首页 > 最新文献

Journal of the American Chemical Society最新文献

英文 中文
Diamine chelates for increased stability in mixed Sn–Pb and all-perovskite tandem solar cells 二胺螯合物提高锡铅混合和全长晶串联太阳能电池的稳定性
IF 56.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-15 DOI: 10.1038/s41560-024-01613-8
Chongwen Li, Lei Chen, Fangyuan Jiang, Zhaoning Song, Xiaoming Wang, Adam Balvanz, Esma Ugur, Yuan Liu, Cheng Liu, Aidan Maxwell, Hao Chen, Yanjiang Liu, Zaiwei Wang, Pan Xia, You Li, Sheng Fu, Nannan Sun, Corey R. Grice, Xuefei Wu, Zachary Fink, Qin Hu, Lewei Zeng, Euidae Jung, Junke Wang, So Min Park, Deying Luo, Cailing Chen, Jie Shen, Yu Han, Carlo Andrea Riccardo Perini, Juan-Pablo Correa-Baena, Zheng-Hong Lu, Thomas P. Russell, Stefaan De Wolf, Mercouri G. Kanatzidis, David S. Ginger, Bin Chen, Yanfa Yan, Edward H. Sargent

Perovskite tandem solar cells show promising performance, but non-radiative recombination and its progressive worsening with time, especially in the mixed Sn–Pb low-bandgap layer, limit performance and stability. Here we find that mixed Sn–Pb perovskite thin films exhibit a compositional gradient, with an excess of Sn on the surface—and we show this gradient exacerbates oxidation and increases the recombination rate. We find that diamines preferentially chelate Sn atoms, removing them from the film surface and achieving a more balanced Sn:Pb stoichiometry, making the surface of the film resistive to the oxidation of Sn. The process forms an electrically resistive low-dimensional barrier layer, passivating defects and reducing interface recombination. Further improving the homogeneity of the barrier layer using 1,2-diaminopropane results in more uniform distribution and passivation. Tandems achieve a power conversion efficiency of 28.8%. Encapsulated tandems retain 90% of initial efficiency following 1,000 h of operating at the maximum power point under simulated one-sun illumination in air without cooling.

过氧化物串联太阳能电池显示出良好的性能,但非辐射性重组及其随时间的逐渐恶化,尤其是在锡铅混合低带隙层中,限制了性能和稳定性。在这里,我们发现锡铅混合包晶体薄膜呈现出一种成分梯度,表面的锡过量--我们发现这种梯度加剧了氧化并增加了重组率。我们发现,二胺会优先螯合锡原子,将它们从薄膜表面移除,实现更平衡的锡:铅化学计量,从而使薄膜表面对锡的氧化具有抵抗力。这一过程形成了电阻性低维阻挡层,钝化了缺陷,减少了界面重组。使用 1,2-二氨基丙烷进一步提高阻挡层的均匀性,使其分布和钝化更加均匀。串联系统的功率转换效率达到 28.8%。在空气中模拟单太阳光照、无冷却的情况下,封装串联系统在最大功率点运行 1000 小时后,仍能保持 90% 的初始效率。
{"title":"Diamine chelates for increased stability in mixed Sn–Pb and all-perovskite tandem solar cells","authors":"Chongwen Li, Lei Chen, Fangyuan Jiang, Zhaoning Song, Xiaoming Wang, Adam Balvanz, Esma Ugur, Yuan Liu, Cheng Liu, Aidan Maxwell, Hao Chen, Yanjiang Liu, Zaiwei Wang, Pan Xia, You Li, Sheng Fu, Nannan Sun, Corey R. Grice, Xuefei Wu, Zachary Fink, Qin Hu, Lewei Zeng, Euidae Jung, Junke Wang, So Min Park, Deying Luo, Cailing Chen, Jie Shen, Yu Han, Carlo Andrea Riccardo Perini, Juan-Pablo Correa-Baena, Zheng-Hong Lu, Thomas P. Russell, Stefaan De Wolf, Mercouri G. Kanatzidis, David S. Ginger, Bin Chen, Yanfa Yan, Edward H. Sargent","doi":"10.1038/s41560-024-01613-8","DOIUrl":"https://doi.org/10.1038/s41560-024-01613-8","url":null,"abstract":"<p>Perovskite tandem solar cells show promising performance, but non-radiative recombination and its progressive worsening with time, especially in the mixed Sn–Pb low-bandgap layer, limit performance and stability. Here we find that mixed Sn–Pb perovskite thin films exhibit a compositional gradient, with an excess of Sn on the surface—and we show this gradient exacerbates oxidation and increases the recombination rate. We find that diamines preferentially chelate Sn atoms, removing them from the film surface and achieving a more balanced Sn:Pb stoichiometry, making the surface of the film resistive to the oxidation of Sn. The process forms an electrically resistive low-dimensional barrier layer, passivating defects and reducing interface recombination. Further improving the homogeneity of the barrier layer using 1,2-diaminopropane results in more uniform distribution and passivation. Tandems achieve a power conversion efficiency of 28.8%. Encapsulated tandems retain 90% of initial efficiency following 1,000 h of operating at the maximum power point under simulated one-sun illumination in air without cooling.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"35 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conductive colloidal perovskite quantum dot inks towards fast printing of solar cells 实现太阳能电池快速印刷的导电胶体包覆晶量子点油墨
IF 56.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-13 DOI: 10.1038/s41560-024-01608-5
Xuliang Zhang, Hehe Huang, Chenyu Zhao, Lujie Jin, Chihyung Lee, Youyong Li, Doo-Hyun Ko, Wanli Ma, Tom Wu, Jianyu Yuan

Quantum dot (QD) provides a versatile platform for high-throughput processing of semiconductors for large-area optoelectronic applications. Unfortunately, the QD solar cell is hampered by the time-consuming layer-by-layer process, a major challenge in manufacturing printable devices. Here we demonstrate a sequential acylation-coordination protocol including amine-assisted ligand removal and Lewis base-coordinated surface restoration to synthesize conductive APbI3 (A = formamidinium (FA), Cs or methylammonium) colloidal perovskite QD (PeQD) inks that enable one-step PeQD film deposition without additional solid-state ligand exchange. The resultant PeQD film displays uniform morphology with elevated electronic coupling, more ordered structure and homogeneous energy landscape. Narrow-bandgap FAPbI3 PeQD-based solar cells achieve a champion efficiency of 16.61% (certified 16.20%), exceeding the values obtained with other QD inks and layer-by-layer processes. The conductive PeQD inks are compatible with large-area device (9 × 9 cm2) fabrication using the blade-coating technique with a speed up to 50 mm s−1.

量子点(QD)为大面积光电应用的半导体高通量加工提供了一个多功能平台。遗憾的是,量子点太阳能电池受制于耗时的逐层制备工艺,这是制造可印刷器件的一大挑战。在这里,我们展示了一种顺序酰化配位协议,包括胺辅助配体去除和路易斯碱配位表面修复,以合成导电 APbI3(A = 甲脒 (FA)、铯或甲基铵)胶体包晶状 QD(PeQD)油墨,无需额外的固态配体交换即可实现一步式 PeQD 薄膜沉积。所制备的 PeQD 薄膜具有均匀的形貌、更高的电子耦合、更有序的结构和均匀的能量分布。基于 FAPbI3 PeQD 的窄带隙太阳能电池的冠军效率达到了 16.61%(认证值为 16.20%),超过了使用其他 QD 墨水和逐层工艺获得的数值。导电 PeQD 油墨可用于使用刀片涂层技术制造大面积器件(9 × 9 cm2),速度可达 50 mm s-1。
{"title":"Conductive colloidal perovskite quantum dot inks towards fast printing of solar cells","authors":"Xuliang Zhang, Hehe Huang, Chenyu Zhao, Lujie Jin, Chihyung Lee, Youyong Li, Doo-Hyun Ko, Wanli Ma, Tom Wu, Jianyu Yuan","doi":"10.1038/s41560-024-01608-5","DOIUrl":"https://doi.org/10.1038/s41560-024-01608-5","url":null,"abstract":"<p>Quantum dot (QD) provides a versatile platform for high-throughput processing of semiconductors for large-area optoelectronic applications. Unfortunately, the QD solar cell is hampered by the time-consuming layer-by-layer process, a major challenge in manufacturing printable devices. Here we demonstrate a sequential acylation-coordination protocol including amine-assisted ligand removal and Lewis base-coordinated surface restoration to synthesize conductive APbI<sub>3</sub> (A = formamidinium (FA), Cs or methylammonium) colloidal perovskite QD (PeQD) inks that enable one-step PeQD film deposition without additional solid-state ligand exchange. The resultant PeQD film displays uniform morphology with elevated electronic coupling, more ordered structure and homogeneous energy landscape. Narrow-bandgap FAPbI<sub>3</sub> PeQD-based solar cells achieve a champion efficiency of 16.61% (certified 16.20%), exceeding the values obtained with other QD inks and layer-by-layer processes. The conductive PeQD inks are compatible with large-area device (9 × 9 cm<sup>2</sup>) fabrication using the blade-coating technique with a speed up to 50 mm s<sup>−1</sup>.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"131 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Challenges and opportunities in truck electrification revealed by big operational data 运营大数据揭示卡车电气化的挑战与机遇
IF 56.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-12 DOI: 10.1038/s41560-024-01602-x
Pei Zhao, Shaojun Zhang, Paolo Santi, Dingsong Cui, Fang Wang, Peng Liu, Zhaosheng Zhang, Jin Liu, Zhenpo Wang, Carlo Ratti, Ye Wu

The electrification of trucks is a major challenge in achieving zero-emission transportation. Here we gathered year-long records from 61,598 electric trucks in China. Current electric trucks were found to be significantly underutilized compared with their diesel counterparts. Twenty-three per cent of electric delivery trucks and 30% of semi-trailers could achieve one-on-one replacement with diesel counterparts, while on average 3.8 electric delivery trucks and 3.6 electric semi-trailers are required to match the transportation demand that is served by one diesel truck separately. For diesel trucks that are capable of one-on-one replacement, electric trucks have 15–54% and 1–49% reductions in cost and life-cycle CO2 emissions, respectively. Enhancements in usage patterns, vehicle technologies and charging infrastructure can improve electrification feasibility, yielding cost and decarbonization benefits. Increased battery energy densities with optimized usage can make one-on-one electrification feasible for more than 85% of diesel semi-trailers. In addition, with cleaner electricity, most Chinese electric trucks in 2030 will have lower expected life-cycle CO2 emissions than diesel trucks.

卡车电气化是实现零排放运输的一大挑战。在此,我们收集了中国 61598 辆电动卡车的全年记录。与柴油卡车相比,目前电动卡车的使用率明显偏低。23%的电动运货卡车和 30% 的电动半挂牵引车可以实现与柴油卡车的一对一替代,而平均需要 3.8 辆电动运货卡车和 3.6 辆电动半挂牵引车才能满足单独一辆柴油卡车的运输需求。对于能够一对一替代的柴油卡车,电动卡车的成本和生命周期内的二氧化碳排放量分别降低了 15% 至 54%,以及 1% 至 49%。使用模式、车辆技术和充电基础设施的改进可以提高电气化的可行性,带来成本和脱碳效益。通过优化使用提高电池能量密度,可使 85% 以上的柴油半挂车实现一对一电气化。此外,在使用清洁电力的情况下,2030 年大多数中国电动卡车的预期生命周期二氧化碳排放量将低于柴油卡车。
{"title":"Challenges and opportunities in truck electrification revealed by big operational data","authors":"Pei Zhao, Shaojun Zhang, Paolo Santi, Dingsong Cui, Fang Wang, Peng Liu, Zhaosheng Zhang, Jin Liu, Zhenpo Wang, Carlo Ratti, Ye Wu","doi":"10.1038/s41560-024-01602-x","DOIUrl":"https://doi.org/10.1038/s41560-024-01602-x","url":null,"abstract":"<p>The electrification of trucks is a major challenge in achieving zero-emission transportation. Here we gathered year-long records from 61,598 electric trucks in China. Current electric trucks were found to be significantly underutilized compared with their diesel counterparts. Twenty-three per cent of electric delivery trucks and 30% of semi-trailers could achieve one-on-one replacement with diesel counterparts, while on average 3.8 electric delivery trucks and 3.6 electric semi-trailers are required to match the transportation demand that is served by one diesel truck separately. For diesel trucks that are capable of one-on-one replacement, electric trucks have 15–54% and 1–49% reductions in cost and life-cycle CO<sub>2</sub> emissions, respectively. Enhancements in usage patterns, vehicle technologies and charging infrastructure can improve electrification feasibility, yielding cost and decarbonization benefits. Increased battery energy densities with optimized usage can make one-on-one electrification feasible for more than 85% of diesel semi-trailers. In addition, with cleaner electricity, most Chinese electric trucks in 2030 will have lower expected life-cycle CO<sub>2</sub> emissions than diesel trucks.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"44 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrodes with 100% active materials 100% 活性材料电极
IF 49.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-08 DOI: 10.1038/s41560-024-01595-7
Eric McCalla
Battery researchers are struggling to design viable all-solid batteries, which promise enhanced safety but are currently achievable only at a high cost and with complex cell designs. Now a study on a sulfide-based cathode material demonstrates that a radical redesign of the electrode using 100% active material may help address the issue.
电池研究人员一直在努力设计可行的全固态电池,这种电池有望提高安全性,但目前只能通过高成本和复杂的电池设计来实现。现在,一项关于硫化物基阴极材料的研究表明,使用 100% 活性材料对电极进行彻底的重新设计可能有助于解决这一问题。
{"title":"Electrodes with 100% active materials","authors":"Eric McCalla","doi":"10.1038/s41560-024-01595-7","DOIUrl":"10.1038/s41560-024-01595-7","url":null,"abstract":"Battery researchers are struggling to design viable all-solid batteries, which promise enhanced safety but are currently achievable only at a high cost and with complex cell designs. Now a study on a sulfide-based cathode material demonstrates that a radical redesign of the electrode using 100% active material may help address the issue.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"9 9","pages":"1056-1057"},"PeriodicalIF":49.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved reverse bias stability in p–i–n perovskite solar cells with optimized hole transport materials and less reactive electrodes 利用优化的空穴传输材料和反应性较低的电极提高 pi-n 型过氧化物太阳能电池的反向偏压稳定性
IF 49.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-07 DOI: 10.1038/s41560-024-01600-z
Fangyuan Jiang, Yangwei Shi, Tanka R. Rana, Daniel Morales, Isaac E. Gould, Declan P. McCarthy, Joel A. Smith, M. Greyson Christoforo, Muammer Y. Yaman, Faiz Mandani, Tanguy Terlier, Hannah Contreras, Stephen Barlow, Aditya D. Mohite, Henry J. Snaith, Seth R. Marder, J. Devin MacKenzie, Michael D. McGehee, David S. Ginger
As perovskite photovoltaics stride towards commercialization, reverse bias degradation in shaded cells that must current match illuminated cells is a serious challenge. Previous research has emphasized the role of iodide and silver oxidation, and the role of hole tunnelling from the electron-transport layer into the perovskite to enable the flow of current under reverse bias in causing degradation. Here we show that device architecture engineering has a significant impact on the reverse bias behaviour of perovskite solar cells. By implementing both a ~35-nm-thick conjugated polymer hole transport layer and a more electrochemically stable back electrode, we demonstrate average breakdown voltages exceeding −15 V, comparable to those of silicon cells. Our strategy for increasing the breakdown voltage reduces the number of bypass diodes needed to protect a solar module that is partially shaded, which has been proven to be an effective strategy for silicon solar panels. Perovskite solar cells degrade when subjected to reverse bias. Jiang et al. show that relatively thick hole transport layers and metal back contacts with improved electrochemical stability afford better tolerance to reverse bias.
随着包晶光伏技术向商业化迈进,必须与照明电池电流匹配的遮光电池的反向偏压降解是一项严峻的挑战。先前的研究强调了碘化物和银氧化的作用,以及空穴从电子传输层隧穿到包晶体中,使电流在反向偏压下流动导致降解的作用。在这里,我们展示了器件结构工程对包晶石太阳能电池反向偏压行为的重大影响。通过采用约 35 纳米厚的共轭聚合物空穴传输层和电化学性能更稳定的背电极,我们展示了超过 -15 V 的平均击穿电压,与硅电池相当。我们提高击穿电压的策略减少了保护部分遮光的太阳能模块所需的旁路二极管数量,这已被证明是硅太阳能电池板的有效策略。
{"title":"Improved reverse bias stability in p–i–n perovskite solar cells with optimized hole transport materials and less reactive electrodes","authors":"Fangyuan Jiang,&nbsp;Yangwei Shi,&nbsp;Tanka R. Rana,&nbsp;Daniel Morales,&nbsp;Isaac E. Gould,&nbsp;Declan P. McCarthy,&nbsp;Joel A. Smith,&nbsp;M. Greyson Christoforo,&nbsp;Muammer Y. Yaman,&nbsp;Faiz Mandani,&nbsp;Tanguy Terlier,&nbsp;Hannah Contreras,&nbsp;Stephen Barlow,&nbsp;Aditya D. Mohite,&nbsp;Henry J. Snaith,&nbsp;Seth R. Marder,&nbsp;J. Devin MacKenzie,&nbsp;Michael D. McGehee,&nbsp;David S. Ginger","doi":"10.1038/s41560-024-01600-z","DOIUrl":"10.1038/s41560-024-01600-z","url":null,"abstract":"As perovskite photovoltaics stride towards commercialization, reverse bias degradation in shaded cells that must current match illuminated cells is a serious challenge. Previous research has emphasized the role of iodide and silver oxidation, and the role of hole tunnelling from the electron-transport layer into the perovskite to enable the flow of current under reverse bias in causing degradation. Here we show that device architecture engineering has a significant impact on the reverse bias behaviour of perovskite solar cells. By implementing both a ~35-nm-thick conjugated polymer hole transport layer and a more electrochemically stable back electrode, we demonstrate average breakdown voltages exceeding −15 V, comparable to those of silicon cells. Our strategy for increasing the breakdown voltage reduces the number of bypass diodes needed to protect a solar module that is partially shaded, which has been proven to be an effective strategy for silicon solar panels. Perovskite solar cells degrade when subjected to reverse bias. Jiang et al. show that relatively thick hole transport layers and metal back contacts with improved electrochemical stability afford better tolerance to reverse bias.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"9 10","pages":"1275-1284"},"PeriodicalIF":49.7,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chirality for stable interfaces 稳定界面的手性
IF 56.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-06 DOI: 10.1038/s41560-024-01597-5
Juan-Pablo Correa-Baena
Interfacial engineering is key to ensure the long-term stability of perovskite solar cells. Research now shows that chiral molecules can both improve the mechanical stability of the interfaces and afford passivation of defects at the perovskite surface, making solar cells more tolerant to thermal cycling stress.
界面工程是确保过氧化物太阳能电池长期稳定性的关键。目前的研究表明,手性分子既能提高界面的机械稳定性,又能钝化过氧化物表面的缺陷,使太阳能电池更能承受热循环应力。
{"title":"Chirality for stable interfaces","authors":"Juan-Pablo Correa-Baena","doi":"10.1038/s41560-024-01597-5","DOIUrl":"https://doi.org/10.1038/s41560-024-01597-5","url":null,"abstract":"Interfacial engineering is key to ensure the long-term stability of perovskite solar cells. Research now shows that chiral molecules can both improve the mechanical stability of the interfaces and afford passivation of defects at the perovskite surface, making solar cells more tolerant to thermal cycling stress.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"44 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum confinement-induced anti-electrooxidation of metallic nickel electrocatalysts for hydrogen oxidation 量子约束诱导的金属镍氢氧化电催化剂的抗电氧化作用
IF 49.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-05 DOI: 10.1038/s41560-024-01604-9
Yuanyuan Zhou, Wei Yuan, Mengting Li, Zhenyang Xie, Xiaoyun Song, Yang Yang, Jian Wang, Li Li, Wei Ding, Wen-Feng Lin, Zidong Wei
The anion-exchange-membrane fuel cell (AEMFC) is an attractive and cost-effective energy-conversion technology because it can use Earth-abundant and low-cost non-precious metal catalysts. However, non-precious metals used in AEMFCs to catalyse the hydrogen oxidation reaction are prone to self-oxidation, resulting in irreversible failure. Here we show a quantum well-like catalytic structure (QWCS), constructed by atomically confining Ni nanoparticles within a carbon-doped-MoOx/MoOx heterojunction (C-MoOx/MoOx) that can selectively transfer external electrons from the hydrogen oxidation reaction while remaining itself metallic. Electrons of Ni nanoparticles gain a barrier of 1.11 eV provided by the QWCS leading to Ni stability up to 1.2 V versus the reversible hydrogen electrode (VRHE) whereas electrons released from the hydrogen oxidation reaction easily cross the barrier by a gating operation of QWCS upon hydrogen adsorption. The QWCS-catalysed AEMFC achieved a high-power density of 486 mW mgNi−1 and withstood hydrogen starvation operations during shutdown–start cycles, whereas a counterpart AEMFC without QWCS failed in a single cycle. Non-precious metals used at the anode of anion-exchange-membrane fuel cells to catalyse hydrogen oxidation are prone to self-oxidation. Here Zhou and colleagues report that a quantum well-like catalytic structure containing Ni nanoparticles within a C-doped MoOx/MoOx heterojunction can mitigate such degradation by a gating operation.
阴离子交换膜燃料电池(AEMFC)是一种极具吸引力和成本效益的能源转换技术,因为它可以使用地球上丰富且低成本的非贵金属催化剂。然而,AEMFC 中用于催化氢氧化反应的非贵金属容易发生自氧化,导致不可逆转的失效。在这里,我们展示了一种量子井状催化结构(QWCS),它是通过将镍纳米粒子原子限制在掺碳的氧化钼/氧化钼异质结(C-MoOx/MoOx)中而构建的,可以选择性地转移氢氧化反应中的外部电子,同时自身仍保持金属性。镍纳米粒子的电子获得了 QWCS 提供的 1.11 eV 的势垒,从而使镍相对于可逆氢电极(VRHE)的稳定性高达 1.2 V。QWCS 催化的 AEMFC 实现了 486 mW mgNi-1 的高功率密度,并在关机-启动循环期间经受住了氢饥饿操作,而没有 QWCS 的对应 AEMFC 在一个循环中就失效了。
{"title":"Quantum confinement-induced anti-electrooxidation of metallic nickel electrocatalysts for hydrogen oxidation","authors":"Yuanyuan Zhou,&nbsp;Wei Yuan,&nbsp;Mengting Li,&nbsp;Zhenyang Xie,&nbsp;Xiaoyun Song,&nbsp;Yang Yang,&nbsp;Jian Wang,&nbsp;Li Li,&nbsp;Wei Ding,&nbsp;Wen-Feng Lin,&nbsp;Zidong Wei","doi":"10.1038/s41560-024-01604-9","DOIUrl":"10.1038/s41560-024-01604-9","url":null,"abstract":"The anion-exchange-membrane fuel cell (AEMFC) is an attractive and cost-effective energy-conversion technology because it can use Earth-abundant and low-cost non-precious metal catalysts. However, non-precious metals used in AEMFCs to catalyse the hydrogen oxidation reaction are prone to self-oxidation, resulting in irreversible failure. Here we show a quantum well-like catalytic structure (QWCS), constructed by atomically confining Ni nanoparticles within a carbon-doped-MoOx/MoOx heterojunction (C-MoOx/MoOx) that can selectively transfer external electrons from the hydrogen oxidation reaction while remaining itself metallic. Electrons of Ni nanoparticles gain a barrier of 1.11 eV provided by the QWCS leading to Ni stability up to 1.2 V versus the reversible hydrogen electrode (VRHE) whereas electrons released from the hydrogen oxidation reaction easily cross the barrier by a gating operation of QWCS upon hydrogen adsorption. The QWCS-catalysed AEMFC achieved a high-power density of 486 mW mgNi−1 and withstood hydrogen starvation operations during shutdown–start cycles, whereas a counterpart AEMFC without QWCS failed in a single cycle. Non-precious metals used at the anode of anion-exchange-membrane fuel cells to catalyse hydrogen oxidation are prone to self-oxidation. Here Zhou and colleagues report that a quantum well-like catalytic structure containing Ni nanoparticles within a C-doped MoOx/MoOx heterojunction can mitigate such degradation by a gating operation.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"9 10","pages":"1297-1309"},"PeriodicalIF":49.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41560-024-01604-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Molecular cation and low-dimensional perovskite surface passivation in perovskite solar cells 作者更正:包晶体太阳能电池中的分子阳离子和低维包晶体表面钝化
IF 49.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-05 DOI: 10.1038/s41560-024-01623-6
Sam Teale, Matteo Degani, Bin Chen, Edward H. Sargent, Giulia Grancini
{"title":"Author Correction: Molecular cation and low-dimensional perovskite surface passivation in perovskite solar cells","authors":"Sam Teale,&nbsp;Matteo Degani,&nbsp;Bin Chen,&nbsp;Edward H. Sargent,&nbsp;Giulia Grancini","doi":"10.1038/s41560-024-01623-6","DOIUrl":"10.1038/s41560-024-01623-6","url":null,"abstract":"","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"9 10","pages":"1322-1322"},"PeriodicalIF":49.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41560-024-01623-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smoothing down interfaces 平滑接口
IF 49.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-02 DOI: 10.1038/s41560-024-01610-x
Qing Zhao
The surfaces of polycrystalline perovskite films impact the long-term performance of perovskite solar cells, yet their microstructure is not well understood. Research now reveals the existence of concave grain structures at the surface of the perovskite layer facing the electron transport layer, and their detrimental effect on the stability of the interface and eventually the devices.
多晶包晶体薄膜的表面会影响包晶体太阳能电池的长期性能,但人们对其微观结构还不甚了解。现在的研究揭示了在面向电子传输层的过氧化物层表面存在的凹晶粒结构,以及它们对界面稳定性和最终设备的不利影响。
{"title":"Smoothing down interfaces","authors":"Qing Zhao","doi":"10.1038/s41560-024-01610-x","DOIUrl":"10.1038/s41560-024-01610-x","url":null,"abstract":"The surfaces of polycrystalline perovskite films impact the long-term performance of perovskite solar cells, yet their microstructure is not well understood. Research now reveals the existence of concave grain structures at the surface of the perovskite layer facing the electron transport layer, and their detrimental effect on the stability of the interface and eventually the devices.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"9 8","pages":"920-921"},"PeriodicalIF":49.7,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Connectivity matters 连通性至关重要
IF 49.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-02 DOI: 10.1038/s41560-024-01599-3
Fei Zhang
High-efficiency perovskite solar cells suffer from limited operational stability. Research now shows that perovskitoid-based interlayers with strong metal halide octahedral connectivity and both out-of-plane and in-plane crystal orientations address this issue.
高效过氧化物太阳能电池的工作稳定性有限。现在的研究表明,具有强金属卤化物八面体连通性以及面外和面内晶体取向的类包光体中间膜可以解决这一问题。
{"title":"Connectivity matters","authors":"Fei Zhang","doi":"10.1038/s41560-024-01599-3","DOIUrl":"10.1038/s41560-024-01599-3","url":null,"abstract":"High-efficiency perovskite solar cells suffer from limited operational stability. Research now shows that perovskitoid-based interlayers with strong metal halide octahedral connectivity and both out-of-plane and in-plane crystal orientations address this issue.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"9 8","pages":"922-923"},"PeriodicalIF":49.7,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of the American Chemical Society
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1