首页 > 最新文献

Journal of the Royal Statistical Society最新文献

英文 中文
Instrumental variables: to strengthen or not to strengthen? 工具变量:加强还是不加强?
Pub Date : 2023-06-15 DOI: 10.1093/jrsssa/qnad075
Siyu Heng, Bo Zhang, Xu Han, Scott A. Lorch, Dylan S. Small
Abstract Instrumental variables (IVs) are extensively used to handle unmeasured confounding. However, weak IVs may cause problems. Many matched studies have considered strengthening an IV through discarding some of the sample. It is widely accepted that strengthening an IV tends to increase the power of non-parametric tests and sensitivity analyses. We re-evaluate this conventional wisdom and offer new insights. First, we evaluate the trade-off between IV strength and sample size assuming a valid IV and exhibit conditions under which strengthening an IV increases power. Second, we derive a criterion for checking the validity of a sensitivity analysis model with a continuous dose and show that the widely used Γ sensitivity analysis model, which was used to argue that strengthening an IV increases the power of sensitivity analyses in large samples, does not work for continuous IVs. Third, we quantify the bias of the Wald estimator with a possibly invalid IV and leverage it to develop a valid sensitivity analysis framework and show that strengthening an IV may or may not increase the power of sensitivity analyses. We use our framework to study the effect on premature babies of being delivered in a high technology/high volume neonatal intensive care unit.
工具变量(IVs)被广泛用于处理不可测量的混杂。然而,弱静脉注射可能会引起问题。许多匹配的研究都考虑过通过丢弃一些样本来加强静脉注射。人们普遍认为,加强IV往往会增加非参数测试和敏感性分析的能力。我们重新评估这种传统智慧,并提供新的见解。首先,我们评估了假设有效的静脉注射强度和样本量之间的权衡,并展示了加强静脉注射增加功率的条件。其次,我们推导了一个用于检查连续剂量敏感性分析模型有效性的标准,并表明广泛使用的Γ敏感性分析模型(用于证明在大样本中加强静脉注射会增加敏感性分析的能力)不适用于连续静脉注射。第三,我们用一个可能无效的IV量化Wald估计器的偏差,并利用它来开发一个有效的敏感性分析框架,并表明加强IV可能会或可能不会增加敏感性分析的能力。我们使用我们的框架来研究在高科技/高容量新生儿重症监护室分娩对早产儿的影响。
{"title":"Instrumental variables: to strengthen or not to strengthen?","authors":"Siyu Heng, Bo Zhang, Xu Han, Scott A. Lorch, Dylan S. Small","doi":"10.1093/jrsssa/qnad075","DOIUrl":"https://doi.org/10.1093/jrsssa/qnad075","url":null,"abstract":"Abstract Instrumental variables (IVs) are extensively used to handle unmeasured confounding. However, weak IVs may cause problems. Many matched studies have considered strengthening an IV through discarding some of the sample. It is widely accepted that strengthening an IV tends to increase the power of non-parametric tests and sensitivity analyses. We re-evaluate this conventional wisdom and offer new insights. First, we evaluate the trade-off between IV strength and sample size assuming a valid IV and exhibit conditions under which strengthening an IV increases power. Second, we derive a criterion for checking the validity of a sensitivity analysis model with a continuous dose and show that the widely used Γ sensitivity analysis model, which was used to argue that strengthening an IV increases the power of sensitivity analyses in large samples, does not work for continuous IVs. Third, we quantify the bias of the Wald estimator with a possibly invalid IV and leverage it to develop a valid sensitivity analysis framework and show that strengthening an IV may or may not increase the power of sensitivity analyses. We use our framework to study the effect on premature babies of being delivered in a high technology/high volume neonatal intensive care unit.","PeriodicalId":49985,"journal":{"name":"Journal of the Royal Statistical Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135673191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Donald Michael Titterington, 1945–2023 唐纳德-迈克尔-蒂特林顿,1945-2023 年
Pub Date : 2023-06-01 DOI: 10.1093/jrsssa/qnad074
Adrian Bowman
{"title":"Donald Michael Titterington, 1945–2023","authors":"Adrian Bowman","doi":"10.1093/jrsssa/qnad074","DOIUrl":"https://doi.org/10.1093/jrsssa/qnad074","url":null,"abstract":"","PeriodicalId":49985,"journal":{"name":"Journal of the Royal Statistical Society","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135777169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Memories of David Cox attending scientific talks 大卫·考克斯参加科学讲座的回忆
Pub Date : 2023-05-30 DOI: 10.1093/jrsssa/qnad070
Vernon T Farewell
Journal Article Memories of David Cox attending scientific talks Get access Vernon T Farewell Vernon T Farewell MRC Biostatistics Unit, University of Cambridge, Cambridge, UK Address for correspondence: Vernon T. Farewell, MRC Biostatistics Unit, School of Clinical Medicine, Cambridge Institute of Public Health, University of Cambridge, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge CB2 0SR, UK. Email: vern.farewell@mrc-bsu.cam.ac.uk https://orcid.org/0000-0001-6704-5295 Search for other works by this author on: Oxford Academic Google Scholar Journal of the Royal Statistical Society Series A: Statistics in Society, qnad070, https://doi.org/10.1093/jrsssa/qnad070 Published: 30 May 2023 Article history Received: 28 March 2023 Accepted: 22 April 2023 Published: 30 May 2023
期刊文章大卫·考克斯参加科学讲座的记忆访问弗农T告别弗农T告别MRC生物统计单位,剑桥大学,剑桥,英国通信地址:弗农T.告别,MRC生物统计单位,剑桥大学临床医学院,剑桥公共卫生研究所,剑桥大学,Forvie站点,罗宾逊路,剑桥生物医学校区,剑桥cb20sr。电子邮件:vern.farewell@mrc-bsu.cam.ac.uk https://orcid.org/0000-0001-6704-5295搜索作者的其他作品:牛津学术谷歌学者皇家统计学会杂志系列A:社会统计,qnad070, https://doi.org/10.1093/jrsssa/qnad070发布:2023年5月30日文章历史收到:2023年3月28日接受:2023年4月22日发布:2023年5月30日
{"title":"Memories of David Cox attending scientific talks","authors":"Vernon T Farewell","doi":"10.1093/jrsssa/qnad070","DOIUrl":"https://doi.org/10.1093/jrsssa/qnad070","url":null,"abstract":"Journal Article Memories of David Cox attending scientific talks Get access Vernon T Farewell Vernon T Farewell MRC Biostatistics Unit, University of Cambridge, Cambridge, UK Address for correspondence: Vernon T. Farewell, MRC Biostatistics Unit, School of Clinical Medicine, Cambridge Institute of Public Health, University of Cambridge, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge CB2 0SR, UK. Email: vern.farewell@mrc-bsu.cam.ac.uk https://orcid.org/0000-0001-6704-5295 Search for other works by this author on: Oxford Academic Google Scholar Journal of the Royal Statistical Society Series A: Statistics in Society, qnad070, https://doi.org/10.1093/jrsssa/qnad070 Published: 30 May 2023 Article history Received: 28 March 2023 Accepted: 22 April 2023 Published: 30 May 2023","PeriodicalId":49985,"journal":{"name":"Journal of the Royal Statistical Society","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135643705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The future of economic statistics 经济统计的未来
Pub Date : 2023-05-30 DOI: 10.1093/jrsssa/qnad072
Ian Diamond, Grant Fitzner, Richard Heys, Michael Keoghan, Darren Morgan
{"title":"The future of economic statistics","authors":"Ian Diamond, Grant Fitzner, Richard Heys, Michael Keoghan, Darren Morgan","doi":"10.1093/jrsssa/qnad072","DOIUrl":"https://doi.org/10.1093/jrsssa/qnad072","url":null,"abstract":"","PeriodicalId":49985,"journal":{"name":"Journal of the Royal Statistical Society","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135643281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Delaunay triangulation to topological data analysis: generation of more realistic synthetic power grid networks 从德劳内三角剖分到拓扑数据分析:生成更真实的综合电网
Pub Date : 2023-05-22 DOI: 10.1093/jrsssa/qnad066
Asim K Dey, Stephen J Young, Yulia R Gel
Assessing novel methods for increasing power system resilience against cyber-physical hazards requires real power grid data or high-quality synthetic data. However, for security reasons, even basic connection information for real power grid data are not publicly available. We develop a randomised model for generating realistic synthetic power networks based on the Delaunay triangulation and demonstrate that it captures important features of real power networks. To validate our model, we introduce a new metric for network similarity based on topological data analysis. We demonstrate the utility of our approach in application to IEEE test cases and European power networks. We identify the model parameters for two IEEE test cases and two European power grid networks and compare the properties of the generated networks with their corresponding benchmark networks.
评估提高电力系统抵御网络物理危害能力的新方法需要真实的电网数据或高质量的综合数据。然而,出于安全原因,即使是真实电网数据的基本连接信息也不会公开。我们开发了一个基于Delaunay三角剖分的随机模型,用于生成现实的综合电网,并证明它捕获了实际电网的重要特征。为了验证我们的模型,我们引入了一种新的基于拓扑数据分析的网络相似度度量。我们展示了我们的方法在IEEE测试用例和欧洲电网应用中的实用性。我们确定了两个IEEE测试用例和两个欧洲电网的模型参数,并将生成的网络与相应的基准网络的特性进行了比较。
{"title":"From Delaunay triangulation to topological data analysis: generation of more realistic synthetic power grid networks","authors":"Asim K Dey, Stephen J Young, Yulia R Gel","doi":"10.1093/jrsssa/qnad066","DOIUrl":"https://doi.org/10.1093/jrsssa/qnad066","url":null,"abstract":"Assessing novel methods for increasing power system resilience against cyber-physical hazards requires real power grid data or high-quality synthetic data. However, for security reasons, even basic connection information for real power grid data are not publicly available. We develop a randomised model for generating realistic synthetic power networks based on the Delaunay triangulation and demonstrate that it captures important features of real power networks. To validate our model, we introduce a new metric for network similarity based on topological data analysis. We demonstrate the utility of our approach in application to IEEE test cases and European power networks. We identify the model parameters for two IEEE test cases and two European power grid networks and compare the properties of the generated networks with their corresponding benchmark networks.","PeriodicalId":49985,"journal":{"name":"Journal of the Royal Statistical Society","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135335835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Correction to: The Use of a Three-Level M-Quantile Model to Map Poverty at Local Administrative Unit 1 in Poland 更正:使用三级m分位数模型绘制波兰地方行政单位1的贫困状况
Pub Date : 2023-05-18 DOI: 10.1093/jrsssa/qnad073
{"title":"Correction to: The Use of a Three-Level <i>M</i>-Quantile Model to Map Poverty at Local Administrative Unit 1 in Poland","authors":"","doi":"10.1093/jrsssa/qnad073","DOIUrl":"https://doi.org/10.1093/jrsssa/qnad073","url":null,"abstract":"","PeriodicalId":49985,"journal":{"name":"Journal of the Royal Statistical Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135768137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Medical Statistics for Cancer Studies 癌症研究医学统计
Pub Date : 2023-04-12 DOI: 10.1093/jrsssa/qnad040
Amit K Chowdhry
Journal Article Medical Statistics for Cancer Studies Get access Medical Statistics for Cancer Studies by Cox Trevor F. June 23, 2022. 333 pp. $110.00. ISBN: 9781000601152 Amit K Chowdhry Amit K Chowdhry Wilmot Cancer Institute, University of Rochester, Rochester, USA amit_chowdhry@urmc.rochester.edu https://orcid.org/0000-0003-4051-5060 Search for other works by this author on: Oxford Academic Google Scholar Journal of the Royal Statistical Society Series A: Statistics in Society, qnad040, https://doi.org/10.1093/jrsssa/qnad040 Published: 12 April 2023
期刊文章医学统计癌症研究获取医学统计癌症研究由考克斯特雷弗F. 2022年6月23日。333页,110美元。ISBN: 9781000601152 Amit K Chowdhry Amit K Chowdhry Wilmot癌症研究所,罗切斯特大学,罗切斯特,美国amit_chowdhry@urmc.rochester.edu https://orcid.org/0000-0003-4051-5060搜索作者的其他作品:牛津学术谷歌皇家统计学会学者杂志系列A:社会统计,qnad040, https://doi.org/10.1093/jrsssa/qnad040出版:2023年4月12日
{"title":"Medical Statistics for Cancer Studies","authors":"Amit K Chowdhry","doi":"10.1093/jrsssa/qnad040","DOIUrl":"https://doi.org/10.1093/jrsssa/qnad040","url":null,"abstract":"Journal Article Medical Statistics for Cancer Studies Get access Medical Statistics for Cancer Studies by Cox Trevor F. June 23, 2022. 333 pp. $110.00. ISBN: 9781000601152 Amit K Chowdhry Amit K Chowdhry Wilmot Cancer Institute, University of Rochester, Rochester, USA amit_chowdhry@urmc.rochester.edu https://orcid.org/0000-0003-4051-5060 Search for other works by this author on: Oxford Academic Google Scholar Journal of the Royal Statistical Society Series A: Statistics in Society, qnad040, https://doi.org/10.1093/jrsssa/qnad040 Published: 12 April 2023","PeriodicalId":49985,"journal":{"name":"Journal of the Royal Statistical Society","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134952069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Principles of Biostatistics 生物统计学原理
Pub Date : 2023-04-12 DOI: 10.1093/jrsssa/qnad038
Amit K Chowdhry
Journal Article Principles of Biostatistics Get access Principles of Biostatistics by Pagano Marcello, Gauvreau Kimberlee, Mattie Heather. June 7, 2022. 620 pp. $110.00. ISBN: 9780367355807 Amit K Chowdhry Amit K Chowdhry Wilmot Cancer Institute, University of Rochester, Rochester, USA amit_chowdhry@urmc.rochester.edu https://orcid.org/0000-0003-4051-5060 Search for other works by this author on: Oxford Academic Google Scholar Journal of the Royal Statistical Society Series A: Statistics in Society, qnad038, https://doi.org/10.1093/jrsssa/qnad038 Published: 12 April 2023
获取Pagano Marcello, gauveau Kimberlee, Mattie Heather的《生物统计学原理》。2022年6月7日。620页,110美元。ISBN: 9780367355807 Amit K Chowdhry Amit K Chowdhry Wilmot癌症研究所,罗切斯特大学,罗切斯特,美国amit_chowdhry@urmc.rochester.edu https://orcid.org/0000-0003-4051-5060搜索作者的其他作品:牛津学术谷歌学者杂志皇家统计学会系列A:社会统计,qnad038, https://doi.org/10.1093/jrsssa/qnad038出版:2023年4月12日
{"title":"Principles of Biostatistics","authors":"Amit K Chowdhry","doi":"10.1093/jrsssa/qnad038","DOIUrl":"https://doi.org/10.1093/jrsssa/qnad038","url":null,"abstract":"Journal Article Principles of Biostatistics Get access Principles of Biostatistics by Pagano Marcello, Gauvreau Kimberlee, Mattie Heather. June 7, 2022. 620 pp. $110.00. ISBN: 9780367355807 Amit K Chowdhry Amit K Chowdhry Wilmot Cancer Institute, University of Rochester, Rochester, USA amit_chowdhry@urmc.rochester.edu https://orcid.org/0000-0003-4051-5060 Search for other works by this author on: Oxford Academic Google Scholar Journal of the Royal Statistical Society Series A: Statistics in Society, qnad038, https://doi.org/10.1093/jrsssa/qnad038 Published: 12 April 2023","PeriodicalId":49985,"journal":{"name":"Journal of the Royal Statistical Society","volume":"115 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135289414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Computationally efficient Bayesian unit-level random neural network modelling of survey data under informative sampling for small area estimation 基于信息抽样的调查数据的高效贝叶斯单位级随机神经网络建模
Pub Date : 2023-03-22 DOI: 10.1093/jrsssa/qnad033
Paul A Parker, Scott H Holan
Abstract The topic of neural networks has seen a surge of interest in recent years. However, one of the main challenges with these approaches is quantification of uncertainty. The use of random weight models offer a potential solution. In addition to uncertainty quantification, these models are extremely computationally efficient as they do not require optimisation through stochastic gradient descent. We show how this approach can be used to account for informative sampling of survey data through the use of a pseudo-likelihood. We illustrate the effectiveness of this methodology through simulation and data application involving American National Election Studies data.
近年来,神经网络这个话题引起了人们的极大兴趣。然而,这些方法的主要挑战之一是不确定性的量化。随机权重模型的使用提供了一个潜在的解决方案。除了不确定性量化之外,这些模型的计算效率极高,因为它们不需要通过随机梯度下降进行优化。我们展示了这种方法如何通过使用伪似然来解释调查数据的信息抽样。我们通过模拟和涉及美国全国选举研究数据的数据应用来说明这种方法的有效性。
{"title":"Computationally efficient Bayesian unit-level random neural network modelling of survey data under informative sampling for small area estimation","authors":"Paul A Parker, Scott H Holan","doi":"10.1093/jrsssa/qnad033","DOIUrl":"https://doi.org/10.1093/jrsssa/qnad033","url":null,"abstract":"Abstract The topic of neural networks has seen a surge of interest in recent years. However, one of the main challenges with these approaches is quantification of uncertainty. The use of random weight models offer a potential solution. In addition to uncertainty quantification, these models are extremely computationally efficient as they do not require optimisation through stochastic gradient descent. We show how this approach can be used to account for informative sampling of survey data through the use of a pseudo-likelihood. We illustrate the effectiveness of this methodology through simulation and data application involving American National Election Studies data.","PeriodicalId":49985,"journal":{"name":"Journal of the Royal Statistical Society","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136194563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Networks with correlated edge processes 具有相关边缘过程的网络
Pub Date : 2023-03-22 DOI: 10.1093/jrsssa/qnad028
Maria Süveges, Sofia Charlotta Olhede
Abstract This article proposes methods to model non-stationary temporal graph processes motivated by a hospital interaction data set. This corresponds to modelling the observation of edge variables indicating interactions between pairs of nodes exhibiting dependence and evolution in time over interactions. This article thus blends (integer) time series models with flexible static network models to produce models of temporal graph data, and statistical fitting procedures for time-varying interaction data. We illustrate the power of our proposed fitting method by analysing a hospital contact network, and this shows the challenge in modelling and inferring correlation between a large number of variables.
摘要本文提出了由医院交互数据集驱动的非平稳时间图过程的建模方法。这对应于对边缘变量的观察建模,表明在相互作用中表现出依赖性和演化的节点对之间的相互作用。因此,本文将(整数)时间序列模型与灵活的静态网络模型混合,生成时序图数据模型,并对时变交互数据进行统计拟合。我们通过分析医院联系网络来说明我们提出的拟合方法的力量,这表明在建模和推断大量变量之间的相关性方面存在挑战。
{"title":"Networks with correlated edge processes","authors":"Maria Süveges, Sofia Charlotta Olhede","doi":"10.1093/jrsssa/qnad028","DOIUrl":"https://doi.org/10.1093/jrsssa/qnad028","url":null,"abstract":"Abstract This article proposes methods to model non-stationary temporal graph processes motivated by a hospital interaction data set. This corresponds to modelling the observation of edge variables indicating interactions between pairs of nodes exhibiting dependence and evolution in time over interactions. This article thus blends (integer) time series models with flexible static network models to produce models of temporal graph data, and statistical fitting procedures for time-varying interaction data. We illustrate the power of our proposed fitting method by analysing a hospital contact network, and this shows the challenge in modelling and inferring correlation between a large number of variables.","PeriodicalId":49985,"journal":{"name":"Journal of the Royal Statistical Society","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136174588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Journal of the Royal Statistical Society
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1