Let ${A'_n}$ be the Ap'ery numbers given by $A'_n=sum_{k=0}^nbinom nk^2binom{n+k}k.$ For any prime $pequiv 3pmod 4$ we show that $A'_{frac{p-1}2}equiv frac{p^2}3binom{frac{p-3}2}{frac{p-3}4}^{-2}pmod {p^3}$. Let ${t_n}$ be given by $$t_0=1, t_1=5quadhbox{and}quad t_{n+1}=(8n^2+12n+5)t_n-4n^2(2n+1)^2t_{n-1} (nge 1).$$ We also obtain the congruences for $t_ppmod {p^3}, t_{p-1}pmod {p^2}$ and $t_{frac{p-1}2}pmod {p^2}$, where $p$ is an odd prime.
{"title":"Congruences for the Apéry numbers modulo $p^3$","authors":"Zhi-Hong Sun","doi":"arxiv-2409.06544","DOIUrl":"https://doi.org/arxiv-2409.06544","url":null,"abstract":"Let ${A'_n}$ be the Ap'ery numbers given by $A'_n=sum_{k=0}^nbinom\u0000nk^2binom{n+k}k.$ For any prime $pequiv 3pmod 4$ we show that\u0000$A'_{frac{p-1}2}equiv frac{p^2}3binom{frac{p-3}2}{frac{p-3}4}^{-2}pmod\u0000{p^3}$. Let ${t_n}$ be given by $$t_0=1, t_1=5quadhbox{and}quad\u0000t_{n+1}=(8n^2+12n+5)t_n-4n^2(2n+1)^2t_{n-1} (nge 1).$$ We also obtain the\u0000congruences for $t_ppmod {p^3}, t_{p-1}pmod {p^2}$ and $t_{frac{p-1}2}pmod\u0000{p^2}$, where $p$ is an odd prime.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper we obtain a mean value theorem for a general Dirichlet series $f(s)= sum_{j=1}^infty a_j n_j^{-s}$ with positive coefficients for which the counting function $A(x) = sum_{n_{j}le x}a_{j}$ satisfies $A(x)=rho x + O(x^beta)$ for some $rho>0$ and $beta<1$. We prove that $frac1Tint_0^T |f(sigma+it)|^2, dt to sum_{j=1}^infty a_j^2n_j^{-2sigma}$ for $sigma>frac{1+beta}{2}$ and obtain an upper bound for this moment for $beta