-β2 in the postnatal development of the heart, aorta and lungs.
{"title":"TGFβ-2 haploinsufficiency causes early death in mice with Marfan syndrome","authors":"Nalani Sachan , Colin K.L. Phoon , Lior Zilberberg , Matthias C. Kugler , Taylor Ene , Shana B. Mintz , Sae-Il Murtada , Dar Weiss , Glenn I. Fishman , Jay D. Humphrey , Daniel B. Rifkin","doi":"10.1016/j.matbio.2023.05.004","DOIUrl":"10.1016/j.matbio.2023.05.004","url":null,"abstract":"<div><p>To assess the contribution of individual TGF-β isoforms to aortopathy in Marfan syndrome (MFS), we quantified the survival and phenotypes of mice with a combined fibrillin1 (the gene defective in MFS) hypomorphic mutation and a TGF-β1, 2, or 3 heterozygous null mutation. The loss of TGF-β2, and only TGF-β2, resulted in 80% of the double mutant animals dying earlier, by postnatal day 20, than MFS only mice. Death was not from thoracic aortic rupture, as observed in MFS mice, but was associated with hyperplastic aortic valve leaflets, aortic regurgitation, enlarged aortic root, increased heart weight, and impaired lung alveolar septation. Thus, there appears to be a relationship between loss of fibrillin1 and TGF-β2 in the postnatal development of the heart, aorta and lungs.</p></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"121 ","pages":"Pages 41-55"},"PeriodicalIF":6.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c8/17/nihms-1912424.PMC10527763.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10182053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Targeting the tumour immune microenvironment (TIME) by cancer immunotherapy has led to improved patient outcomes. However, response to these treatments is heterogeneous and cancer-type dependant. The therapeutic activity of classical cancer therapies such as chemotherapy, radiotherapy, and surgical oncology is modulated by alterations of the TIME. A major regulator of immune cell function and resistance to both immune and classical therapies is the extracellular matrix (ECM). Concurrently, cancer therapies reshape the TIME as well as the ECM, causing both pro- and anti-tumour responses. Accordingly, the TIME-ECM crosstalk presents attractive opportunities to improve therapy outcomes. Here, we review the molecular crosstalk between the TIME and the ECM in cancer and its implications in cancer progression and clinical intervention. Additionally, we discuss examples and future directions of ECM and TIME co-targeting in combination with oncological therapies including surgery, chemotherapy, and radiotherapy.
{"title":"The extracellular matrix – immune microenvironment crosstalk in cancer therapy: Challenges and opportunities","authors":"Lara Closset , Okan Gultekin , Sahar Salehi , Dhifaf Sarhan , Kaisa Lehti , Jordi Gonzalez-Molina","doi":"10.1016/j.matbio.2023.07.003","DOIUrl":"10.1016/j.matbio.2023.07.003","url":null,"abstract":"<div><p>Targeting the tumour immune microenvironment (TIME) by cancer immunotherapy has led to improved patient outcomes. However, response to these treatments is heterogeneous and cancer-type dependant. The therapeutic activity of classical cancer therapies such as chemotherapy, radiotherapy, and surgical oncology is modulated by alterations of the TIME. A major regulator of immune cell function and resistance to both immune and classical therapies is the extracellular matrix (ECM). Concurrently, cancer therapies reshape the TIME as well as the ECM, causing both pro- and anti-tumour responses. Accordingly, the TIME-ECM crosstalk presents attractive opportunities to improve therapy outcomes. Here, we review the molecular crosstalk between the TIME and the ECM in cancer and its implications in cancer progression and clinical intervention. Additionally, we discuss examples and future directions of ECM and TIME co-targeting in combination with oncological therapies including surgery, chemotherapy, and radiotherapy.</p></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"121 ","pages":"Pages 217-228"},"PeriodicalIF":6.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10138980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1016/j.matbio.2023.05.001
Liang Zhu , Lechen Liu , Aoli Wang, Jinwen Liu, Xin Huang, Tao Zan
Dermal fibrosis is characterized by excessive deposition of extracellular matrix in the dermis and affects millions of people worldwide and causes limited movement, disfigurement and psychological distress in patients. Fibroblast dysfunction of plays a central role in the pathogenesis of dermal fibrosis and is controlled by distinct factors. Recent studies support the hypothesis that fibroblasts can drive matrix deposition and stiffening, which in turn can exacerbate the functional dysregulation of fibroblasts. Ultimately, through a positive feedback loop, uncontrolled pathological fibrosis develops. This review aims to summarize the phenomenon and mechanism of the positive feedback loop in dermal fibrosis, and discuss potential therapeutic targets to help further elucidate the pathogenesis of dermal fibrosis and develop therapeutic strategies. In this review, fibroblast-derived compositional and structural changes in the ECM that lead to altered mechanical properties are briefly discussed. We focus on the mechanisms by which mechanical cues participate in dermal fibrosis progression. The mechanosensors discussed in the review include integrins, DDRs, proteoglycans, and mechanosensitive ion channels. The FAK, ERK, Akt, and Rho pathways, as well as transcription factors, including MRTF and YAP/TAZ, are also discussed. In addition, we describe stiffness-induced biological changes in the ECM on fibroblasts that contribute to the formation of a positive feedback loop. Finally, we discuss therapeutic strategies to treat the vicious cycle and present important suggestions for researchers conducting in-depth research.
{"title":"Positive feedback loops between fibroblasts and the mechanical environment contribute to dermal fibrosis","authors":"Liang Zhu , Lechen Liu , Aoli Wang, Jinwen Liu, Xin Huang, Tao Zan","doi":"10.1016/j.matbio.2023.05.001","DOIUrl":"10.1016/j.matbio.2023.05.001","url":null,"abstract":"<div><p>Dermal fibrosis is characterized by excessive deposition of extracellular matrix in the dermis and affects millions of people worldwide and causes limited movement, disfigurement and psychological distress in patients. Fibroblast dysfunction of plays a central role in the pathogenesis of dermal fibrosis and is controlled by distinct factors. Recent studies support the hypothesis that fibroblasts can drive matrix deposition and stiffening, which in turn can exacerbate the functional dysregulation of fibroblasts. Ultimately, through a positive feedback loop, uncontrolled pathological fibrosis develops. This review aims to summarize the phenomenon and mechanism of the positive feedback loop in dermal fibrosis, and discuss potential therapeutic targets to help further elucidate the pathogenesis of dermal fibrosis and develop therapeutic strategies. In this review, fibroblast-derived compositional and structural changes in the ECM that lead to altered mechanical properties are briefly discussed. We focus on the mechanisms by which mechanical cues participate in dermal fibrosis progression. The mechanosensors discussed in the review include integrins, DDRs, proteoglycans, and mechanosensitive ion channels. The FAK, ERK, Akt, and Rho pathways, as well as transcription factors, including MRTF and YAP/TAZ, are also discussed. In addition, we describe stiffness-induced biological changes in the ECM on fibroblasts that contribute to the formation of a positive feedback loop. Finally, we discuss therapeutic strategies to treat the vicious cycle and present important suggestions for researchers conducting in-depth research.</p></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"121 ","pages":"Pages 1-21"},"PeriodicalIF":6.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10174024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1016/j.matbio.2023.06.007
Nansy Albtoush , Kimberly A. Queisser , Ash Zawerton , Mark E. Lauer , Ellen J. Beswick , Aaron C Petrey
In response to tissue injury, changes in the extracellular matrix (ECM) can directly affect the inflammatory response and contribute to disease progression or resolution. During inflammation, the glycosaminoglycan hyaluronan (HA) becomes modified by tumor necrosis factor stimulated gene-6 (TSG6). TSG6 covalently transfers heavy chain (HC) proteins from inter-α-trypsin inhibitor (IαI) to HA in a transesterification reaction and is to date is the only known HC-transferase. By modifying the HA matrix, TSG6 generates HC:HA complexes that are implicated in mediating both protective and pathological responses. Inflammatory bowel disease (IBD) is a lifelong chronic disorder with well-described remodeling of the ECM and increased mononuclear leukocyte influx into the intestinal mucosa. Deposition of HC:HA matrices is an early event in inflamed gut tissue that precedes and promotes leukocyte infiltration. However, the mechanisms by which TSG6 contributes to intestinal inflammation are not well understood. The aim of our study was to understand how the TSG6 and its enzymatic activity contributes to the inflammatory response in colitis. Our findings indicate that inflamed tissues of IBD patients show an elevated level of TSG6 and increased HC deposition and that levels of HA strongly associate with TSG6 levels in patient colon tissue specimens. Additionally, we observed that mice lacking TSG6 are more vulnerable to acute colitis and exhibit an aggravated macrophage-associated mucosal immune response characterized by elevated pro-inflammatory cytokines and chemokines and diminished anti-inflammatory mediators including IL-10. Surprisingly, along with significantly increased levels of inflammation in the absence of TSG6, tissue HA levels in mice were found to be significantly reduced and disorganized, absent of typical “HA-cable” structures. Inhibition of TSG6 HC-transferase activity leads to a loss of cell surface HA and leukocyte adhesion, indicating that the enzymatic functions of TSG6 are a major contributor to stability of the HA ECM during inflammation. Finally, using biochemically generated HC:HA matrices derived by TSG6, we show that HC:HA complexes can attenuate the inflammatory response of activated monocytes. In conclusion, our data suggests that TSG6 exerts a tissue-protective, anti-inflammatory effect via the generation of HC:HA complexes that become dysregulated in IBD.
{"title":"TSG6 hyaluronan matrix remodeling dampens the inflammatory response during colitis","authors":"Nansy Albtoush , Kimberly A. Queisser , Ash Zawerton , Mark E. Lauer , Ellen J. Beswick , Aaron C Petrey","doi":"10.1016/j.matbio.2023.06.007","DOIUrl":"10.1016/j.matbio.2023.06.007","url":null,"abstract":"<div><p>In response to tissue injury, changes in the extracellular matrix (ECM) can directly affect the inflammatory response and contribute to disease progression or resolution. During inflammation, the glycosaminoglycan hyaluronan (HA) becomes modified by tumor necrosis factor stimulated gene-6 (TSG6). TSG6 covalently transfers heavy chain (HC) proteins from inter-α-trypsin inhibitor (IαI) to HA in a transesterification reaction and is to date is the only known HC-transferase. By modifying the HA matrix, TSG6 generates HC:HA complexes that are implicated in mediating both protective and pathological responses. Inflammatory bowel disease (IBD) is a lifelong chronic disorder with well-described remodeling of the ECM and increased mononuclear leukocyte influx into the intestinal mucosa. Deposition of HC:HA matrices is an early event in inflamed gut tissue that precedes and promotes leukocyte infiltration. However, the mechanisms by which TSG6 contributes to intestinal inflammation are not well understood. The aim of our study was to understand how the TSG6 and its enzymatic activity contributes to the inflammatory response in colitis. Our findings indicate that inflamed tissues of IBD patients show an elevated level of TSG6 and increased HC deposition and that levels of HA strongly associate with TSG6 levels in patient colon tissue specimens. Additionally, we observed that mice lacking TSG6 are more vulnerable to acute colitis and exhibit an aggravated macrophage-associated mucosal immune response characterized by elevated pro-inflammatory cytokines and chemokines and diminished anti-inflammatory mediators including IL-10. Surprisingly, along with significantly increased levels of inflammation in the absence of TSG6, tissue HA levels in mice were found to be significantly reduced and disorganized, absent of typical “HA-cable” structures. Inhibition of TSG6 HC-transferase activity leads to a loss of cell surface HA and leukocyte adhesion, indicating that the enzymatic functions of TSG6 are a major contributor to stability of the HA ECM during inflammation. Finally, using biochemically generated HC:HA matrices derived by TSG6, we show that HC:HA complexes can attenuate the inflammatory response of activated monocytes. In conclusion, our data suggests that TSG6 exerts a tissue-protective, anti-inflammatory effect via the generation of HC:HA complexes that become dysregulated in IBD.</p></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"121 ","pages":"Pages 149-166"},"PeriodicalIF":6.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530565/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10208137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1016/j.matbio.2023.06.004
Milena Jovanovic , Apratim Mitra , Roberta Besio , Barbara Maria Contento , Ka Wai Wong , Alberta Derkyi , Michael To , Antonella Forlino , Ryan K Dale , Joan C Marini
Osteogenesis Imperfecta (OI) is a heritable collagen-related bone dysplasia characterized by bone fractures, growth deficiency and skeletal deformity. Type XIV OI is a recessive OI form caused by null mutations in TMEM38B, which encodes the ER membrane intracellular cation channel TRIC-B. Previously, we showed that absence of TMEM38B alters calcium flux in the ER of OI patient osteoblasts and fibroblasts, which further disrupts collagen synthesis and secretion. How the absence of TMEM38B affects osteoblast function is still poorly understood. Here we further investigated the role of TMEM38B in human osteoblast differentiation and mineralization. TMEM38B-null osteoblasts showed altered expression of osteoblast marker genes and decreased mineralization. RNA-Seq analysis revealed that cell-cell adhesion was one of the most downregulated pathways in TMEM38B-null osteoblasts, with further validation by real-time PCR and Western blot. Gap and tight junction proteins were also decreased by TRIC-B absence, both in patient osteoblasts and in calvarial osteoblasts of Tmem38b-null mice. Disrupted cell adhesion decreased mutant cell proliferation and cell cycle progression. An important novel finding was that TMEM38B-null osteoblasts had elongated mitochondria with altered fusion and fission markers, MFN2 and DRP1. In addition, TMEM38B-null osteoblasts exhibited a significant increase in superoxide production in mitochondria, further supporting mitochondrial dysfunction. Together these results emphasize the novel role of TMEM38B/TRIC-B in osteoblast differentiation, affecting cell-cell adhesion processes, gap and tight junction, proliferation, cell cycle, and mitochondrial function.
{"title":"Absence of TRIC-B from type XIV Osteogenesis Imperfecta osteoblasts alters cell adhesion and mitochondrial function – A multi-omics study","authors":"Milena Jovanovic , Apratim Mitra , Roberta Besio , Barbara Maria Contento , Ka Wai Wong , Alberta Derkyi , Michael To , Antonella Forlino , Ryan K Dale , Joan C Marini","doi":"10.1016/j.matbio.2023.06.004","DOIUrl":"10.1016/j.matbio.2023.06.004","url":null,"abstract":"<div><p>Osteogenesis Imperfecta (OI) is a heritable collagen-related bone dysplasia characterized by bone fractures, growth deficiency and skeletal deformity. Type XIV OI is a recessive OI form caused by null mutations in <em>TMEM38B,</em> which encodes the ER membrane intracellular cation channel TRIC-B. Previously, we showed that absence of <em>TMEM38B</em> alters calcium flux in the ER of OI patient osteoblasts and fibroblasts, which further disrupts collagen synthesis and secretion. How the absence of <em>TMEM38B</em> affects osteoblast function is still poorly understood. Here we further investigated the role of <em>TMEM38B</em> in human osteoblast differentiation and mineralization. <em>TMEM38B</em>-null osteoblasts showed altered expression of osteoblast marker genes and decreased mineralization. RNA-Seq analysis revealed that cell-cell adhesion was one of the most downregulated pathways in <em>TMEM38B</em>-null osteoblasts, with further validation by real-time PCR and Western blot. Gap and tight junction proteins were also decreased by TRIC-B absence, both in patient osteoblasts and in calvarial osteoblasts of <em>Tmem38b</em>-null mice. Disrupted cell adhesion decreased mutant cell proliferation and cell cycle progression. An important novel finding was that <em>TMEM38B</em>-null osteoblasts had elongated mitochondria with altered fusion and fission markers, MFN2 and DRP1. In addition, <em>TMEM38B</em>-null osteoblasts exhibited a significant increase in superoxide production in mitochondria, further supporting mitochondrial dysfunction. Together these results emphasize the novel role of <em>TMEM38B</em>/TRIC-B in osteoblast differentiation, affecting cell-cell adhesion processes, gap and tight junction, proliferation, cell cycle, and mitochondrial function.</p></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"121 ","pages":"Pages 127-148"},"PeriodicalIF":6.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10557856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.1016/j.matbio.2023.06.001
Anna-Liisa Luik , Melanie-Jane Hannocks , Sophie Loismann , Kishan Kapupara , Manuela Cerina , Miesje van der Stoel , Yaroslav Tsytsyura , Nataliya Glyvuk , Caroline Nordenvall , Jürgen Klingauf , Stephan Huveneers , Sven Meuth , Lars Jakobsson , Lydia Sorokin
Basement membranes (BMs) are critical but frequently ignored components of the vascular system. Using high-resolution confocal imaging of whole-mount-stained mesenteric arteries, we identify integrins, vinculin, focal adhesion kinase (FAK) and several BM proteins including laminins as novel components of myoendothelial junctions (MEJs), anatomical microdomains that are emerging as regulators of cross-talk between endothelium and smooth muscle cells (SMCs). Electron microscopy revealed multiple layers of the endothelial BM that surround endothelial projections into the smooth muscle layer as structural characteristics of MEJs. The shear-responsive calcium channel TRPV4 is broadly distributed in endothelial cells and occurs in a proportion of MEJs where it localizes to the tips of the endothelial projections that are in contact with the underlying SMCs. In mice lacking the major endothelial laminin isoform, laminin 411 (Lama4−/−), which we have previously shown over-dilate in response to shear and exhibit a compensatory laminin 511 upregulation, localization of TRPV4 at the endothelial-SMC interface in MEJs was increased. Endothelial laminins do not affect TRPV4 expression, rather in vitro electrophysiology studies using human umbilical cord arterial endothelial cells revealed enhanced TRPV4 signalling upon culturing on an RGD-motif containing domain of laminin 511. Hence, integrin-mediated interactions with laminin 511 in MEJ structures unique to resistance arteries modulate TRPV4 localization at the endothelial-smooth muscle interface in MEJs and signalling over this shear-response molecule.
{"title":"Endothelial basement membrane laminins - new players in mouse and human myoendothelial junctions and shear stress communication","authors":"Anna-Liisa Luik , Melanie-Jane Hannocks , Sophie Loismann , Kishan Kapupara , Manuela Cerina , Miesje van der Stoel , Yaroslav Tsytsyura , Nataliya Glyvuk , Caroline Nordenvall , Jürgen Klingauf , Stephan Huveneers , Sven Meuth , Lars Jakobsson , Lydia Sorokin","doi":"10.1016/j.matbio.2023.06.001","DOIUrl":"10.1016/j.matbio.2023.06.001","url":null,"abstract":"<div><p>Basement membranes (BMs) are critical but frequently ignored components of the vascular system. Using high-resolution confocal imaging of whole-mount-stained mesenteric arteries, we identify integrins, vinculin, focal adhesion kinase (FAK) and several BM proteins including laminins as novel components of myoendothelial junctions (MEJs), anatomical microdomains that are emerging as regulators of cross-talk between endothelium and smooth muscle cells (SMCs). Electron microscopy revealed multiple layers of the endothelial BM that surround endothelial projections into the smooth muscle layer as structural characteristics of MEJs. The shear-responsive calcium channel TRPV4 is broadly distributed in endothelial cells and occurs in a proportion of MEJs where it localizes to the tips of the endothelial projections that are in contact with the underlying SMCs. In mice lacking the major endothelial laminin isoform, laminin 411 (<em>Lama4<sup>−/−</sup></em>), which we have previously shown over-dilate in response to shear and exhibit a compensatory laminin 511 upregulation, localization of TRPV4 at the endothelial-SMC interface in MEJs was increased. Endothelial laminins do not affect TRPV4 expression, rather <em>in vitro</em> electrophysiology studies using human umbilical cord arterial endothelial cells revealed enhanced TRPV4 signalling upon culturing on an RGD-motif containing domain of laminin 511. Hence, integrin-mediated interactions with laminin 511 in MEJ structures unique to resistance arteries modulate TRPV4 localization at the endothelial-smooth muscle interface in MEJs and signalling over this shear-response molecule.</p></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"121 ","pages":"Pages 56-73"},"PeriodicalIF":6.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10174590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}