The Quaternary marks the beginning of the ice ages, with the establishment of a stable Northern Hemisphere ice sheet. The Monte San Nicola section, southern Sicily (Italy) is the Global Boundary Stratotype Section and Point of the Gelasian Stage of the Lower Quaternary Subseries and is attracting new attention for providing valuable information on paleoclimate evolution.
Here we present a paleoenvironmental reconstruction based on new data from calcareous nannoplankton, the phytoplankton organisms that are sensitive to sea surface changes and water column dynamics. We adopt statistical and signal analysis to support our paleoenvironmental model. The most evident paleoenvironmental signal throughout the investigated interval is the contrast between the abundance patterns of placoliths and Florisphaera profunda, the former pointing to surface productivity (water column mixing, shallow nutricline), the latter to the establishment of a deep nutricline. The observed nutricline depth shift occurred with a regular precessional pace, following Northern Hemisphere summer insolation and, likely, North African monsoon activity. A significant periodicity of 8 kyr, in tune with late Quaternary Heinrich events, is also observed in nannoplankton taxa, supporting previous findings on the existence of suborbital climatic variability even at the Pliocene-Pleistocene transition.
The biomass of benthic foraminifera stands out in marine environments compared to other meiofaunal organisms. Estimating the biomass of these organisms is a valuable biotic descriptor for understanding the carbon cycle and the flow of particulate organic matter. This study estimates the biomass of benthic foraminifera on the slope and plateau of the Santos Basin (SE Brazil) using the biovolume and cytoplasmic occupancy methodology. This work applies a non-destructive biovolume method of estimating biomass by the direct visualization of cytoplasmic occupancy (DV) compared with pre-established (in the literature) percentages of cytoplasmic occupation of the test volume: an average of 32 % (GE) and 35 % (AL). Although there was no statistically significant difference (p < 0.05) between DV and cytoplasmic percentages, it is recognized that the calculation of GE and AL can bias the results. We, therefore, emphasize the need to assess biomass according to species composition and ultrastructural variability. The species with the biggest individuals (>250 μm) contributed most to biomass in the Santos Basin and are considered k-strategists. In contrast, the species with smaller specimens (250–63 μm) are considered r-strategists, contributing more to the density in the study area. This study highlights the discrepancy between the abundant species biomass results by measuring all specimens and the extrapolation of the population for less sample effort, probably due to biological (e.g. intra/inter species variations) and environmental (e.g. availability of food and oxygen) factors. Based on the ecology of the species, the biomass estimates seem to reveal a relationship with the quantity and quality of organic matter, which will be investigated in the future. Future studies should consider the internal structures and address potential errors resulting from cytoplasm dehydration when staining and drying are performed.
Benthic foraminifera are marine protists largely used as bioindicators and proxies of paleo- environments. Epifaunal species are supposed to live at or above the sediment surface and are therefore used as proxies for bottom water conditions, while infaunal inhabit the sediment column, thus tracing porewater chemistry. Traditional analytical methods based on core slicing, however, have a low resolution that does not allow to precisely characterise the preferential microhabitat(s) of indicator species.
In this study we performed microtomographic analyses on an experimental sediment core, to observe the life-position of living foraminifera of two surface-dwelling species Ammonia confertitesta and Haynesina germanica, reported both as epifaunal or shallow infaunal. The images we obtained offered for the first time the possibility to observe each individual in 3D space with a numerical resolution of 13 μm/voxel.
The results revealed that the two species are never located above or at the sediment surface and have their preferential microhabitats in a sub-superficial sediment layer constrained in the 0–500 μm interval below the surface. Rapid decrease of abundances below this layer suggests that their microhabitat could be even more specific than previously thought.
μCT-scan of sediment cores is also a valuable tool to obtain high-resolution information about foraminiferal ecology. The described method is useful to assess the effective microhabitat of all foraminiferal species that are usually used as proxies for paleorecords, to ensure that the information we can obtain from them is attributable to bottom water or to porewater conditions at a specific sediment depth.
The Late Lutetian Thermal Maximum (LLTM) was a transient and brief global warming event recorded in the middle Eocene, at 41.52 Ma. The biotic response to the LLTM has been documented at only a few marine sites so far. Here, we present the first record of deep-sea benthic foraminiferal assemblage changes during the LLTM in the southwest Pacific at International Ocean Discovery Program Hole U1508C (1609 m water depth) in the Tasman Sea. The LLTM coincides with a negative excursion in bulk sediment δ13C (0.47‰) and benthic foraminifera δ13C (0.36‰), with changes in the relative abundance of benthic foraminiferal species and in the deep-water organic geochemistry. The decrease in diversity of the assemblages indicates environmental stress during the event, potentially linked to oxygen deficiency, as evidenced by the occurrence of dysoxic taxa (e.g. Lenticulina spp., Turrillina brevispira). Although calcareous taxa dominate, the presence of corrosion-resistant species and poorly preserved foraminiferal tests suggest slightly CaCO3-corrosive bottom waters, but no dissolution was evident. We suggest the shallowing of the thermocline and enhanced water column stratification at this site during the LLTM.
A new species of Crenulosepta, i.e., Crenulosepta perlisensis Vachard and Fassihi sp. nov., is described from a Cisuralian (Lower Permian) sandy limestones and calcareous sandstones in the Kubang Pasu Formation in northwestern Peninsular Malaysia, which forms part of the Peri-Gondwanan Sibumasu Block. Previous Malaysian authors reported the occurrence of Monodiexodina shiptoni and Monodiexodina sutschanica from the same area. The findings of this study provide a better overview of the Cisuralian fusulinid fauna found in this region. The presence of Crenulosepta confirms that the age of the uppermost part of the Kubang Pasu Formation is Artinskian, rather than extending into the Kungurian as previously recognized. The uppermost part of the Kubang Pasu Formation with its impoverished genus and species diversity is located just above the cold water brachiopods and diamictite beds. It indicates that during the Asselian (earliest Cisuralian), the northwestern Peninsular Malaysia was still part of the Gondwana continental shelf. During the late Early Permian, northwestern Peninsular Malaysia, as part of the eastern Cimmerian Continent, was located in a low latitude subtropical region of the paleo-equatorial tropical Tethyan Realm. The microfacies analysis of the Kubang Pasu Formation suggests a very high-energy, warm shallow marine environment of the inner ramp (e.g., sand shoals and banks).

