首页 > 最新文献

Journal of the London Mathematical Society-Second Series最新文献

英文 中文
On the analytical construction of radially symmetric solutions for the relativistic Euler equations 相对论欧拉方程径向对称解的解析构造
IF 1 2区 数学 Q1 MATHEMATICS Pub Date : 2024-10-17 DOI: 10.1112/jlms.70005
Yanbo Hu, Binyu Zhang

This paper is concerned with the analytical construction of piecewise smooth solutions containing a single shock wave for the radially symmetric relativistic Euler equations with polytropic gases. We derive meticulously the a priori C1$C^1$-estimates on the Riemann invariants of the governing system under some assumptions on the piecewise initial data. Based on these estimates, we show that the long time of existence of smooth solutions in the angular region bounded by a characteristic curve and a shock curve. The piecewise smooth initial conditions ensured the existence of smooth solutions in the angular region are discussed. Moreover, it is verified that the existence time is proportional to the initial discontinuous position.

本文主要研究多向性气体的径向对称相对论欧拉方程包含单一冲击波的片面光滑解的分析构造。在片断初始数据的一些假设条件下,我们细致地推导出了支配系统黎曼不变式的先验 C 1 $C^1$估计值。基于这些估计值,我们证明了在由特征曲线和冲击曲线所限定的角区域内光滑解的长期存在。讨论了确保角区域平稳解存在的片断平稳初始条件。此外,还验证了存在时间与初始不连续位置成正比。
{"title":"On the analytical construction of radially symmetric solutions for the relativistic Euler equations","authors":"Yanbo Hu,&nbsp;Binyu Zhang","doi":"10.1112/jlms.70005","DOIUrl":"https://doi.org/10.1112/jlms.70005","url":null,"abstract":"<p>This paper is concerned with the analytical construction of piecewise smooth solutions containing a single shock wave for the radially symmetric relativistic Euler equations with polytropic gases. We derive meticulously the <i>a priori</i> <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>$C^1$</annotation>\u0000 </semantics></math>-estimates on the Riemann invariants of the governing system under some assumptions on the piecewise initial data. Based on these estimates, we show that the long time of existence of smooth solutions in the angular region bounded by a characteristic curve and a shock curve. The piecewise smooth initial conditions ensured the existence of smooth solutions in the angular region are discussed. Moreover, it is verified that the existence time is proportional to the initial discontinuous position.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 5","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Weil–Stark elements, I: Construction and general properties 论魏尔-斯塔克元素,I:构造和一般性质
IF 1 2区 数学 Q1 MATHEMATICS Pub Date : 2024-10-17 DOI: 10.1112/jlms.70001
David Burns, Daniel Macias Castillo, Soogil Seo

We construct a canonical family of elements in the reduced exterior powers of unit groups of global fields and investigate their detailed arithmetic properties. We then show that these elements specialise to recover the classical theory of cyclotomic elements in real abelian fields and also have connections to the theory of non-commutative Euler systems for Zp(1)$mathbb {Z}_p(1)$ over general number fields.

我们在全域单位群的还原外部幂中构建了一个典型的元素族,并研究了它们的详细算术性质。然后,我们证明这些元素的特殊性恢复了实无性域中循环元素的经典理论,并与一般数域上 Z p ( 1 ) $mathbb {Z}_p(1)$ 的非交换欧拉系统理论有关联。
{"title":"On Weil–Stark elements, I: Construction and general properties","authors":"David Burns,&nbsp;Daniel Macias Castillo,&nbsp;Soogil Seo","doi":"10.1112/jlms.70001","DOIUrl":"https://doi.org/10.1112/jlms.70001","url":null,"abstract":"<p>We construct a canonical family of elements in the reduced exterior powers of unit groups of global fields and investigate their detailed arithmetic properties. We then show that these elements specialise to recover the classical theory of cyclotomic elements in real abelian fields and also have connections to the theory of non-commutative Euler systems for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>Z</mi>\u0000 <mi>p</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathbb {Z}_p(1)$</annotation>\u0000 </semantics></math> over general number fields.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 5","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isometries of Lipschitz-free Banach spaces 无 Lipschitz 的巴拿赫空间的等距性
IF 1 2区 数学 Q1 MATHEMATICS Pub Date : 2024-10-15 DOI: 10.1112/jlms.70000
Marek Cúth, Michal Doucha, Tamás Titkos

We describe surjective linear isometries and linear isometry groups of a large class of Lipschitz-free spaces that includes, for example, Lipschitz-free spaces over any graph. We define the notion of a Lipschitz-free rigid metric space whose Lipschitz-free space only admits surjective linear isometries coming from surjective dilations (i.e., rescaled isometries) of the metric space itself. We show that this class of metric spaces is surprisingly rich and contains all 3-connected graphs as well as geometric examples such as nonabelian Carnot groups with horizontally strictly convex norms. We prove that every metric space isometrically embeds into a Lipschitz-free rigid space that has only three more points.

我们描述了一大类无 Lipschitz 空间的投射线性等轴线和线性等轴线群,这些空间包括任何图形上的无 Lipschitz 空间等。我们定义了无Lipschitz刚性度量空间的概念,其Lipschitz-free空间只接受来自度量空间本身的投射扩张(即重标等距)的投射线性等距。我们证明了这一类度量空间的丰富程度令人惊讶,它包含了所有三连图以及几何实例,如具有水平严格凸规范的非阿贝尔卡诺群。我们证明,每个度量空间都等距嵌入到一个只有三个点的无 Lipschitz 刚体空间中。
{"title":"Isometries of Lipschitz-free Banach spaces","authors":"Marek Cúth,&nbsp;Michal Doucha,&nbsp;Tamás Titkos","doi":"10.1112/jlms.70000","DOIUrl":"https://doi.org/10.1112/jlms.70000","url":null,"abstract":"<p>We describe surjective linear isometries and linear isometry groups of a large class of Lipschitz-free spaces that includes, for example, Lipschitz-free spaces over any graph. We define the notion of a Lipschitz-free rigid metric space whose Lipschitz-free space only admits surjective linear isometries coming from surjective dilations (i.e., rescaled isometries) of the metric space itself. We show that this class of metric spaces is surprisingly rich and contains all 3-connected graphs as well as geometric examples such as nonabelian Carnot groups with horizontally strictly convex norms. We prove that every metric space isometrically embeds into a Lipschitz-free rigid space that has only three more points.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 5","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cartan projections of fiber products and non-quasi-isometric embeddings 纤维积的卡坦投影和非等轴等距嵌入
IF 1 2区 数学 Q1 MATHEMATICS Pub Date : 2024-10-15 DOI: 10.1112/jlms.70004
Konstantinos Tsouvalas
<p>Let <span></span><math> <semantics> <mi>Γ</mi> <annotation>$Gamma$</annotation> </semantics></math> be a finitely generated group and <span></span><math> <semantics> <mi>N</mi> <annotation>$N$</annotation> </semantics></math> be a normal subgroup of <span></span><math> <semantics> <mi>Γ</mi> <annotation>$Gamma$</annotation> </semantics></math>. The fiber product of <span></span><math> <semantics> <mi>Γ</mi> <annotation>$Gamma$</annotation> </semantics></math> with respect to <span></span><math> <semantics> <mi>N</mi> <annotation>$N$</annotation> </semantics></math> is the subgroup <span></span><math> <semantics> <mrow> <mi>Γ</mi> <msub> <mo>×</mo> <mi>N</mi> </msub> <mi>Γ</mi> <mo>=</mo> <mo>{</mo> <mrow> <mo>(</mo> <mi>γ</mi> <mo>,</mo> <mi>γ</mi> <mi>w</mi> <mo>)</mo> </mrow> <mo>:</mo> <mi>γ</mi> <mo>∈</mo> <mi>Γ</mi> <mo>,</mo> <mi>w</mi> <mo>∈</mo> <mi>N</mi> <mo>}</mo> </mrow> <annotation>$Gamma times _N Gamma =big lbrace (gamma, gamma w): gamma in Gamma, w in Nbig rbrace$</annotation> </semantics></math> of the direct product <span></span><math> <semantics> <mrow> <mi>Γ</mi> <mo>×</mo> <mi>Γ</mi> </mrow> <annotation>$Gamma times Gamma$</annotation> </semantics></math>. For every representation <span></span><math> <semantics> <mrow> <mi>ρ</mi> <mo>:</mo> <mi>Γ</mi> <msub> <mo>×</mo> <mi>N</mi> </msub> <mi>Γ</mi> <mo>→</mo> <msub> <mi>GL</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <annotation>$rho:Gamma times _N Gamma rightarrow mathsf {GL}_d(k)$</annotation> </semantics></math>, where <span></span><math> <semantics> <mi>k</mi> <annotatio
让 Γ $Gamma$ 是一个有限生成的群,N $N$ 是 Γ $Gamma$ 的一个正则子群。关于 N $N$ 的 Γ $Gamma$ 的纤维积是子群 Γ × N Γ = { ( γ , γ w ) : γ ∈ Γ , w ∈ N } 。 $Gamma times _N Gamma =big lbrace (gamma, gamma w):在 Γ × Γ $Gamma 的直接乘积 Γ × Γ $Gamma 中,w 在 N $Gamma 中。对于每一个表示 ρ : Γ × N Γ → GL d ( k ) $rho:Gamma times _N Gamma rightarrow mathsf {GL}_d(k)$,其中 k $k$ 是一个局部域,我们用Γ $Gamma$ 上的一个固定字长函数为 ρ $rho$ 的 Cartan 投影的规范建立了上限。作为应用,我们举例说明了有限生成和有限呈现的纤维积 P = Γ × N Γ $P=Gamma times _N Gamma$ ,其中 Γ $Gamma$ 是线性的和格罗莫夫双曲的,这样 P $P$ 就不包含准等距嵌入的线性表示。
{"title":"Cartan projections of fiber products and non-quasi-isometric embeddings","authors":"Konstantinos Tsouvalas","doi":"10.1112/jlms.70004","DOIUrl":"https://doi.org/10.1112/jlms.70004","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;Γ&lt;/mi&gt;\u0000 &lt;annotation&gt;$Gamma$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be a finitely generated group and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;annotation&gt;$N$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be a normal subgroup of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;Γ&lt;/mi&gt;\u0000 &lt;annotation&gt;$Gamma$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. The fiber product of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;Γ&lt;/mi&gt;\u0000 &lt;annotation&gt;$Gamma$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; with respect to &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;annotation&gt;$N$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is the subgroup &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Γ&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mo&gt;×&lt;/mo&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mi&gt;Γ&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mo&gt;{&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;γ&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;γ&lt;/mi&gt;\u0000 &lt;mi&gt;w&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 &lt;mi&gt;γ&lt;/mi&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;mi&gt;Γ&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;w&lt;/mi&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mo&gt;}&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$Gamma times _N Gamma =big lbrace (gamma, gamma w): gamma in Gamma, w in Nbig rbrace$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of the direct product &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Γ&lt;/mi&gt;\u0000 &lt;mo&gt;×&lt;/mo&gt;\u0000 &lt;mi&gt;Γ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$Gamma times Gamma$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. For every representation &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ρ&lt;/mi&gt;\u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 &lt;mi&gt;Γ&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mo&gt;×&lt;/mo&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mi&gt;Γ&lt;/mi&gt;\u0000 &lt;mo&gt;→&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;GL&lt;/mi&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$rho:Gamma times _N Gamma rightarrow mathsf {GL}_d(k)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, where &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;annotatio","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 5","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharp propagation of chaos for the ensemble Langevin sampler 集合朗之文采样器的混沌急剧传播
IF 1 2区 数学 Q1 MATHEMATICS Pub Date : 2024-10-14 DOI: 10.1112/jlms.13008
U. Vaes

The aim of this paper is to revisit propagation of chaos for a Langevin-type interacting particle system recently proposed as a method to sample probability measures. The interacting particle system we consider coincides, in the setting of a log-quadratic target distribution, with the ensemble Kalman sampler [SIAM J. Appl. Dyn. Syst. 19 (2020), no. 1, 412–441], for which propagation of chaos was first proved by Ding and Li in [SIAM J. Math. Anal. 53 (2021), no. 2, 1546–1578]. Like these authors, we prove propagation of chaos with an approach based on a synchronous coupling, as in Sznitman's classical argument. Instead of relying on a boostrapping argument, however, we use a technique based on stopping times in order to handle the presence of the empirical covariance in the coefficients of the dynamics. The use of stopping times to handle the lack of global Lipschitz continuity in the coefficients of stochastic dynamics originates from numerical analysis [SIAM J. Numer. Anal. 40 (2002), no. 3, 1041–1063] and was recently employed to prove mean-field limits for consensus-based optimization and related interacting particle systems [arXiv:2312.07373, 2023; Math. Models Methods Appl. Sci. 33 (2023), no. 2, 289–339]. In the context of ensemble Langevin sampling, this technique enables proving pathwise propagation of chaos with optimal rate, whereas previous results were optimal only up to a positive ε$varepsilon$.

本文的目的是重新探讨最近作为一种概率度量采样方法提出的朗格文型相互作用粒子系统的混沌传播。我们所考虑的交互粒子系统在对数二次目标分布的背景下与集合卡尔曼采样器[SIAM J. Appl.与这些作者一样,我们也采用了基于同步耦合的方法来证明混沌的传播,就像 Sznitman 的经典论证一样。不过,我们并不依赖于助推论证,而是使用了一种基于停止时间的技术,以处理动力学系数中存在的经验协方差。利用停止时间处理随机动力学系数缺乏全局 Lipschitz 连续性的问题源自数值分析 [SIAM J. Numer. Anal.33 (2023),第 2 期,289-339]。在集合朗之文采样的背景下,这种技术能够以最优速率证明混沌的路径传播,而之前的结果只有到正ε $varepsilon$ 时才是最优的。
{"title":"Sharp propagation of chaos for the ensemble Langevin sampler","authors":"U. Vaes","doi":"10.1112/jlms.13008","DOIUrl":"https://doi.org/10.1112/jlms.13008","url":null,"abstract":"<p>The aim of this paper is to revisit propagation of chaos for a Langevin-type interacting particle system recently proposed as a method to sample probability measures. The interacting particle system we consider coincides, in the setting of a log-quadratic target distribution, with the ensemble Kalman sampler [SIAM J. Appl. Dyn. Syst. <b>19</b> (2020), no. 1, 412–441], for which propagation of chaos was first proved by Ding and Li in [SIAM J. Math. Anal. <b>53</b> (2021), no. 2, 1546–1578]. Like these authors, we prove propagation of chaos with an approach based on a synchronous coupling, as in Sznitman's classical argument. Instead of relying on a boostrapping argument, however, we use a technique based on stopping times in order to handle the presence of the empirical covariance in the coefficients of the dynamics. The use of stopping times to handle the lack of global Lipschitz continuity in the coefficients of stochastic dynamics originates from numerical analysis [SIAM J. Numer. Anal. <b>40</b> (2002), no. 3, 1041–1063] and was recently employed to prove mean-field limits for consensus-based optimization and related interacting particle systems [arXiv:2312.07373, 2023; Math. Models Methods Appl. Sci. <b>33</b> (2023), no. 2, 289–339]. In the context of ensemble Langevin sampling, this technique enables proving pathwise propagation of chaos with optimal rate, whereas previous results were optimal only up to a positive <span></span><math>\u0000 <semantics>\u0000 <mi>ε</mi>\u0000 <annotation>$varepsilon$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 5","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tubings, chord diagrams, and Dyson–Schwinger equations 管线、弦图和戴森-施文格方程
IF 1 2区 数学 Q1 MATHEMATICS Pub Date : 2024-10-13 DOI: 10.1112/jlms.70006
Paul-Hermann Balduf, Amelia Cantwell, Kurusch Ebrahimi-Fard, Lukas Nabergall, Nicholas Olson-Harris, Karen Yeats

We give series solutions to single insertion place propagator-type systems of Dyson–Schwinger equations using binary tubings of rooted trees. These solutions are combinatorially transparent in the sense that each tubing has a straightforward contribution. The Dyson–Schwinger equations solved here are more general than those previously solved by chord diagram techniques, including systems and noninteger values of the insertion parameter s$s$. We remark on interesting combinatorial connections and properties.

我们给出了戴森-施文格方程的单插入位置传播者型系统的系列解,使用的是有根树的二元管道。这些解在组合上是透明的,因为每个管道都有直接的贡献。这里求解的戴森-施温格方程比以前用弦图技术求解的方程更普遍,包括插入参数 s $s$ 的系统和非整数值。我们对有趣的组合关系和性质进行了评论。
{"title":"Tubings, chord diagrams, and Dyson–Schwinger equations","authors":"Paul-Hermann Balduf,&nbsp;Amelia Cantwell,&nbsp;Kurusch Ebrahimi-Fard,&nbsp;Lukas Nabergall,&nbsp;Nicholas Olson-Harris,&nbsp;Karen Yeats","doi":"10.1112/jlms.70006","DOIUrl":"https://doi.org/10.1112/jlms.70006","url":null,"abstract":"<p>We give series solutions to single insertion place propagator-type systems of Dyson–Schwinger equations using binary tubings of rooted trees. These solutions are combinatorially transparent in the sense that each tubing has a straightforward contribution. The Dyson–Schwinger equations solved here are more general than those previously solved by chord diagram techniques, including systems and noninteger values of the insertion parameter <span></span><math>\u0000 <semantics>\u0000 <mi>s</mi>\u0000 <annotation>$s$</annotation>\u0000 </semantics></math>. We remark on interesting combinatorial connections and properties.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 5","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heavenly metrics, hyper-Lagrangians and Joyce structures 天堂度量、超拉格朗日和乔伊斯结构
IF 1 2区 数学 Q1 MATHEMATICS Pub Date : 2024-10-11 DOI: 10.1112/jlms.13009
Maciej Dunajski, Timothy Moy
<p>In [Proc. Sympos. Pure Math., American Mathematical Society, Providence, RI, 2021, pp. 1–66], Bridgeland defined a geometric structure, named a Joyce structure, conjectured to exist on the space <span></span><math> <semantics> <mi>M</mi> <annotation>$M$</annotation> </semantics></math> of stability conditions of a <span></span><math> <semantics> <mrow> <mi>C</mi> <msub> <mi>Y</mi> <mn>3</mn> </msub> </mrow> <annotation>$CY_3$</annotation> </semantics></math> triangulated category. Given a non-degeneracy assumption, a feature of this structure is a complex hyper-Kähler metric with homothetic symmetry on the total space <span></span><math> <semantics> <mrow> <mi>X</mi> <mo>=</mo> <mi>T</mi> <mi>M</mi> </mrow> <annotation>$X = TM$</annotation> </semantics></math> of the holomorphic tangent bundle. Generalising the isomonodromy calculation which leads to the <span></span><math> <semantics> <msub> <mi>A</mi> <mn>2</mn> </msub> <annotation>$A_2$</annotation> </semantics></math> Joyce structure in [Math. Ann. <b>385</b> (2023), 193–258], we obtain an explicit expression for a hyper-Kähler metric with homothetic symmetry via construction of the isomonodromic flows of a Schrödinger equation with deformed polynomial oscillator potential of odd-degree <span></span><math> <semantics> <mrow> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <annotation>$2n+1$</annotation> </semantics></math>. The metric is defined on a total space <span></span><math> <semantics> <mi>X</mi> <annotation>$X$</annotation> </semantics></math> of complex dimension <span></span><math> <semantics> <mrow> <mn>4</mn> <mi>n</mi> </mrow> <annotation>$4n$</annotation> </semantics></math> and fibres over a <span></span><math> <semantics> <mrow> <mn>2</mn> <mi>n</mi> </mrow> <annotation>$2n$</annotation> </semantics></math>-dimensional manifold <span></span><math> <semantics> <mi>M</mi> <annotation>$M$</annotation>
在[Proc.Pure Math.,American Mathematical Society,Providence,RI,2021,pp.1-66]中,布里奇兰定义了一种几何结构,命名为乔伊斯结构,猜想它存在于 C Y 3 $CY_3$ 三角形范畴的稳定条件空间 M $M$ 上。考虑到非退化假设,该结构的一个特征是在全形切线束的总空间 X = T M $X = TM$ 上具有同调对称性的复超凯勒度量。数学年鉴》385 (2023), 193-258]中的等单旋转计算导致了 A 2 $A_2$ 乔伊斯结构,我们通过构建具有奇数度 2 n + 1 $2n+1$ 变形多项式振荡器势的薛定谔方程的等单旋转流,得到了具有同调对称性的超凯勒度量的明确表达式。该度量定义在复维度为 4 n $4n$ 的总空间 X $X$ 上,其纤维覆盖 2 n $2n$ 维流形 M $M$,该流形可与 A 2 n $A_{2n}$ 星状性的展开相鉴别。超凯勒结构与 M $M$ 上的自然交映结构是相容的,就像[Lett. Math. Phys.另外,利用乔伊斯结构施加的附加条件,我们考虑了制约超凯勒条件的普莱宾斯基天体方程的还原。我们引入了可投影超拉格朗日折线的概念,并证明在四维中,X $X$ 的这种折线会导致天体方程的线性化。在此构建的超凯勒度量也被证明允许这样的折射。
{"title":"Heavenly metrics, hyper-Lagrangians and Joyce structures","authors":"Maciej Dunajski,&nbsp;Timothy Moy","doi":"10.1112/jlms.13009","DOIUrl":"https://doi.org/10.1112/jlms.13009","url":null,"abstract":"&lt;p&gt;In [Proc. Sympos. Pure Math., American Mathematical Society, Providence, RI, 2021, pp. 1–66], Bridgeland defined a geometric structure, named a Joyce structure, conjectured to exist on the space &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;annotation&gt;$M$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of stability conditions of a &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Y&lt;/mi&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$CY_3$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; triangulated category. Given a non-degeneracy assumption, a feature of this structure is a complex hyper-Kähler metric with homothetic symmetry on the total space &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$X = TM$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of the holomorphic tangent bundle. Generalising the isomonodromy calculation which leads to the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$A_2$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; Joyce structure in [Math. Ann. &lt;b&gt;385&lt;/b&gt; (2023), 193–258], we obtain an explicit expression for a hyper-Kähler metric with homothetic symmetry via construction of the isomonodromic flows of a Schrödinger equation with deformed polynomial oscillator potential of odd-degree &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$2n+1$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. The metric is defined on a total space &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;annotation&gt;$X$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of complex dimension &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$4n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and fibres over a &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$2n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-dimensional manifold &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;annotation&gt;$M$&lt;/annotation&gt;","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 5","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.13009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First-order asymptotic perturbation theory for extensions of symmetric operators 对称算子扩展的一阶渐近扰动理论
IF 1 2区 数学 Q1 MATHEMATICS Pub Date : 2024-10-11 DOI: 10.1112/jlms.13005
Yuri Latushkin, Selim Sukhtaiev

This work offers a new prospective on asymptotic perturbation theory for varying self-adjoint extensions of symmetric operators. Employing symplectic formulation of self-adjointness, we use a version of resolvent difference identity for two arbitrary self-adjoint extensions that facilitates asymptotic analysis of resolvent operators via first-order expansion for the family of Lagrangian planes associated with perturbed operators. Specifically, we derive a Riccati-type differential equation and the first-order asymptotic expansion for resolvents of self-adjoint extensions determined by smooth one-parameter families of Lagrangian planes. This asymptotic perturbation theory yields a symplectic version of the abstract Kato selection theorem and Hadamard–Rellich-type variational formula for slopes of multiple eigenvalue curves bifurcating from an eigenvalue of the unperturbed operator. The latter, in turn, gives a general infinitesimal version of the celebrated formula equating the spectral flow of a path of self-adjoint extensions and the Maslov index of the corresponding path of Lagrangian planes. Applications are given to quantum graphs, periodic Kronig–Penney model, elliptic second-order partial differential operators with Robin boundary conditions, and physically relevant heat equations with thermal conductivity.

这项研究为对称算子的变化自相关扩展的渐近扰动理论提供了一个新的视角。我们采用自相接的交点表述,使用了两个任意自相接扩展的解析差分特性版本,通过与扰动算子相关的拉格朗日平面族的一阶展开,促进了解析算子的渐近分析。具体来说,我们推导了一个里卡提式微分方程,以及由光滑的一参数拉格朗日平面族决定的自相关扩展的解算子的一阶渐近展开。这种渐近扰动理论产生了抽象加藤选择定理的交映体版本,以及从未受扰算子的一个特征值分岔出来的多特征值曲线斜率的哈达玛-雷利克式变分公式。后者反过来给出了著名公式的一般无穷小版本,该公式等同于自相关扩展路径的谱流和相应拉格朗日平面路径的马斯洛夫指数。该公式应用于量子图、周期性克罗尼格-彭尼模型、具有罗宾边界条件的椭圆二阶偏微分算子以及具有热传导性的物理相关热方程。
{"title":"First-order asymptotic perturbation theory for extensions of symmetric operators","authors":"Yuri Latushkin,&nbsp;Selim Sukhtaiev","doi":"10.1112/jlms.13005","DOIUrl":"https://doi.org/10.1112/jlms.13005","url":null,"abstract":"<p>This work offers a new prospective on asymptotic perturbation theory for varying self-adjoint extensions of symmetric operators. Employing symplectic formulation of self-adjointness, we use a version of resolvent difference identity for two arbitrary self-adjoint extensions that facilitates asymptotic analysis of resolvent operators via first-order expansion for the family of Lagrangian planes associated with perturbed operators. Specifically, we derive a Riccati-type differential equation and the first-order asymptotic expansion for resolvents of self-adjoint extensions determined by smooth one-parameter families of Lagrangian planes. This asymptotic perturbation theory yields a symplectic version of the abstract Kato selection theorem and Hadamard–Rellich-type variational formula for slopes of multiple eigenvalue curves bifurcating from an eigenvalue of the unperturbed operator. The latter, in turn, gives a general infinitesimal version of the celebrated formula equating the spectral flow of a path of self-adjoint extensions and the Maslov index of the corresponding path of Lagrangian planes. Applications are given to quantum graphs, periodic Kronig–Penney model, elliptic second-order partial differential operators with Robin boundary conditions, and physically relevant heat equations with thermal conductivity.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 5","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Codimension two mean curvature flow of entire graphs 整图的二维平均曲率流
IF 1 2区 数学 Q1 MATHEMATICS Pub Date : 2024-10-10 DOI: 10.1112/jlms.13000
Andreas Savas Halilaj, Knut Smoczyk

We consider the graphical mean curvature flow of maps f:RmRn$mathbf {f}:{mathbb {R}^{m}}rightarrow {mathbb {R}^{n}}$, m2$mgeqslant 2$, and derive estimates on the growth rates of the evolved graphs, based on a new version of the maximum principle for properly immersed submanifolds that extends the well-known maximum principle of Ecker and Huisken derived in their seminal paper [Ann. of Math. (2) 130:3(1989), 453–471]. In the case of uniformly area decreasing maps f:RmR2$mathbf {f}:{mathbb {R}^{m}} rightarrow {mathbb {R}^{2}}$, m2$mgeqslant 2$, we use this maximum principle to show that the graphicality and the area decreasing property are preserved. Moreover, if the initial graph is asymptotically conical at infinity, we prove that the normalized mean curvature flow smoothly converges to a self-expander.

我们考虑映射 f : R m → R n 的图形平均曲率流 $mathbf {f}:{mathbb {R}^{m}}rightarrow {mathbb {R}^{n}}$ , m ⩾ 2 $mgeqslant 2$, 并基于适当沉浸子曼形体的新版最大值原理,推导出演化图的增长率估计值,该原理扩展了 Ecker 和 Huisken 在其开创性论文 [Ann.(2) 130:3(1989), 453-471]。在均匀面积递减映射 f : R m → R 2 $mathbf {f}:{mathbb {R}^{m}} 的情况下。rightarrow {mathbb {R}^{2}}$ , m ⩾ 2 $mgeqslant 2$,我们利用这个最大原则来证明图形性和面积递减属性是保留的。此外,如果初始图形在无穷远处渐近圆锥形,我们证明归一化平均曲率流平滑地收敛于自扩展流。
{"title":"Codimension two mean curvature flow of entire graphs","authors":"Andreas Savas Halilaj,&nbsp;Knut Smoczyk","doi":"10.1112/jlms.13000","DOIUrl":"https://doi.org/10.1112/jlms.13000","url":null,"abstract":"<p>We consider the graphical mean curvature flow of maps <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mo>:</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>m</mi>\u0000 </msup>\u0000 <mo>→</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbf {f}:{mathbb {R}^{m}}rightarrow {mathbb {R}^{n}}$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 <mo>⩾</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$mgeqslant 2$</annotation>\u0000 </semantics></math>, and derive estimates on the growth rates of the evolved graphs, based on a new version of the maximum principle for properly immersed submanifolds that extends the well-known maximum principle of Ecker and Huisken derived in their seminal paper [Ann. of Math. (2) <b>130</b>:3(1989), 453–471]. In the case of uniformly area decreasing maps <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>f</mi>\u0000 <mo>:</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>m</mi>\u0000 </msup>\u0000 <mo>→</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbf {f}:{mathbb {R}^{m}} rightarrow {mathbb {R}^{2}}$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 <mo>⩾</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$mgeqslant 2$</annotation>\u0000 </semantics></math>, we use this maximum principle to show that the graphicality and the area decreasing property are preserved. Moreover, if the initial graph is asymptotically conical at infinity, we prove that the normalized mean curvature flow smoothly converges to a self-expander.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 5","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.13000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colouring versus density in integers and Hales–Jewett cubes 整数和黑尔斯-祖耶特立方体中的着色与密度关系
IF 1 2区 数学 Q1 MATHEMATICS Pub Date : 2024-10-10 DOI: 10.1112/jlms.12987
Christian Reiher, Vojtěch Rödl, Marcelo Sales
<p>We construct for every integer <span></span><math> <semantics> <mrow> <mi>k</mi> <mo>⩾</mo> <mn>3</mn> </mrow> <annotation>$kgeqslant 3$</annotation> </semantics></math> and every real <span></span><math> <semantics> <mrow> <mi>μ</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mfrac> <mrow> <mi>k</mi> <mo>−</mo> <mn>1</mn> </mrow> <mi>k</mi> </mfrac> <mo>)</mo> </mrow> <annotation>$mu in (0, frac{k-1}{k})$</annotation> </semantics></math> a set of integers <span></span><math> <semantics> <mrow> <mi>X</mi> <mo>=</mo> <mi>X</mi> <mo>(</mo> <mi>k</mi> <mo>,</mo> <mi>μ</mi> <mo>)</mo> </mrow> <annotation>$X=X(k, mu)$</annotation> </semantics></math> which, when coloured with finitely many colours, contains a monochromatic <span></span><math> <semantics> <mi>k</mi> <annotation>$k$</annotation> </semantics></math>-term arithmetic progression, whilst every finite <span></span><math> <semantics> <mrow> <mi>Y</mi> <mo>⊆</mo> <mi>X</mi> </mrow> <annotation>$Ysubseteq X$</annotation> </semantics></math> has a subset <span></span><math> <semantics> <mrow> <mi>Z</mi> <mo>⊆</mo> <mi>Y</mi> </mrow> <annotation>$Zsubseteq Y$</annotation> </semantics></math> of size <span></span><math> <semantics> <mrow> <mo>|</mo> <mi>Z</mi> <mo>|</mo> <mo>⩾</mo> <mi>μ</mi> <mo>|</mo> <mi>Y</mi> <mo>|</mo> </mrow> <annotation>$|Z|geqslant mu |Y|$</annotation> </semantics></math> that is free of arithmetic progressions of length <span></span><math> <semantics> <mi>k</mi> <annotation>$k$</annotation> </semantics></math>. T
We construct for every integer k ⩾ 3 $kgeqslant 3$ and every real μ ∈ ( 0 , k − 1 k ) $mu in (0, frac{k-1}{k})$ a set of integers X = X ( k , μ ) $X=X(k, mu)$ which, when coloured with finitely many colours, contains a monochromatic k $k$ -term arithmetic progression, whilst every finite Y ⊆ X $Ysubseteq X$ has a subset Z ⊆ Y $Zsubseteq Y$ of size | Z | ⩾ μ | Y | $|Z|geqslant mu |Y|$ that is free of arithmetic progressions of length k $k$ .这回答了厄尔多斯、奈舍特日尔和第二位作者的一个问题。此外,我们还得到了一个类似的多维声明以及这一结果的黑尔斯-杰伊特版本。
{"title":"Colouring versus density in integers and Hales–Jewett cubes","authors":"Christian Reiher,&nbsp;Vojtěch Rödl,&nbsp;Marcelo Sales","doi":"10.1112/jlms.12987","DOIUrl":"https://doi.org/10.1112/jlms.12987","url":null,"abstract":"&lt;p&gt;We construct for every integer &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;mo&gt;⩾&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$kgeqslant 3$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and every real &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;μ&lt;/mi&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mfrac&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mfrac&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mu in (0, frac{k-1}{k})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; a set of integers &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;μ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$X=X(k, mu)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; which, when coloured with finitely many colours, contains a monochromatic &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;annotation&gt;$k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-term arithmetic progression, whilst every finite &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Y&lt;/mi&gt;\u0000 &lt;mo&gt;⊆&lt;/mo&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$Ysubseteq X$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; has a subset &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Z&lt;/mi&gt;\u0000 &lt;mo&gt;⊆&lt;/mo&gt;\u0000 &lt;mi&gt;Y&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$Zsubseteq Y$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of size &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mi&gt;Z&lt;/mi&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mo&gt;⩾&lt;/mo&gt;\u0000 &lt;mi&gt;μ&lt;/mi&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mi&gt;Y&lt;/mi&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$|Z|geqslant mu |Y|$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; that is free of arithmetic progressions of length &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;annotation&gt;$k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. T","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 5","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12987","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of the London Mathematical Society-Second Series
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1