Pub Date : 2023-07-31DOI: 10.1080/13873954.2023.2236681
Anna Lo Grasso, A. Fort, Fariba Fahmideh Mahdizadeh, A. Magnani, C. Mocenni
{"title":"Generalized logistic model of bacterial growth","authors":"Anna Lo Grasso, A. Fort, Fariba Fahmideh Mahdizadeh, A. Magnani, C. Mocenni","doi":"10.1080/13873954.2023.2236681","DOIUrl":"https://doi.org/10.1080/13873954.2023.2236681","url":null,"abstract":"","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43427391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-18DOI: 10.1080/13873954.2023.2222170
Gang Yu, Dong Li, Yuling Duan
{"title":"Numerical investigation for influence of powered effect on aerodynamic performance of BWB takeoff configuration","authors":"Gang Yu, Dong Li, Yuling Duan","doi":"10.1080/13873954.2023.2222170","DOIUrl":"https://doi.org/10.1080/13873954.2023.2222170","url":null,"abstract":"","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43562689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-27DOI: 10.1080/13873954.2023.2173238
Johannes Rettberg, Dominik Wittwar, Patrick Buchfink, Alexander Brauchler, Pascal Ziegler, Jörg Fehr, Bernard Haasdonk
A fluid–structure interaction model in a port-Hamiltonian representation is derived for a classical guitar. After discretization, we combine the laws of continuum mechanics for solids and fluids within a unified port-Hamiltonian (pH) modelling approach by adapting the equations through an appropriate coordinate transformation on the second-order level. The high-dimensionality of the resulting system is reduced by model order reduction. The article focuses on pH-systems in different state transformations, a variety of basis generation techniques as well as structure-preserving model order reduction approaches that are independent from the projection basis. As main contribution, a thorough comparison of these method combinations is conducted. In contrast to typical frequency-based simulations in acoustics, transient time simulations of the system are presented. The approach is embedded into a straightforward workflow of sophisticated commercial software modelling and flexible in-house software for multi-physics coupling and model order reduction.
{"title":"Port-Hamiltonian fluid–structure interaction modelling and structure-preserving model order reduction of a classical guitar","authors":"Johannes Rettberg, Dominik Wittwar, Patrick Buchfink, Alexander Brauchler, Pascal Ziegler, Jörg Fehr, Bernard Haasdonk","doi":"10.1080/13873954.2023.2173238","DOIUrl":"https://doi.org/10.1080/13873954.2023.2173238","url":null,"abstract":"A fluid–structure interaction model in a port-Hamiltonian representation is derived for a classical guitar. After discretization, we combine the laws of continuum mechanics for solids and fluids within a unified port-Hamiltonian (pH) modelling approach by adapting the equations through an appropriate coordinate transformation on the second-order level. The high-dimensionality of the resulting system is reduced by model order reduction. The article focuses on pH-systems in different state transformations, a variety of basis generation techniques as well as structure-preserving model order reduction approaches that are independent from the projection basis. As main contribution, a thorough comparison of these method combinations is conducted. In contrast to typical frequency-based simulations in acoustics, transient time simulations of the system are presented. The approach is embedded into a straightforward workflow of sophisticated commercial software modelling and flexible in-house software for multi-physics coupling and model order reduction.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135945401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-06DOI: 10.1080/13873954.2023.2184835
Qinghe Yao, Zhuolin Wang, Yan Zhang, Zijie Li, Junyang Jiang
{"title":"Towards real-time fluid dynamics simulation: a data-driven NN-MPS method and its implementation","authors":"Qinghe Yao, Zhuolin Wang, Yan Zhang, Zijie Li, Junyang Jiang","doi":"10.1080/13873954.2023.2184835","DOIUrl":"https://doi.org/10.1080/13873954.2023.2184835","url":null,"abstract":"","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44256321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-25DOI: 10.1080/13873954.2023.2178466
Julian Landauer, A. Kugi, Andreas Steinböck
{"title":"Mathematical modelling of an electrostatic oiling machine for steel strips","authors":"Julian Landauer, A. Kugi, Andreas Steinböck","doi":"10.1080/13873954.2023.2178466","DOIUrl":"https://doi.org/10.1080/13873954.2023.2178466","url":null,"abstract":"","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"1 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42345645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-22DOI: 10.1080/13873954.2023.2177311
M. Meiringer, A. Kugi, W. Kemmetmüller
{"title":"Modelling and calibration of a five link elastic boom of a mobile concrete pump","authors":"M. Meiringer, A. Kugi, W. Kemmetmüller","doi":"10.1080/13873954.2023.2177311","DOIUrl":"https://doi.org/10.1080/13873954.2023.2177311","url":null,"abstract":"","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44143373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-30DOI: 10.1080/13873954.2022.2158875
Athanasios Martsopoulos, T. L. Hill, Rajendra Persad, S. Bolomytis, Antonia Tzemanaki
{"title":"Modelling and real-time dynamic simulation of flexible needles for prostate biopsy and brachytherapy","authors":"Athanasios Martsopoulos, T. L. Hill, Rajendra Persad, S. Bolomytis, Antonia Tzemanaki","doi":"10.1080/13873954.2022.2158875","DOIUrl":"https://doi.org/10.1080/13873954.2022.2158875","url":null,"abstract":"","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44167473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-12DOI: 10.1080/13873954.2022.2143531
Mihiran Galagedarage Don, G. Rideout
ABSTRACT The oilwell drilling fluid flows cause viscous and hydrodynamic forces on drill strings. This effect is ignored or treated as a constant in most drill string models. The present study introduces mathematical models for lateral vibration damping and axial drag forces that are employable in lumped segment drill string models. First, the variables to which drilling fluid-generated forces are most sensitive were identified and the Response Surface Method was applied to design the experiment matrix. The lateral vibration-damping experiments, which were validated using a scaled-down physical model, and the axial drag experiments were done using Fluid-Structure Interaction simulations. The results were statistically analysed to acquire the models and were implemented in a 3D lumped segment bond graph developed using the Newton-Euler formulation and body-fixed coordinates. The results indicate a considerable effect of the extended treatment of damping and axial drag on bending moment fluctuation, wellbore interactions, and weight on bit.
{"title":"An experimentally-verified approach for enhancing fluid drag force simulation in vertical oilwell drill strings","authors":"Mihiran Galagedarage Don, G. Rideout","doi":"10.1080/13873954.2022.2143531","DOIUrl":"https://doi.org/10.1080/13873954.2022.2143531","url":null,"abstract":"ABSTRACT The oilwell drilling fluid flows cause viscous and hydrodynamic forces on drill strings. This effect is ignored or treated as a constant in most drill string models. The present study introduces mathematical models for lateral vibration damping and axial drag forces that are employable in lumped segment drill string models. First, the variables to which drilling fluid-generated forces are most sensitive were identified and the Response Surface Method was applied to design the experiment matrix. The lateral vibration-damping experiments, which were validated using a scaled-down physical model, and the axial drag experiments were done using Fluid-Structure Interaction simulations. The results were statistically analysed to acquire the models and were implemented in a 3D lumped segment bond graph developed using the Newton-Euler formulation and body-fixed coordinates. The results indicate a considerable effect of the extended treatment of damping and axial drag on bending moment fluctuation, wellbore interactions, and weight on bit.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"28 1","pages":"197 - 228"},"PeriodicalIF":1.9,"publicationDate":"2022-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45471724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-07DOI: 10.1080/13873954.2022.2080718
Paul Treml, G. Mikota, B. Manhartsgruber, A. Brandl
ABSTRACT A coupled hydraulic-mechanical system with a lumped parametric mechanical part has been set up, measured and mathematically modelled in the frequency domain. The main focus of this article is the identification of unknown system parameters, which depends on the models of coupling and dissipation. The set-up under investigation can be excited hydraulically, by flow rate, or mechanically, by force. The responding pressures of the hydraulic subsystem and the accelerations of the mechanical subsystem are measured, from which transfer functions between excitation and system states can be calculated. The property of reciprocity is used for the processing of measurement data. With a suitable two-step strategy and non-linear optimization unknown system parameters can be identified from measurements. Additionally, the agreement of model and measurement and the physical meaningfulness of these parameters are examined. The proposed model succeeds in predicting measured transfer functions, whose data weren't used for the identification of model parameters.
{"title":"Modelling of a hydraulic system coupled with lumped masses","authors":"Paul Treml, G. Mikota, B. Manhartsgruber, A. Brandl","doi":"10.1080/13873954.2022.2080718","DOIUrl":"https://doi.org/10.1080/13873954.2022.2080718","url":null,"abstract":"ABSTRACT A coupled hydraulic-mechanical system with a lumped parametric mechanical part has been set up, measured and mathematically modelled in the frequency domain. The main focus of this article is the identification of unknown system parameters, which depends on the models of coupling and dissipation. The set-up under investigation can be excited hydraulically, by flow rate, or mechanically, by force. The responding pressures of the hydraulic subsystem and the accelerations of the mechanical subsystem are measured, from which transfer functions between excitation and system states can be calculated. The property of reciprocity is used for the processing of measurement data. With a suitable two-step strategy and non-linear optimization unknown system parameters can be identified from measurements. Additionally, the agreement of model and measurement and the physical meaningfulness of these parameters are examined. The proposed model succeeds in predicting measured transfer functions, whose data weren't used for the identification of model parameters.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"28 1","pages":"142 - 196"},"PeriodicalIF":1.9,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42768055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-05DOI: 10.1080/13873954.2022.2052111
T. Makowicki, M. Bitzer, K. Graichen
ABSTRACT Modern combustion engines require an efficient cycle-by-cycle fuel injection control scheme to optimise the single combustion events during transient operation. The online optimisation of the respective control inputs typically needs accurate while sufficiently simple models of the combustion quantities. Based on a recently presented cycle-by-cycle optimisation scheme with a hybrid model, this paper focuses on two aspects to enhance the accuracy as well as computational efficiency for an online computation. Firstly, the proper calibration of Gaussian processes nested in a combined physics-/data-based model structure is addressed. Respective test bench measurements and a tailored two-step training procedure are presented. Secondly, the computational efficiency of the online cycle-by-cycle optimisation is increased by mapping computationally intensive calculations into the data-based models through offline preprocessing. In addition, a data-driven approximation of the complete optimisation scheme is proposed to further minimise the computational demand. Simulation studies are used to evaluate the performance of these approaches.
{"title":"Cycle-by-Cycle Combustion Optimisation: Calibration of Data-based Models and Improvements of Computational Efficiency","authors":"T. Makowicki, M. Bitzer, K. Graichen","doi":"10.1080/13873954.2022.2052111","DOIUrl":"https://doi.org/10.1080/13873954.2022.2052111","url":null,"abstract":"ABSTRACT Modern combustion engines require an efficient cycle-by-cycle fuel injection control scheme to optimise the single combustion events during transient operation. The online optimisation of the respective control inputs typically needs accurate while sufficiently simple models of the combustion quantities. Based on a recently presented cycle-by-cycle optimisation scheme with a hybrid model, this paper focuses on two aspects to enhance the accuracy as well as computational efficiency for an online computation. Firstly, the proper calibration of Gaussian processes nested in a combined physics-/data-based model structure is addressed. Respective test bench measurements and a tailored two-step training procedure are presented. Secondly, the computational efficiency of the online cycle-by-cycle optimisation is increased by mapping computationally intensive calculations into the data-based models through offline preprocessing. In addition, a data-driven approximation of the complete optimisation scheme is proposed to further minimise the computational demand. Simulation studies are used to evaluate the performance of these approaches.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"28 1","pages":"110 - 141"},"PeriodicalIF":1.9,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45167718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}