首页 > 最新文献

bioRxiv - Biophysics最新文献

英文 中文
The molecular origin of body temperature in homeothermic species 恒温物种体温的分子起源
Pub Date : 2024-09-10 DOI: 10.1101/2024.09.10.612206
Gerhard Michael Artmann, Oliver H. Weiergraeber, Samar Abdullah M. Damiati, Ipek Seda Firat, Aysegul Artmann
We propose the Interfacial Water Quantum-transition model (IWQ model) explaining temperature-dependent functional transitions in proteins. The model postulates that measured critical temperatures, TC, correspond to reference temperatures, TW, defined by rotational quantum transitions of temporarily free water molecules at the protein-water interface. The model's applicability is demonstrated through transitions in hemoglobin and thermosensitive TRP channels. We suggest this mechanism also defines basal body temperatures in homeotherms, with TW=36.32 degrees C for humans. We demonstrate that human (mammal) and chicken (Aves) body temperatures align with specific reference temperatures, and correlate with pronounced transitions at TC in hemoglobin oxygen saturation. This suggests evolutionary adaptations in homeotherms involve an interplay between oxygen supply and water's rotational transition temperatures. The IWQ-model states that proteins sense and water sets critical physiological temperatures.
我们提出了界面水量子转变模型(IWQ 模型)来解释蛋白质中与温度有关的功能转变。该模型假定,测得的临界温度(TC)对应于参考温度(TW),而参考温度是由蛋白质-水界面上暂时自由的水分子的旋转量子跃迁所定义的。该模型的适用性通过血红蛋白和热敏 TRP 通道的转变得到了证明。我们认为这一机制也决定了恒温动物的基础体温,人类的 TW=36.32 摄氏度。我们证明,人类(哺乳动物)和鸡(鸟类)的体温与特定的参考温度一致,并与血红蛋白氧饱和度在TC的明显转变相关。这表明同温动物的进化适应涉及氧气供应和水的旋转转变温度之间的相互作用。IWQ 模型指出,蛋白质能感知并由水设定临界生理温度。
{"title":"The molecular origin of body temperature in homeothermic species","authors":"Gerhard Michael Artmann, Oliver H. Weiergraeber, Samar Abdullah M. Damiati, Ipek Seda Firat, Aysegul Artmann","doi":"10.1101/2024.09.10.612206","DOIUrl":"https://doi.org/10.1101/2024.09.10.612206","url":null,"abstract":"We propose the Interfacial Water Quantum-transition model (IWQ model) explaining temperature-dependent functional transitions in proteins. The model postulates that measured critical temperatures, TC, correspond to reference temperatures, TW, defined by rotational quantum transitions of temporarily free water molecules at the protein-water interface. The model's applicability is demonstrated through transitions in hemoglobin and thermosensitive TRP channels. We suggest this mechanism also defines basal body temperatures in homeotherms, with TW=36.32 degrees C for humans. We demonstrate that human (mammal) and chicken (Aves) body temperatures align with specific reference temperatures, and correlate with pronounced transitions at TC in hemoglobin oxygen saturation. This suggests evolutionary adaptations in homeotherms involve an interplay between oxygen supply and water's rotational transition temperatures. The IWQ-model states that proteins sense and water sets critical physiological temperatures.","PeriodicalId":501048,"journal":{"name":"bioRxiv - Biophysics","volume":"108 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated measurement of cardiomyocyte monolayer contraction using the Exeter Multiscope 使用 Exeter Multiscope 自动测量心肌细胞单层收缩力
Pub Date : 2024-09-10 DOI: 10.1101/2024.09.09.611998
Alexander D Corbett, David Horsell, Taylor Watters, Shahrum Ghasemi, Lewis Henderson, Sharika Mohanan, Caroline Mullenbroich, Gil Bub, Francis Burton, Godfrey L Smith
We apply a novel microscope architecture, the Exeter Multiscope, to the problem of acquiring image data in rapid succession from nine wells of a 96 well plate. We demonstrate that the new microscope can detect contraction in cardiomyocyte monolayers which have been plated into these wells. Each well is sampled using 500 x 500 pixels across a 1.4 x 1.4 mm field of view, acquired in three colours at 3.7 Hz per well. The use of multiple illumination wavelengths provides post-hoc focus selection, further increasing the level of automation. The performance of the Exeter Multiscope is benchmarked against industry standard methods using a commercial microscope with a motorised stage and demonstrates that the Multiscope can acquire data almost 40 times faster. The data from both Multiscope and the commercial systems are processed by a 'pixel variance' algorithm that uses information from the pixel value variability over time to determine the timing and amplitude of tissue contraction. This algorithm is also benchmarked against an existing algorithm that employs an absolute difference measure of tissue contraction.
我们应用了一种新型显微镜结构--埃克塞特多孔显微镜(Exeter Multiscope),以解决从 96 孔板的九个孔中快速连续获取图像数据的问题。我们证明,这种新型显微镜可以检测到被放入这些孔中的心肌细胞单层的收缩情况。在 1.4 x 1.4 毫米的视场中,每孔使用 500 x 500 像素采样,以 3.7 Hz 的频率采集三色图像。使用多种照明波长可进行事后聚焦选择,进一步提高了自动化水平。Exeter Multiscope 的性能以使用带电动平台的商用显微镜的行业标准方法为基准,结果表明 Multiscope 的数据采集速度几乎快 40 倍。Multiscope 和商用系统的数据均由 "像素方差 "算法处理,该算法利用像素值随时间变化的信息来确定组织收缩的时间和幅度。该算法还与采用绝对差值测量组织收缩的现有算法进行了比较。
{"title":"Automated measurement of cardiomyocyte monolayer contraction using the Exeter Multiscope","authors":"Alexander D Corbett, David Horsell, Taylor Watters, Shahrum Ghasemi, Lewis Henderson, Sharika Mohanan, Caroline Mullenbroich, Gil Bub, Francis Burton, Godfrey L Smith","doi":"10.1101/2024.09.09.611998","DOIUrl":"https://doi.org/10.1101/2024.09.09.611998","url":null,"abstract":"We apply a novel microscope architecture, the Exeter Multiscope, to the problem of acquiring image data in rapid succession from nine wells of a 96 well plate. We demonstrate that the new microscope can detect contraction in cardiomyocyte monolayers which have been plated into these wells. Each well is sampled using 500 x 500 pixels across a 1.4 x 1.4 mm field of view, acquired in three colours at 3.7 Hz per well. The use of multiple illumination wavelengths provides post-hoc focus selection, further increasing the level of automation. The performance of the Exeter Multiscope is benchmarked against industry standard methods using a commercial microscope with a motorised stage and demonstrates that the Multiscope can acquire data almost 40 times faster. The data from both Multiscope and the commercial systems are processed by a 'pixel variance' algorithm that uses information from the pixel value variability over time to determine the timing and amplitude of tissue contraction. This algorithm is also benchmarked against an existing algorithm that employs an absolute difference measure of tissue contraction.","PeriodicalId":501048,"journal":{"name":"bioRxiv - Biophysics","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Cholesterol in M2 Clustering and Viral Budding Explained 胆固醇在 M2 聚类和病毒萌发中的作用解析
Pub Date : 2024-09-10 DOI: 10.1101/2024.09.09.611993
Dimitrios Kolokouris, Iris Elpida Kalederoglou, Anna L Duncan, Robin A. Corey, Mark Sansom, Antonios Kolocouris
The proton-conducting domain of the influenza A M2 homotetrameric channel (M2TM-AH; residues 22-62), consisting of four transmembrane (TM; residues 22-46) and four amphipathic helices (AHs; residues 47-62), promotes the release of viral RNA via acidification. Previous studies have also proposed the formation of clusters of M2 channels in the budding neck areas in raft-like domains of the plasma membrane, 1,2 which are rich in cholesterol, resulting in cell membrane scission and viral release. Experiments showed that cholesterol has a significant contribution to lipid bilayer undulations in viral buds suggesting a significant role for cholesterol in the budding process. However, a clear explanation of membrane curvature effect based on the distribution of cholesterol around M2TM-AH clusters is lacking. Using coarse-grained molecular dynamics simulations of M2TM-AH in bilayers, we observed that M2 channels form specific clusters with conical shapes, driven by attraction of their amphipathic helices (AHs). We showed that cholesterol stabilized the formation of M2 channel clusters, by filling and bridging the conical gap between M2 channels at specific sites in the N-terminals of adjacent channels or via the C-terminal region of TM and AHs, the latter sites displaying longer interaction time and higher stability. Potential of mean force calculations showed that when cholesterols occupy the identified interfacial binding sites between two M2 channels, the dimer is stabilized by 11 kJ/mol. This translates to the cholesterol-bound dimer being populated by almost two orders of magnitude compared to a dimer lacking cholesterol. We demonstrated that the cholesterol bridged M2 channels can exert lateral force on the surrounding membrane to induce the necessary negative Gaussian curvature profile which permits the spontaneous scission of the catenoid membrane neck and leads to viral buds and scission.
甲型流感 M2 同源四聚体通道(M2TM-AH;残基 22-62)的质子传导结构域由四个跨膜螺旋(TM;残基 22-46)和四个两性螺旋(AHs;残基 47-62)组成,通过酸化促进病毒 RNA 的释放。先前的研究还提出,在出芽颈区域的质膜筏状域(1,2)中形成的 M2 通道簇富含胆固醇,导致细胞膜裂解和病毒释放。实验表明,胆固醇对病毒芽中的脂质双分子层起伏有重要作用,这表明胆固醇在芽过程中起着重要作用。然而,基于 M2TM-AH 簇周围胆固醇分布的膜曲率效应还缺乏明确的解释。通过对双层膜中 M2TM-AH 的粗粒度分子动力学模拟,我们观察到 M2 通道在其两性螺旋(AHs)的吸引下形成了具有圆锥形的特定簇。我们的研究表明,胆固醇通过在相邻通道 N 端的特定位点或通过 TM 和 AHs 的 C 端区域填充和弥合 M2 通道之间的锥形间隙,从而稳定了 M2 通道簇的形成,后者显示出更长的相互作用时间和更高的稳定性。平均力势计算显示,当胆固醇占据两个 M2 通道之间已确定的界面结合位点时,二聚体会稳定 11 kJ/mol。这意味着与缺乏胆固醇的二聚体相比,与胆固醇结合的二聚体的数量几乎增加了两个数量级。我们证明,胆固醇桥接的 M2 通道能对周围的膜施加侧向力,从而诱导出必要的负高斯曲率曲线,这使得类猫状膜颈能够自发裂开,并导致病毒芽和裂解。
{"title":"The Role of Cholesterol in M2 Clustering and Viral Budding Explained","authors":"Dimitrios Kolokouris, Iris Elpida Kalederoglou, Anna L Duncan, Robin A. Corey, Mark Sansom, Antonios Kolocouris","doi":"10.1101/2024.09.09.611993","DOIUrl":"https://doi.org/10.1101/2024.09.09.611993","url":null,"abstract":"The proton-conducting domain of the influenza A M2 homotetrameric channel (M2TM-AH; residues 22-62), consisting of four transmembrane (TM; residues 22-46) and four amphipathic helices (AHs; residues 47-62), promotes the release of viral RNA via acidification. Previous studies have also proposed the formation of clusters of M2 channels in the budding neck areas in raft-like domains of the plasma membrane, 1,2 which are rich in cholesterol, resulting in cell membrane scission and viral release. Experiments showed that cholesterol has a significant contribution to lipid bilayer undulations in viral buds suggesting a significant role for cholesterol in the budding process. However, a clear explanation of membrane curvature effect based on the distribution of cholesterol around M2TM-AH clusters is lacking. Using coarse-grained molecular dynamics simulations of M2TM-AH in bilayers, we observed that M2 channels form specific clusters with conical shapes, driven by attraction of their amphipathic helices (AHs). We showed that cholesterol stabilized the formation of M2 channel clusters, by filling and bridging the conical gap between M2 channels at specific sites in the N-terminals of adjacent channels or via the C-terminal region of TM and AHs, the latter sites displaying longer interaction time and higher stability. Potential of mean force calculations showed that when cholesterols occupy the identified interfacial binding sites between two M2 channels, the dimer is stabilized by 11 kJ/mol. This translates to the cholesterol-bound dimer being populated by almost two orders of magnitude compared to a dimer lacking cholesterol. We demonstrated that the cholesterol bridged M2 channels can exert lateral force on the surrounding membrane to induce the necessary negative Gaussian curvature profile which permits the spontaneous scission of the catenoid membrane neck and leads to viral buds and scission.","PeriodicalId":501048,"journal":{"name":"bioRxiv - Biophysics","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elucidating the Differential Impacts of Equivalent Gating-Charge Mutations in Voltage-Gated Sodium Channels 阐明电压门控钠通道中等价门控电荷突变的不同影响
Pub Date : 2024-09-10 DOI: 10.1101/2024.09.09.612021
Eslam Elhanafy, Amin Akbari Ahangar, Rebecca Roth, Tamer M Gamal El-Din, John R Bankston, Jing Li
Voltage-gated sodium (Nav) channels are pivotal for cellular signaling and mutations in Nav channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function (GoF), loss-of-function (LoF) effects, or both. However, the mechanism behind this functional divergence of mutations at equivalent positions remains elusive. Through hotspot analysis, we identified three gating charges (R1, R2, and R3) as major mutational hotspots in VSDs. The same amino-acid substitutions at equivalent gating-charge positions in VSDI and VSDII of the cardiac sodium channel Nav1.5 show differential gating-property impacts in electrophysiology measurements. We conducted 120 μs molecular dynamics (MD) simulations on wild-type and six mutants to elucidate the structural basis of their differential impacts. Our μs-scale MD simulations with applied external electric fields captured VSD state transitions and revealed the differential structural dynamics between equivalent R-to-Q mutants. Notably, we observed transient leaky conformations in some mutants during structural transitions, offering a detailed structural explanation for gating-pore currents. Our salt-bridge network analysis uncovered VSD-specific and state-dependent interactions among gating charges, countercharges, and lipids. This detailed analysis elucidated how mutations disrupt critical electrostatic interactions, thereby altering VSD permeability and modulating gating properties. By demonstrating the crucial importance of considering the specific structural context of each mutation, our study represents a significant leap forward in understanding structure-function relationships in Nav channels. Our work establishes a robust framework for future investigations into the molecular basis of ion channel-related disorders.
电压门控钠(Nav)通道是细胞信号传导的关键,Nav通道突变可导致心脏、肌肉和神经组织的兴奋性失调。病理突变主要集中在电压感应结构域(VSD),导致功能增益(GoF)、功能缺失(LoF)或两者兼而有之。然而,同等位置突变的功能差异背后的机制仍然难以捉摸。通过热点分析,我们发现三个门控电荷(R1、R2 和 R3)是 VSD 的主要突变热点。在电生理学测量中,心脏钠通道 Nav1.5 的 VSDI 和 VSDII 同等门控电荷位置上的相同氨基酸取代显示出不同的门控特性影响。我们对野生型和六个突变体进行了 120 μs 的分子动力学(MD)模拟,以阐明其不同影响的结构基础。我们在应用外加电场的 μs 级 MD 模拟中捕捉到了 VSD 的状态转换,并揭示了等效 R 到 Q 突变体之间的结构动态差异。值得注意的是,我们在一些突变体中观察到了结构转换期间的瞬时泄漏构象,这为栅孔电流提供了详细的结构解释。我们的盐桥网络分析揭示了门控电荷、反电荷和脂质之间的 VSD 特异性和状态依赖性相互作用。这一详细分析阐明了突变如何破坏关键的静电相互作用,从而改变 VSD 的通透性并调节门控特性。通过证明考虑每个突变的特定结构背景的极端重要性,我们的研究代表了在理解导航通道结构-功能关系方面的重大飞跃。我们的工作为今后研究离子通道相关疾病的分子基础建立了一个强有力的框架。
{"title":"Elucidating the Differential Impacts of Equivalent Gating-Charge Mutations in Voltage-Gated Sodium Channels","authors":"Eslam Elhanafy, Amin Akbari Ahangar, Rebecca Roth, Tamer M Gamal El-Din, John R Bankston, Jing Li","doi":"10.1101/2024.09.09.612021","DOIUrl":"https://doi.org/10.1101/2024.09.09.612021","url":null,"abstract":"Voltage-gated sodium (Na<sub>v</sub>) channels are pivotal for cellular signaling and mutations in Na<sub>v</sub> channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function (GoF), loss-of-function (LoF) effects, or both. However, the mechanism behind this functional divergence of mutations at equivalent positions remains elusive. Through hotspot analysis, we identified three gating charges (R1, R2, and R3) as major mutational hotspots in VSDs. The same amino-acid substitutions at equivalent gating-charge positions in VSD<sub>I</sub> and VSD<sub>II</sub> of the cardiac sodium channel Nav1.5 show differential gating-property impacts in electrophysiology measurements. We conducted 120 μs molecular dynamics (MD) simulations on wild-type and six mutants to elucidate the structural basis of their differential impacts. Our μs-scale MD simulations with applied external electric fields captured VSD state transitions and revealed the differential structural dynamics between equivalent R-to-Q mutants. Notably, we observed transient leaky conformations in some mutants during structural transitions, offering a detailed structural explanation for gating-pore currents. Our salt-bridge network analysis uncovered VSD-specific and state-dependent interactions among gating charges, countercharges, and lipids. This detailed analysis elucidated how mutations disrupt critical electrostatic interactions, thereby altering VSD permeability and modulating gating properties. By demonstrating the crucial importance of considering the specific structural context of each mutation, our study represents a significant leap forward in understanding structure-function relationships in Nav channels. Our work establishes a robust framework for future investigations into the molecular basis of ion channel-related disorders.","PeriodicalId":501048,"journal":{"name":"bioRxiv - Biophysics","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fluid droplet harvests the force generated by shrinking microtubules in living cells 液滴能捕捉活细胞中微管收缩产生的力
Pub Date : 2024-09-10 DOI: 10.1101/2024.09.09.612121
Katherine Morelli, Sandro M Meier, Angela Zhao, Madhurima Choudhury, M Willis, Yves Barral, Jackie Vogel
The energy-consuming dynamic instability of microtubules generates significant forces which are thought to be harnessed to move large cargos in cells. However, identification of mechanisms which can capture the force released during microtubule depolymerization to move large loads has been elusive. In this work we show that a biomolecular condensate provides an elegant solution to this problem. Using live cell super-resolution microscopy, we directly observe that budding yeast +TIP bodies are nanoscale droplets with classic fluid-like behaviors which accumulate type V myosin (Myo2) at their surfaces. We find that conserved self-oligomerization interfaces in the protein Kar9 tune the biophysical properties of the viscoelastic +TIP body and its ability to efficiently move the mitotic spindle. Our findings introduce a paradigm for how forces generated by microtubule dynamics are harnessed in cells and open a frontier of research on nanoscale biomolecular condensates in their native environment.
微管耗能的动态不稳定性会产生巨大的力,人们认为可以利用这些力来移动细胞中的大型载荷。然而,能够捕捉微管解聚过程中释放的力以移动大型载荷的机制一直难以确定。在这项工作中,我们发现生物分子凝聚物为这一问题提供了一个优雅的解决方案。利用活细胞超分辨率显微镜,我们直接观察到芽殖酵母 +TIP 体是具有典型流体行为的纳米级液滴,其表面聚集了 V 型肌球蛋白(Myo2)。我们发现,蛋白质 Kar9 中保守的自聚界面调整了粘弹性 +TIP 体的生物物理特性及其有效移动有丝分裂纺锤体的能力。我们的发现为如何利用微管动力学在细胞中产生的力量引入了一个范例,并为纳米级生物分子凝聚体在其原生环境中的研究开辟了一个前沿领域。
{"title":"A fluid droplet harvests the force generated by shrinking microtubules in living cells","authors":"Katherine Morelli, Sandro M Meier, Angela Zhao, Madhurima Choudhury, M Willis, Yves Barral, Jackie Vogel","doi":"10.1101/2024.09.09.612121","DOIUrl":"https://doi.org/10.1101/2024.09.09.612121","url":null,"abstract":"The energy-consuming dynamic instability of microtubules generates significant forces which are thought to be harnessed to move large cargos in cells. However, identification of mechanisms which can capture the force released during microtubule depolymerization to move large loads has been elusive. In this work we show that a biomolecular condensate provides an elegant solution to this problem. Using live cell super-resolution microscopy, we directly observe that budding yeast +TIP bodies are nanoscale droplets with classic fluid-like behaviors which accumulate type V myosin (Myo2) at their surfaces. We find that conserved self-oligomerization interfaces in the protein Kar9 tune the biophysical properties of the viscoelastic +TIP body and its ability to efficiently move the mitotic spindle. Our findings introduce a paradigm for how forces generated by microtubule dynamics are harnessed in cells and open a frontier of research on nanoscale biomolecular condensates in their native environment.","PeriodicalId":501048,"journal":{"name":"bioRxiv - Biophysics","volume":"261 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of multistability, absorbing boundaries and growth on Turing pattern formation 多稳态、吸收边界和增长对图灵模式形成的影响
Pub Date : 2024-09-10 DOI: 10.1101/2024.09.09.611947
Martina Oliver Huidobro, Robert G. Endres
Turing patterns are a fundamental concept in developmental biology, describing how homogeneous tissues develop into self-organized spatial patterns. However, the classical Turing mechanism, which relies on linear stability analysis, often fails to capture the complexities of real biological systems, such as multistability, non-linearities, growth, and boundary conditions. Here, we explore the impact of these factors on Turing pattern formation, contrasting linear stability analysis with numerical simulations based on a simple reaction-diffusion model, motivated by synthetic gene-regulatory pathways. We demonstrate how non-linearities introduce multistability, leading to unexpected pattern outcomes not predicted by the traditional Turing theory. The study also examines how growth and realistic boundary conditions influence pattern robustness, revealing that different growth regimes and boundary conditions can disrupt or stabilize pattern formation. Our findings are critical for understanding pattern formation in both natural and synthetic biological systems, providing insights into engineering robust patterns for applications in synthetic biology.
图灵模式是发育生物学中的一个基本概念,描述了均质组织如何发育成自组织空间模式。然而,依赖于线性稳定性分析的经典图灵机制往往无法捕捉真实生物系统的复杂性,例如多稳定性、非线性、生长和边界条件。在这里,我们探讨了这些因素对图灵模式形成的影响,将线性稳定性分析与基于简单反应-扩散模型的数值模拟进行对比,并以合成基因调控途径为动机。我们展示了非线性如何引入多稳定性,从而导致传统图灵理论无法预测的意外模式结果。研究还探讨了生长和现实边界条件如何影响模式的稳健性,揭示了不同的生长机制和边界条件可以破坏或稳定模式的形成。我们的研究结果对于理解自然和合成生物系统中的模式形成至关重要,为合成生物学应用中的稳健模式工程提供了启示。
{"title":"Effects of multistability, absorbing boundaries and growth on Turing pattern formation","authors":"Martina Oliver Huidobro, Robert G. Endres","doi":"10.1101/2024.09.09.611947","DOIUrl":"https://doi.org/10.1101/2024.09.09.611947","url":null,"abstract":"Turing patterns are a fundamental concept in developmental biology, describing how homogeneous tissues develop into self-organized spatial patterns. However, the classical Turing mechanism, which relies on linear stability analysis, often fails to capture the complexities of real biological systems, such as multistability, non-linearities, growth, and boundary conditions. Here, we explore the impact of these factors on Turing pattern formation, contrasting linear stability analysis with numerical simulations based on a simple reaction-diffusion model, motivated by synthetic gene-regulatory pathways. We demonstrate how non-linearities introduce multistability, leading to unexpected pattern outcomes not predicted by the traditional Turing theory. The study also examines how growth and realistic boundary conditions influence pattern robustness, revealing that different growth regimes and boundary conditions can disrupt or stabilize pattern formation. Our findings are critical for understanding pattern formation in both natural and synthetic biological systems, providing insights into engineering robust patterns for applications in synthetic biology.","PeriodicalId":501048,"journal":{"name":"bioRxiv - Biophysics","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LLPS REDIFINE allows the biophysical characterization of multicomponent condensates without tags or labels LLPS REDIFINE 可对多组分缩合物进行生物物理表征,无需标记或标签
Pub Date : 2024-09-10 DOI: 10.1101/2024.09.10.612223
Mihajlo Novakovic, Nina Han, Nina Chiara Kathe, Yinan Ni, Leonidas Emmanouilidis, Frederic H.-T. Allain
Liquid-liquid phase separation (LLPS) phenomenon plays a vital role in multiple cell biology processes, providing a mechanism to concentrate biomolecules and promote cellular reactions locally. Despite its significance in biology, there is a lack of conventional techniques suitable for studying biphasic samples in their biologically relevant form. Here, we present a label-free and non-invasive approach to characterize protein, RNA and water in biomolecular condensates termed LLPS REstricted DIFusion of INvisible speciEs (REDIFINE). Relying on diffusion NMR measurements, REDIFINE exploits the exchange dynamics between the condensed and dispersed phases to allow the determination of not only diffusion constants in both phases but also the fractions of the species, the average radius of the condensed droplets and the exchange rate between the phases. We can also access the concentration of proteins in both phases. Observing proteins, RNAs, water, and even small molecules, REDIFINE analysis allows a rapid biophysical characterization of multicomponent condensates which is important to understand their functional roles. In comparing multiple systems, REDIFINE reveals that folded RNA-binding proteins form smaller and more dynamic droplets compared to the disordered ones. In addition, REDIFINE proved to be valuable beyond LLPS for the determination of binding constants in soluble protein-RNA without the need for titration.
液-液相分离(LLPS)现象在多种细胞生物学过程中发挥着至关重要的作用,它提供了一种浓缩生物分子和促进局部细胞反应的机制。尽管 LLPS 在生物学中具有重要意义,但目前仍缺乏适合研究生物相关形式双相样品的传统技术。在这里,我们提出了一种无标记、非侵入性的方法来表征生物分子凝聚物中的蛋白质、RNA 和水,这种方法被称为 LLPS 受限不可见标本扩散(REDIFINE)。REDIFINE 依靠扩散核磁共振测量,利用凝聚相和分散相之间的交换动力学,不仅可以确定两相中的扩散常数,还可以确定物种的分数、凝聚液滴的平均半径以及两相之间的交换率。我们还可以获得两相中蛋白质的浓度。通过观察蛋白质、RNA、水甚至小分子,REDIFINE 分析可以快速描述多组分凝聚物的生物物理特征,这对于了解它们的功能作用非常重要。在对多个系统进行比较时,REDIFINE 发现折叠的 RNA 结合蛋白形成的液滴比无序的液滴更小、更有活力。此外,REDIFINE 在测定可溶性蛋白质-RNA 结合常数方面的价值超过了 LLPS,无需滴定。
{"title":"LLPS REDIFINE allows the biophysical characterization of multicomponent condensates without tags or labels","authors":"Mihajlo Novakovic, Nina Han, Nina Chiara Kathe, Yinan Ni, Leonidas Emmanouilidis, Frederic H.-T. Allain","doi":"10.1101/2024.09.10.612223","DOIUrl":"https://doi.org/10.1101/2024.09.10.612223","url":null,"abstract":"Liquid-liquid phase separation (LLPS) phenomenon plays a vital role in multiple cell biology processes, providing a mechanism to concentrate biomolecules and promote cellular reactions locally. Despite its significance in biology, there is a lack of conventional techniques suitable for studying biphasic samples in their biologically relevant form. Here, we present a label-free and non-invasive approach to characterize protein, RNA and water in biomolecular condensates termed LLPS REstricted DIFusion of INvisible speciEs (REDIFINE). Relying on diffusion NMR measurements, REDIFINE exploits the exchange dynamics between the condensed and dispersed phases to allow the determination of not only diffusion constants in both phases but also the fractions of the species, the average radius of the condensed droplets and the exchange rate between the phases. We can also access the concentration of proteins in both phases. Observing proteins, RNAs, water, and even small molecules, REDIFINE analysis allows a rapid biophysical characterization of multicomponent condensates which is important to understand their functional roles. In comparing multiple systems, REDIFINE reveals that folded RNA-binding proteins form smaller and more dynamic droplets compared to the disordered ones. In addition, REDIFINE proved to be valuable beyond LLPS for the determination of binding constants in soluble protein-RNA without the need for titration.","PeriodicalId":501048,"journal":{"name":"bioRxiv - Biophysics","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In cell NMR reveals cells selectively amplify and structurally remodel amyloid fibrils 细胞内核磁共振显示细胞会选择性地放大淀粉样蛋白纤维并对其进行结构重塑
Pub Date : 2024-09-10 DOI: 10.1101/2024.09.09.612142
Shoyab Ansari, Dominique Lagasca, Rania Dumarieh, Yiling Xiao, Sakshi Krishna, Yang Li, Kendra K Frederick
Amyloid forms of α-synuclein adopt different conformations depending on environmental conditions. Advances in structural biology have accelerated fibril characterization. However, it remains unclear which conformations predominate in biological settings because current methods typically not only require isolating fibrils from their native environments, but they also do not provide insight about flexible regions. To address this, we characterized α-syn amyloid seeds and used sensitivity enhanced nuclear magnetic resonance to investigate the amyloid fibrils resulting from seeded amyloid propagation in different settings. We found that the amyloid fold and conformational preferences of flexible regions are faithfully propagated in vitro and in cellular lysates. However, seeded propagation of amyloids inside cells led to the minority conformation in the seeding population becoming predominant and more ordered, and altered the conformational preferences of flexible regions. The examination of the entire ensemble of protein conformations in biological settings that is made possible with this approach may advance our understanding of protein misfolding disorders and facilitate structure-based drug design efforts.
α-突触核蛋白的淀粉样形式会因环境条件的不同而呈现不同的构象。结构生物学的进步加速了纤维的表征。然而,目前仍不清楚在生物环境中哪种构象占主导地位,因为目前的方法通常不仅需要将纤维从其原生环境中分离出来,而且也无法深入了解柔性区域。为了解决这个问题,我们对α-syn淀粉样蛋白种子进行了表征,并利用灵敏度增强核磁共振研究了不同环境下淀粉样蛋白种子传播产生的淀粉样蛋白纤维。我们发现,淀粉样蛋白折叠和柔性区域的构象偏好在体外和细胞裂解液中都能忠实地传播。然而,淀粉样蛋白在细胞内的播种传播会导致播种群体中的少数构象变得占主导地位且更加有序,并改变柔性区域的构象偏好。利用这种方法可以对生物环境中蛋白质构象的整个组合进行检查,这可能会促进我们对蛋白质错误折叠疾病的了解,并有助于基于结构的药物设计工作。
{"title":"In cell NMR reveals cells selectively amplify and structurally remodel amyloid fibrils","authors":"Shoyab Ansari, Dominique Lagasca, Rania Dumarieh, Yiling Xiao, Sakshi Krishna, Yang Li, Kendra K Frederick","doi":"10.1101/2024.09.09.612142","DOIUrl":"https://doi.org/10.1101/2024.09.09.612142","url":null,"abstract":"Amyloid forms of α-synuclein adopt different conformations depending on environmental conditions. Advances in structural biology have accelerated fibril characterization. However, it remains unclear which conformations predominate in biological settings because current methods typically not only require isolating fibrils from their native environments, but they also do not provide insight about flexible regions. To address this, we characterized α-syn amyloid seeds and used sensitivity enhanced nuclear magnetic resonance to investigate the amyloid fibrils resulting from seeded amyloid propagation in different settings. We found that the amyloid fold and conformational preferences of flexible regions are faithfully propagated in vitro and in cellular lysates. However, seeded propagation of amyloids inside cells led to the minority conformation in the seeding population becoming predominant and more ordered, and altered the conformational preferences of flexible regions. The examination of the entire ensemble of protein conformations in biological settings that is made possible with this approach may advance our understanding of protein misfolding disorders and facilitate structure-based drug design efforts.","PeriodicalId":501048,"journal":{"name":"bioRxiv - Biophysics","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Conformational Space of the SARS-CoV-2 Main Protease Active Site Loops is Determined by Ligand Binding and Interprotomer Allostery 配体结合和原体间异构决定了 SARS-CoV-2 主蛋白酶活性位点环的构象空间
Pub Date : 2024-09-10 DOI: 10.1101/2024.09.09.612101
Ethan Lee, Sarah Rauscher
The main protease (MPro) of SARS-CoV-2 is essential for viral replication and is, therefore, an important drug target. Here, we investigate two flexible loops in MPro that play a role in catalysis. Using all-atom molecular dynamics simulations, we analyze the structural ensemble of MPro in an apo state and substrate-bound state. We find that the flexible loops can adopt open, intermediate (partly open) and closed conformations in solution, which differs from the partially closed state observed in crystal structures of MPro. When the loops are in closed or intermediate states, the catalytic residues are more likely to be in close proximity, which is crucial for catalysis. Additionally, we find that substrate binding to one protomer of the homodimer increases the frequency of intermediate states in the bound protomer, while also affecting the structural propensity of the apo protomer's flexible loops. Using dynamic network analysis, we identify multiple allosteric pathways connecting the two active sites of the homodimer. Common to these pathways is an allosteric hotspot involving the N-terminus, a critical region that comprises part of the binding pocket. Taken together, the results of our simulation study provide detailed insight into the relationships between the flexible loops and substrate binding in a prime drug target for COVID-19.
SARS-CoV-2 的主要蛋白酶(MPro)对病毒复制至关重要,因此是一个重要的药物靶点。在这里,我们研究了 MPro 中在催化过程中发挥作用的两个柔性环。通过全原子分子动力学模拟,我们分析了 MPro 在无底物状态和底物结合状态下的结构组合。我们发现,柔性环在溶液中可以采用开放、中间(部分开放)和封闭构象,这与在 MPro 晶体结构中观察到的部分封闭状态不同。当环路处于闭合或中间状态时,催化残基更有可能靠近,这对催化作用至关重要。此外,我们发现底物与同源二聚体的一个原体结合会增加结合原体的中间状态频率,同时也会影响 apo 原体柔性环路的结构倾向。通过动态网络分析,我们确定了连接同源二聚体两个活性位点的多种异构途径。这些途径的共同点是涉及 N 端的异构热点,N 端是一个关键区域,包含结合口袋的一部分。总之,我们的模拟研究结果提供了对 COVID-19 主要药物靶点中柔性环和底物结合之间关系的详细见解。
{"title":"The Conformational Space of the SARS-CoV-2 Main Protease Active Site Loops is Determined by Ligand Binding and Interprotomer Allostery","authors":"Ethan Lee, Sarah Rauscher","doi":"10.1101/2024.09.09.612101","DOIUrl":"https://doi.org/10.1101/2024.09.09.612101","url":null,"abstract":"The main protease (MPro) of SARS-CoV-2 is essential for viral replication and is, therefore, an important drug target. Here, we investigate two flexible loops in MPro that play a role in catalysis. Using all-atom molecular dynamics simulations, we analyze the structural ensemble of MPro in an apo state and substrate-bound state. We find that the flexible loops can adopt open, intermediate (partly open) and closed conformations in solution, which differs from the partially closed state observed in crystal structures of MPro. When the loops are in closed or intermediate states, the catalytic residues are more likely to be in close proximity, which is crucial for catalysis. Additionally, we find that substrate binding to one protomer of the homodimer increases the frequency of intermediate states in the bound protomer, while also affecting the structural propensity of the apo protomer's flexible loops. Using dynamic network analysis, we identify multiple allosteric pathways connecting the two active sites of the homodimer. Common to these pathways is an allosteric hotspot involving the N-terminus, a critical region that comprises part of the binding pocket. Taken together, the results of our simulation study provide detailed insight into the relationships between the flexible loops and substrate binding in a prime drug target for COVID-19.","PeriodicalId":501048,"journal":{"name":"bioRxiv - Biophysics","volume":"158 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intracellular dry mass density increases under growth-induced pressure 细胞内干物质密度在生长诱导压力下增加
Pub Date : 2024-09-10 DOI: 10.1101/2024.09.10.612234
Hyojun Kim, Baptiste Alric, Nolan Chan, Julien Roul, Morgan Delarue
Cells that proliferate in confined environments develop mechanical compressive stress, referred to as growth-induced pressure, which inhibits growth and division across various organisms. Recent studies have shown that in these confined spaces, the diffusivity of intracellular nanoparticles decreases. However, the physical mechanisms behind this reduction remain unclear. In this study, we use quantitative phase imaging to measure the refractive index and dry mass density of Saccharomyces cerevisiae cells proliferating under confinement in a microfluidic bioreactor. Our results indicate that the observed decrease in diffusivity can be at least attributed to the intracellular accumulation of macromolecules. Furthermore, the linear scaling between cell content and growth-induced pressure suggests that the concentrations of macromolecules and osmolytes are maintained proportionally under such pressure in S. cerevisiae.
在密闭环境中增殖的细胞会产生机械压应力,即生长诱导压力,这种压力会抑制各种生物的生长和分裂。最近的研究表明,在这些密闭空间中,细胞内纳米粒子的扩散性会降低。然而,这种降低背后的物理机制仍不清楚。在本研究中,我们利用定量相成像技术测量了在微流控生物反应器中受限增殖的酿酒酵母细胞的折射率和干质量密度。我们的结果表明,观察到的扩散率下降至少可归因于大分子在细胞内的积累。此外,细胞含量与生长诱导压力之间的线性比例关系表明,在这种压力下,S. cerevisiae 中大分子和渗透溶质的浓度保持成比例。
{"title":"Intracellular dry mass density increases under growth-induced pressure","authors":"Hyojun Kim, Baptiste Alric, Nolan Chan, Julien Roul, Morgan Delarue","doi":"10.1101/2024.09.10.612234","DOIUrl":"https://doi.org/10.1101/2024.09.10.612234","url":null,"abstract":"Cells that proliferate in confined environments develop mechanical compressive stress, referred to as growth-induced pressure, which inhibits growth and division across various organisms. Recent studies have shown that in these confined spaces, the diffusivity of intracellular nanoparticles decreases. However, the physical mechanisms behind this reduction remain unclear. In this study, we use quantitative phase imaging to measure the refractive index and dry mass density of Saccharomyces cerevisiae cells proliferating under confinement in a microfluidic bioreactor. Our results indicate that the observed decrease in diffusivity can be at least attributed to the intracellular accumulation of macromolecules. Furthermore, the linear scaling between cell content and growth-induced pressure suggests that the concentrations of macromolecules and osmolytes are maintained proportionally under such pressure in S. cerevisiae.","PeriodicalId":501048,"journal":{"name":"bioRxiv - Biophysics","volume":"108 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
bioRxiv - Biophysics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1