Pub Date : 2024-11-13Epub Date: 2024-11-03DOI: 10.1021/jacs.4c09791
Anna Kwiatkowski, Giorgio Caserta, Anne-Christine Schulz, Stefan Frielingsdorf, Vladimir Pelmenschikov, Kilian Weisser, Adam Belsom, Juri Rappsilber, Ilya Sergueev, Christian Limberg, Maria-Andrea Mroginski, Ingo Zebger, Oliver Lenz
[NiFe]-hydrogenases catalyze the reversible activation of H2 using a unique NiFe(CN)2CO metal site, which is assembled by a sophisticated multiprotein machinery. The [4Fe-4S] cluster-containing HypCD complex, which possesses an ATPase activity with a hitherto unknown function, serves as the hub for the assembly of the Fe(CN)2CO subfragment. HypCD is also thought to be responsible for the subsequent transfer of the iron fragment to the apo-form of the catalytic hydrogenase subunit, but the underlying mechanism has remained unexplored. Here, we performed a thorough spectroscopic characterization of different HypCD preparations using infrared, Mössbauer, and NRVS spectroscopy, revealing molecular details of the coordination of the Fe(CN)2CO fragment. Moreover, biochemical assays in combination with spectroscopy, AlphaFold structure predictions, protein-ligand docking calculations, and crosslinking MS deciphered unexpected mechanistic aspects of the ATP requirement of HypCD, which we found to actually trigger the transfer of the Fe(CN)2CO fragment to the apo-hydrogenase.
{"title":"ATP-Triggered Fe(CN)<sub>2</sub>CO Synthon Transfer from the Maturase HypCD to the Active Site of Apo-[NiFe]-Hydrogenase.","authors":"Anna Kwiatkowski, Giorgio Caserta, Anne-Christine Schulz, Stefan Frielingsdorf, Vladimir Pelmenschikov, Kilian Weisser, Adam Belsom, Juri Rappsilber, Ilya Sergueev, Christian Limberg, Maria-Andrea Mroginski, Ingo Zebger, Oliver Lenz","doi":"10.1021/jacs.4c09791","DOIUrl":"10.1021/jacs.4c09791","url":null,"abstract":"<p><p>[NiFe]-hydrogenases catalyze the reversible activation of H<sub>2</sub> using a unique NiFe(CN)<sub>2</sub>CO metal site, which is assembled by a sophisticated multiprotein machinery. The [4Fe-4S] cluster-containing HypCD complex, which possesses an ATPase activity with a hitherto unknown function, serves as the hub for the assembly of the Fe(CN)<sub>2</sub>CO subfragment. HypCD is also thought to be responsible for the subsequent transfer of the iron fragment to the apo-form of the catalytic hydrogenase subunit, but the underlying mechanism has remained unexplored. Here, we performed a thorough spectroscopic characterization of different HypCD preparations using infrared, Mössbauer, and NRVS spectroscopy, revealing molecular details of the coordination of the Fe(CN)<sub>2</sub>CO fragment. Moreover, biochemical assays in combination with spectroscopy, AlphaFold structure predictions, protein-ligand docking calculations, and crosslinking MS deciphered unexpected mechanistic aspects of the ATP requirement of HypCD, which we found to actually trigger the transfer of the Fe(CN)<sub>2</sub>CO fragment to the apo-hydrogenase.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"30976-30989"},"PeriodicalIF":3.784,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565642/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13Epub Date: 2024-11-03DOI: 10.1021/jacs.4c08981
Henri Lehouelleur, Hong Po, Lina Makké, Ningyuan Fu, Leonardo Curti, Corentin Dabard, Céline Roux-Byl, Benoit Baptiste, Nathan J Van Zee, Thomas Pons, Emmanuel Lhuillier, Jing Li, Sandrine Ithurria
Group II-VI semiconductor nanoplatelets (NPLs) with atomically defined thicknesses and extended atomically flat (001) facets are used for ligand binding and chiro-optical effects. In this study, we demonstrate that tartrate ligands, anchored by two carboxylate groups, chelate the (001) facets of NPLs at an average ratio of one tartrate molecule to two cadmium (Cd) surface atoms. This assembly of chiral molecules on inorganic nanocrystals generates a circular dichroism g-factor as high as 1.3 × 10-2 at the first excitonic transition wavelength of NPLs. Tartrate ligands induce an orthorhombic distortion of the initially "cubic" crystal structure, classifying the NPLs within the 222-point group. Unlike spherical nanocrystals, where it is difficult to discern whether chiral ligands affect only the surface atoms or the entire crystal structure, our findings unequivocally show that the crystal structure of NPLs is modified due to their thinness and atomically precise thickness. The in-plane lattice parameters experience compressive and tensile stresses, significantly splitting the heavy-hole and light-hole bands. Additionally, tartrate ligands adopt different conformations on the NPL surface over time, resulting in dynamic changes in the circular dichroism signal, including an inversion of its sign.
{"title":"Self-Assembly of Chiral Ligands on 2D Semiconductor Nanoplatelets for High Circular Dichroism.","authors":"Henri Lehouelleur, Hong Po, Lina Makké, Ningyuan Fu, Leonardo Curti, Corentin Dabard, Céline Roux-Byl, Benoit Baptiste, Nathan J Van Zee, Thomas Pons, Emmanuel Lhuillier, Jing Li, Sandrine Ithurria","doi":"10.1021/jacs.4c08981","DOIUrl":"10.1021/jacs.4c08981","url":null,"abstract":"<p><p>Group II-VI semiconductor nanoplatelets (NPLs) with atomically defined thicknesses and extended atomically flat (001) facets are used for ligand binding and chiro-optical effects. In this study, we demonstrate that tartrate ligands, anchored by two carboxylate groups, chelate the (001) facets of NPLs at an average ratio of one tartrate molecule to two cadmium (Cd) surface atoms. This assembly of chiral molecules on inorganic nanocrystals generates a circular dichroism <i>g</i>-factor as high as 1.3 × 10<sup>-2</sup> at the first excitonic transition wavelength of NPLs. Tartrate ligands induce an orthorhombic distortion of the initially \"cubic\" crystal structure, classifying the NPLs within the 222-point group. Unlike spherical nanocrystals, where it is difficult to discern whether chiral ligands affect only the surface atoms or the entire crystal structure, our findings unequivocally show that the crystal structure of NPLs is modified due to their thinness and atomically precise thickness. The in-plane lattice parameters experience compressive and tensile stresses, significantly splitting the heavy-hole and light-hole bands. Additionally, tartrate ligands adopt different conformations on the NPL surface over time, resulting in dynamic changes in the circular dichroism signal, including an inversion of its sign.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"30871-30882"},"PeriodicalIF":14.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13Epub Date: 2024-11-01DOI: 10.1021/jacs.4c11663
Jaehyun Park, Farshud Sorourifar, Madhav R Muthyala, Abigail M Houser, Madison Tuttle, Joel A Paulson, Shiyu Zhang
Organic electrode materials (OEMs), composed of abundant elements such as carbon, nitrogen, and oxygen, offer sustainable alternatives to conventional electrode materials that depend on finite metal resources. The vast structural diversity of organic compounds provides a virtually unlimited design space; however, exploring this space through Edisonian trial-and-error approaches is costly and time-consuming. In this work, we develop a new framework, SPARKLE, that combines computational chemistry, molecular generation, and machine learning to achieve zero-shot predictions of OEMs that simultaneously balance reward (specific energy), risk (solubility), and cost (synthesizability). We demonstrate that SPARKLE significantly outperforms alternative black-box machine learning algorithms on interpolation and extrapolation tasks. By deploying SPARKLE over a design space of more than 670,000 organic compounds, we identified ≈5000 novel OEM candidates. Twenty-seven of them were synthesized and fabricated into coin-cell batteries for experimental testing. Among SPARKLE-discovered OEMs, 62.9% exceeded benchmark performance metrics, representing a 3-fold improvement over OEMs selected by human intuition alone (20.8% based on six years of prior lab experience). The top-performing OEMs among the 27 candidates exhibit specific energy and cycling stability that surpass the state-of-the-art while being synthesizable at a fraction of the cost.
{"title":"Zero-Shot Discovery of High-Performance, Low-Cost Organic Battery Materials Using Machine Learning.","authors":"Jaehyun Park, Farshud Sorourifar, Madhav R Muthyala, Abigail M Houser, Madison Tuttle, Joel A Paulson, Shiyu Zhang","doi":"10.1021/jacs.4c11663","DOIUrl":"10.1021/jacs.4c11663","url":null,"abstract":"<p><p>Organic electrode materials (OEMs), composed of abundant elements such as carbon, nitrogen, and oxygen, offer sustainable alternatives to conventional electrode materials that depend on finite metal resources. The vast structural diversity of organic compounds provides a virtually unlimited design space; however, exploring this space through Edisonian trial-and-error approaches is costly and time-consuming. In this work, we develop a new framework, SPARKLE, that combines computational chemistry, molecular generation, and machine learning to achieve zero-shot predictions of OEMs that simultaneously balance reward (specific energy), risk (solubility), and cost (synthesizability). We demonstrate that SPARKLE significantly outperforms alternative black-box machine learning algorithms on interpolation and extrapolation tasks. By deploying SPARKLE over a design space of more than 670,000 organic compounds, we identified ≈5000 novel OEM candidates. Twenty-seven of them were synthesized and fabricated into coin-cell batteries for experimental testing. Among SPARKLE-discovered OEMs, 62.9% exceeded benchmark performance metrics, representing a 3-fold improvement over OEMs selected by human intuition alone (20.8% based on six years of prior lab experience). The top-performing OEMs among the 27 candidates exhibit specific energy and cycling stability that surpass the state-of-the-art while being synthesizable at a fraction of the cost.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"31230-31239"},"PeriodicalIF":14.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cyclopropane-based high-energy fuels possess high intramolecular energy and density, and their precise synthesis is a critical challenge. However, owing to the highest strain in the cyclopropane structure (compared to other four- or five-membered rings, etc.), metal-carbene intermediates form with difficulty, resulting in poor catalytic selectivity for its synthesis. Herein, through rational design of π-π stacking between the Pd organic complex and graphene, we report a single-site Pd catalyst for precise synthesis of multicyclopropane-based high-energy fuels. It is discovered that π-π stacking enhanced the electrophilicity of Pd through a weak metal-support interaction, thus promoting the formation of Pd═C carbene active intermediates. Meanwhile, the adsorption between the active centers and intermediates was enhanced via π-π stacking. These two respects led to almost twice selectivity for cyclopropanation reaction up to 80.5% as that without π-π stacking. This work provides an effective strategy of π-π noncovalent interactions for regulating C-C coupling reaction selectivity.
{"title":"Single-Site Pd Regulated by π-π Stacking for High-Selectivity Cyclopropanation Reaction.","authors":"Yuan Yao, Xinyue Zhang, Yingying Cao, Long Liu, Yanqiang Zhang, Suojiang Zhang","doi":"10.1021/jacs.4c10860","DOIUrl":"10.1021/jacs.4c10860","url":null,"abstract":"<p><p>Cyclopropane-based high-energy fuels possess high intramolecular energy and density, and their precise synthesis is a critical challenge. However, owing to the highest strain in the cyclopropane structure (compared to other four- or five-membered rings, etc.), metal-carbene intermediates form with difficulty, resulting in poor catalytic selectivity for its synthesis. Herein, through rational design of π-π stacking between the Pd organic complex and graphene, we report a single-site Pd catalyst for precise synthesis of multicyclopropane-based high-energy fuels. It is discovered that π-π stacking enhanced the electrophilicity of Pd through a weak metal-support interaction, thus promoting the formation of Pd═C carbene active intermediates. Meanwhile, the adsorption between the active centers and intermediates was enhanced via π-π stacking. These two respects led to almost twice selectivity for cyclopropanation reaction up to 80.5% as that without π-π stacking. This work provides an effective strategy of π-π noncovalent interactions for regulating C-C coupling reaction selectivity.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"31053-31061"},"PeriodicalIF":14.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The generation of difluorocarbene from difluoromethane bis(sulfonium ylide) 1 through spin-forbidden excitation under irradiation with 450 nm blue light was reported. The formation of difluorocarbene was confirmed by its reaction with styrene derivatives for the generation of difluorocyclopropanation and insertion into RX-H bonds (X = O, S) for the generation of RXCF2H. The spin-forbidden excitation mechanism for the formation of difluorocarbene from difluoromethane bis(sulfonium ylide) was supported by spectroscopic and kinetic studies as well as computational chemistry. The homolytic cleavage of two S-C bonds in compound 1 under irradiation was confirmed by time-resolved EPR spectroscopic studies of the precursor's free-radical-capturing reaction, as well as the isolation of the dimer of dimethyl (phenylthiol)malonyl radical. Further studies showed that the homolytic cleavage process occurred asynchronously in the solvent cage based on the isotope-labeled scrambling experiments and DFT calculations.
{"title":"Difluorocarbene Generation via a Spin-Forbidden Excitation under Visible Light Irradiation.","authors":"Shan Liu, Guang-Ning Pan, Yijing Ling, Feng Gao, Yin Yang, Ganglong Cui, Qilong Shen, Tianfei Liu","doi":"10.1021/jacs.4c10939","DOIUrl":"10.1021/jacs.4c10939","url":null,"abstract":"<p><p>The generation of difluorocarbene from difluoromethane bis(sulfonium ylide) <b>1</b> through spin-forbidden excitation under irradiation with 450 nm blue light was reported. The formation of difluorocarbene was confirmed by its reaction with styrene derivatives for the generation of difluorocyclopropanation and insertion into RX-H bonds (X = O, S) for the generation of RXCF<sub>2</sub>H. The spin-forbidden excitation mechanism for the formation of difluorocarbene from difluoromethane bis(sulfonium ylide) was supported by spectroscopic and kinetic studies as well as computational chemistry. The homolytic cleavage of two S-C bonds in compound <b>1</b> under irradiation was confirmed by time-resolved EPR spectroscopic studies of the precursor's free-radical-capturing reaction, as well as the isolation of the dimer of dimethyl (phenylthiol)malonyl radical. Further studies showed that the homolytic cleavage process occurred asynchronously in the solvent cage based on the isotope-labeled scrambling experiments and DFT calculations.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"31094-31105"},"PeriodicalIF":14.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stable and active oxygen reduction electrocatalysts are essential for practical fuel cells. Herein, we report a novel class of highly ordered platinum-cobalt (Pt-Co) alloys embedded with cobalt nitride. The intermetallic core-shell catalyst demonstrates an initial mass activity of 0.88 A mgPt-1 at 0.9 V with 71% retention after 30,000 potential cycles of an aggressive square-wave accelerated durability test and loses only 9% of its electrochemical surface area, far exceeding the US Department of Energy 2025 targets, with unprecedented stability and only a minimal voltage loss under practical fuel cell operating conditions. We discover that regulating the atomic ordering in the core results in an optimal lattice configuration that accelerates the oxygen reduction kinetics. The presence of cobalt nitride decorated within PtCo superlattices guarantees a larger barrier to Co dissolution, leading to the excellent endurance of the electrocatalysts. This work brings up a transformative structural engineering strategy for rationally designing high-performing Pt-based catalysts with a unique atomic configuration for broad practical uses in energy conversion technology.
稳定而活跃的氧还原电催化剂对实用燃料电池至关重要。在此,我们报告了一类嵌入氮化钴的新型高有序铂-钴(Pt-Co)合金。这种金属间核壳催化剂在 0.9 V 电压下的初始质量活性为 0.88 A mgPt-1,在激烈的方波加速耐久性测试中经过 30,000 个电位循环后仍能保持 71% 的活性,其电化学表面积损失仅为 9%,远远超过了美国能源部 2025 年的目标,而且在实际燃料电池工作条件下具有前所未有的稳定性,电压损失极小。我们发现,调节内核中的原子排序可产生最佳晶格配置,从而加速氧还原动力学。铂钴超晶格中氮化钴装饰的存在保证了更大的钴溶解屏障,从而使电催化剂具有出色的耐久性。这项研究为合理设计具有独特原子构型的高性能铂基催化剂提供了一种变革性的结构工程策略,可广泛应用于能源转换技术领域。
{"title":"Cobalt Nitride-Implanted PtCo Intermetallic Nanocatalysts for Ultrahigh Fuel Cell Cathode Performance.","authors":"Muhammad Irfansyah Maulana, Tae Hwan Jo, Ha-Young Lee, Chaehyeon Lee, Caleb Gyan-Barimah, Cheol-Hwan Shin, Jeong-Hoon Yu, Kug-Seung Lee, Seoin Back, Jong-Sung Yu","doi":"10.1021/jacs.4c09514","DOIUrl":"10.1021/jacs.4c09514","url":null,"abstract":"<p><p>Stable and active oxygen reduction electrocatalysts are essential for practical fuel cells. Herein, we report a novel class of highly ordered platinum-cobalt (Pt-Co) alloys embedded with cobalt nitride. The intermetallic core-shell catalyst demonstrates an initial mass activity of 0.88 A mg<sub>Pt</sub><sup>-1</sup> at 0.9 V with 71% retention after 30,000 potential cycles of an aggressive square-wave accelerated durability test and loses only 9% of its electrochemical surface area, far exceeding the US Department of Energy 2025 targets, with unprecedented stability and only a minimal voltage loss under practical fuel cell operating conditions. We discover that regulating the atomic ordering in the core results in an optimal lattice configuration that accelerates the oxygen reduction kinetics. The presence of cobalt nitride decorated within PtCo superlattices guarantees a larger barrier to Co dissolution, leading to the excellent endurance of the electrocatalysts. This work brings up a transformative structural engineering strategy for rationally designing high-performing Pt-based catalysts with a unique atomic configuration for broad practical uses in energy conversion technology.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"30922-30932"},"PeriodicalIF":14.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13Epub Date: 2024-10-29DOI: 10.1021/jacs.4c11948
Mi-Kyung Yoon, Pradip Shit, Wenhui Zhang, Reagan J Meredith, Hannah Kang, Ian Carmichael, Anthony S Serianni
Prior studies of the solution conformation of the Lewisx (Lex) trisaccharide, αFuc-(1→3)[βGal-(1→4)]-βGlcNAc, suggest that nonclassical inter-residue C-H···O hydrogen bonding in aqueous solution contributes to the stabilization of its 3D structure and affects its biological properties. Experimental evidence for this hydrogen bond in aqueous solution has been reported in the form of a 4hJCHOCH NMR spin-coupling constant between C5'Fuc and H1″Gal measured by 2D NMR methods in unlabeled samples. A methyl glycoside of Lex (MeβLex) was prepared containing selective 13C-labeling at C5'Fuc, and the H1″Gal signal was examined in high-field 1H NMR spectra for evidence of splitting or line-broadening caused by the 13C at C5'Fuc. High-resolution 1H NMR spectra obtained at high field and at different temperatures using different FID processing parameters showed no resolved splitting of the H1″Gal signal or evidence of line-broadening. Spectral simulation showed that this splitting and/or line-broadening would be observable if the reported J-value (∼1.1 Hz) is correct. DFT calculations on MeβLex and a carbon analog (O5″Gal replaced by a CH2 group) gave very small and nearly identical calculated 4hJC5',H1″ values, suggesting that the coupling is essentially zero. DFT calculations also showed that an alternate inter-residue 3hJH5',H1″ is small. Based on NMR analyses and DFT calculations, we found that 4hJC5',H1″ in MeβLex has an upper limit of ∼0.4 Hz and that the value could be lower, possibly zero, calling into question its value as experimental proof of persistent nonclassical hydrogen bonding in aqueous solutions of MeβLex and related structures.
{"title":"<sup>4h</sup><i>J</i><sub>CHOCH</sub> Spin Coupling in a Lewis<sup>x</sup> Trisaccharide as Evidence of Inter-Residue C-H···O Hydrogen Bonding in Aqueous Solution.","authors":"Mi-Kyung Yoon, Pradip Shit, Wenhui Zhang, Reagan J Meredith, Hannah Kang, Ian Carmichael, Anthony S Serianni","doi":"10.1021/jacs.4c11948","DOIUrl":"10.1021/jacs.4c11948","url":null,"abstract":"<p><p>Prior studies of the solution conformation of the Lewis<sup>x</sup> (Le<sup>x</sup>) trisaccharide, αFuc-(1→3)[βGal-(1→4)]-βGlcNAc, suggest that nonclassical inter-residue C-H···O hydrogen bonding in aqueous solution contributes to the stabilization of its 3D structure and affects its biological properties. Experimental evidence for this hydrogen bond in aqueous solution has been reported in the form of a <sup>4h</sup><i>J</i><sub>CHOCH</sub> NMR spin-coupling constant between C5'Fuc and H1″Gal measured by 2D NMR methods in unlabeled samples. A methyl glycoside of Le<sup>x</sup> (MeβLe<sup>x</sup>) was prepared containing selective <sup>13</sup>C-labeling at C5'Fuc, and the H1″Gal signal was examined in high-field <sup>1</sup>H NMR spectra for evidence of splitting or line-broadening caused by the <sup>13</sup>C at C5'Fuc. High-resolution <sup>1</sup>H NMR spectra obtained at high field and at different temperatures using different FID processing parameters showed no resolved splitting of the H1″Gal signal or evidence of line-broadening. Spectral simulation showed that this splitting and/or line-broadening would be observable if the reported <i>J-</i>value (∼1.1 Hz) is correct. DFT calculations on MeβLe<sup>x</sup> and a carbon analog (O5″Gal replaced by a CH<sub>2</sub> group) gave very small and nearly identical calculated <sup>4h</sup><i>J</i><sub>C5',H1″</sub> values, suggesting that the coupling is essentially zero. DFT calculations also showed that an alternate inter-residue <sup>3h</sup><i>J</i><sub>H5',H1″</sub> is small. Based on NMR analyses and DFT calculations, we found that <sup>4h</sup><i>J</i><sub>C5',H1″</sub> in MeβLe<sup>x</sup> has an upper limit of ∼0.4 Hz and that the value could be lower, possibly zero, calling into question its value as experimental proof of persistent nonclassical hydrogen bonding in aqueous solutions of MeβLe<sup>x</sup> and related structures.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"31264-31273"},"PeriodicalIF":14.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13Epub Date: 2024-10-31DOI: 10.1021/jacs.4c13256
Junyu Ren, Chunqing Ji, Bowen Du, Qixing Liu, Kexin Yu, Dohyun Ahn, Zhenyu Zhang, Yingxiang Ye, Christian R Göb, Dan Zhao
We report the design and synthesis of the first aliphatic covalent organic framework (COF), NUS-119, and its subsequent conversion to NUS-120, marking the first fully saturated COF. NUS-119 is built by imine-linkages exhibiting high crystallinity and porosity, achieved by using a Lewis acid as a reaction modulator to circumvent compatibility issues between the Brønsted acid and the strong basic monomer. The structure was successfully solved using 3D microelectron diffraction (microED) techniques. NUS-119 and NUS-120 demonstrated remarkable catalytic performance in base-catalyzed Knoevenagel condensation reactions, exhibiting high conversion rates, excellent size selectivity, and good recyclability. This work advances the understanding of COF materials and paves the way for future research and applications.
{"title":"A Fully Saturated Covalent Organic Framework.","authors":"Junyu Ren, Chunqing Ji, Bowen Du, Qixing Liu, Kexin Yu, Dohyun Ahn, Zhenyu Zhang, Yingxiang Ye, Christian R Göb, Dan Zhao","doi":"10.1021/jacs.4c13256","DOIUrl":"10.1021/jacs.4c13256","url":null,"abstract":"<p><p>We report the design and synthesis of the first aliphatic covalent organic framework (COF), NUS-119, and its subsequent conversion to NUS-120, marking the first fully saturated COF. NUS-119 is built by imine-linkages exhibiting high crystallinity and porosity, achieved by using a Lewis acid as a reaction modulator to circumvent compatibility issues between the Brønsted acid and the strong basic monomer. The structure was successfully solved using 3D microelectron diffraction (microED) techniques. NUS-119 and NUS-120 demonstrated remarkable catalytic performance in base-catalyzed Knoevenagel condensation reactions, exhibiting high conversion rates, excellent size selectivity, and good recyclability. This work advances the understanding of COF materials and paves the way for future research and applications.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"30784-30789"},"PeriodicalIF":14.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13Epub Date: 2024-10-31DOI: 10.1021/jacs.4c12925
Lei Nie, Jiayi Yang, Zhao Liu, Shibo Zhou, Suming Chen, Xiaotian Qi, Aiwen Lei, Hong Yi
Electrosynthesis has emerged as a versatile and sustainable tool in organic chemistry, offering an efficient pathway for the construction of complex molecular architectures under mild and environmentally benign conditions. Traditional electrochemical approaches, however, predominantly rely on either anodic oxidation or cathodic reduction, limiting their capacity to achieve redox-neutral transformations using a single electrode. In this work, we introduce a linear paired electrolysis strategy that circumvents these limitations, enabling a redox-neutral (3 + 2) annulation of benzofuran with vinyldiazo compounds. This method facilitates the formation of benzofuran-fused tricyclic scaffolds, which are valuable in synthetic chemistry and medicinal applications. The transformation proceeds through sequential anodic oxidation and cathodic reduction, leveraging a radical cation pathway to deliver polycyclic compounds with high selectivity. The efficiency and mechanism of this process are thoroughly validated using cyclic voltammetry and in situ electrochemical mass spectrometry (EC-MS) and supported by theoretical calculations, shedding light on the potential of redox-neutral electrochemical transformations.
{"title":"Linear Paired Electrolysis Enables Redox-Neutral (3 + 2) Annulation of Benzofuran with Vinyldiazo Compounds.","authors":"Lei Nie, Jiayi Yang, Zhao Liu, Shibo Zhou, Suming Chen, Xiaotian Qi, Aiwen Lei, Hong Yi","doi":"10.1021/jacs.4c12925","DOIUrl":"10.1021/jacs.4c12925","url":null,"abstract":"<p><p>Electrosynthesis has emerged as a versatile and sustainable tool in organic chemistry, offering an efficient pathway for the construction of complex molecular architectures under mild and environmentally benign conditions. Traditional electrochemical approaches, however, predominantly rely on either anodic oxidation or cathodic reduction, limiting their capacity to achieve redox-neutral transformations using a single electrode. In this work, we introduce a linear paired electrolysis strategy that circumvents these limitations, enabling a redox-neutral (3 + 2) annulation of benzofuran with vinyldiazo compounds. This method facilitates the formation of benzofuran-fused tricyclic scaffolds, which are valuable in synthetic chemistry and medicinal applications. The transformation proceeds through sequential anodic oxidation and cathodic reduction, leveraging a radical cation pathway to deliver polycyclic compounds with high selectivity. The efficiency and mechanism of this process are thoroughly validated using cyclic voltammetry and <i>in situ</i> electrochemical mass spectrometry (EC-MS) and supported by theoretical calculations, shedding light on the potential of redox-neutral electrochemical transformations.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"31330-31338"},"PeriodicalIF":14.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13Epub Date: 2024-10-31DOI: 10.1021/jacs.4c11111
Marley Downes, Christopher E Shuck, Ruocun John Wang, Paweł Piotr Michałowski, Jonathan Shochat, Danzhen Zhang, Mikhail Shekhirev, Yizhou Yang, Nestor J Zaluzec, Raul Arenal, Steven J May, Yury Gogotsi
The MXene family has rapidly expanded since its discovery in 2011 to include nearly 50 unique MXenes, not accounting for solid solutions and diverse surface terminations. However, a question raised since their discovery has been: What is the effect of n? In other words, how does the number of layers affect the MXene properties? To date, no direct study of the impact of n has been conducted due to the lack of isoelemental MXene compositions spanning more than two n values. Herein, we report on a system of three MXenes with identical M-site chemistries, (Mo2/3V1/3)n+1CnTx (n = 1, 2, and 3), allowing for the study of MXene structure-property relationships across n, for the first time. Chemical analysis of the samples shows complete and partial ordering of the M-elements in the n = 2 and 3 samples, respectively. We show that sample stability gradually evolves as n is increased from 1 to 3, while electronic and electrochemical properties exhibit more significant changes in going from n = 1 to 2 than from n = 2 to 3.
自 2011 年发现以来,MXene 家族迅速发展壮大,目前已包括近 50 种独特的 MXene,其中还不包括固溶体和各种表面终端。然而,自发现以来,人们一直在思考一个问题:n 有什么影响?换句话说,层数如何影响 MXene 的特性?迄今为止,由于缺乏跨越两个以上 n 值的等元素 MXene 组成,还没有对 n 的影响进行过直接研究。在此,我们报告了一个由三个具有相同 M 位化学成分 (Mo2/3V1/3)n+1CnTx (n = 1、2 和 3)的 MXene 组成的系统,从而首次研究了不同 n 的 MXene 结构-性能关系。样品的化学分析显示,n = 2 和 3 样品中的 M 元素分别完全有序和部分有序。我们的研究表明,随着 n 从 1 增加到 3,样品的稳定性逐渐发生变化,而电子和电化学特性在从 n = 1 到 2 的过程中比从 n = 2 到 3 的过程中表现出更显著的变化。
{"title":"Synthesis of Three Isoelemental MXenes and Their Structure-Property Relationships.","authors":"Marley Downes, Christopher E Shuck, Ruocun John Wang, Paweł Piotr Michałowski, Jonathan Shochat, Danzhen Zhang, Mikhail Shekhirev, Yizhou Yang, Nestor J Zaluzec, Raul Arenal, Steven J May, Yury Gogotsi","doi":"10.1021/jacs.4c11111","DOIUrl":"10.1021/jacs.4c11111","url":null,"abstract":"<p><p>The MXene family has rapidly expanded since its discovery in 2011 to include nearly 50 unique MXenes, not accounting for solid solutions and diverse surface terminations. However, a question raised since their discovery has been: What is the effect of <i>n</i>? In other words, how does the number of layers affect the MXene properties? To date, no direct study of the impact of <i>n</i> has been conducted due to the lack of isoelemental MXene compositions spanning more than two <i>n</i> values. Herein, we report on a system of three MXenes with identical M-site chemistries, (Mo<sub>2/3</sub>V<sub>1/3</sub>)<sub><i>n</i>+1</sub>C<sub><i>n</i></sub>T<sub><i>x</i></sub> (<i>n</i> = 1, 2, and 3), allowing for the study of MXene structure-property relationships across <i>n</i>, for the first time. Chemical analysis of the samples shows complete and partial ordering of the M-elements in the <i>n</i> = 2 and 3 samples, respectively. We show that sample stability gradually evolves as <i>n</i> is increased from 1 to 3, while electronic and electrochemical properties exhibit more significant changes in going from <i>n</i> = 1 to 2 than from <i>n</i> = 2 to 3.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"31159-31168"},"PeriodicalIF":3.784,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565644/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}