首页 > 最新文献

Nano Materials Science最新文献

英文 中文
Nanoscale air channel devices- inheritance and breakthrough of vacuum tube 纳米级空气通道装置--真空管的继承与突破
Pub Date : 2024-02-19 DOI: 10.1016/j.nanoms.2024.01.002
Baihong Chen, Linjie Fan, Jinshun Bi, Zhiqiang Li, Ziming Xu, Sandip Majumdar
{"title":"Nanoscale air channel devices- inheritance and breakthrough of vacuum tube","authors":"Baihong Chen, Linjie Fan, Jinshun Bi, Zhiqiang Li, Ziming Xu, Sandip Majumdar","doi":"10.1016/j.nanoms.2024.01.002","DOIUrl":"https://doi.org/10.1016/j.nanoms.2024.01.002","url":null,"abstract":"","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139927663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic evolution of copper-based catalysts during CO2 electroreduction 铜基催化剂在二氧化碳电还原过程中的动态演变
Pub Date : 2024-02-05 DOI: 10.1016/j.nanoms.2024.01.007
Zhi-Zheng Wu, Peng-Peng Yang, Min-Rui Gao

The CO2 electroreduction reaction (CO2RR) is a promising approach of using renewable electricity to synthesize fuels and value-added chemicals. At present, Cu is generally considered to be the major monometallic catalyst capable of producing multicarbon products (C2+) with high current densities from the CO2RR, but it still suffers from the low activity and high overpotential. The challenge of sluggish CO2RR kinetics can be overcome by developing efficient Cu-based catalysts, which undergo the dynamic evolution during the reaction process. The dynamic evolution of the Cu-based catalysts taking place under working conditions makes it difficult to study the structure-activity correlation and reaction mechanism present during CO2RR. Recently, a number of important works have observed and revealed the dynamic evolution process of Cu-based catalysts by operando characterization techniques. This aspect, however, remains less summarized and prospected in the CO2RR literature. In this Review, we summarize the dynamic evolution of Cu-based catalysts during the CO2RR from aspects of structure, composition and oxidation state. We highlight the correlations between evolution behaviors and catalytic properties. Then, we discuss the dynamic deactivation process of Cu-based catalysts during CO2RR, including metal impurities contamination and carbon accumulation. In particular, we introduce recent advancements in in situ characterization techniques those are employed to probe the dynamic evolution under operating conditions. We end the Review by outlining the challenges and offering personal perspectives on the future development opportunities in this field.

二氧化碳电还原反应(CO2RR)是利用可再生电力合成燃料和高附加值化学品的一种前景广阔的方法。目前,人们普遍认为铜是能够从 CO2RR 中以高电流密度生产多碳产品(C2+)的主要单金属催化剂,但它仍然存在活性低和过电位高的问题。通过开发在反应过程中发生动态演化的高效铜基催化剂,可以克服 CO2RR 动力学缓慢的难题。由于铜基催化剂在工作条件下会发生动态演化,因此很难研究 CO2RR 反应过程中的结构-活性相关性和反应机理。最近,一些重要研究通过操作表征技术观察并揭示了铜基催化剂的动态演化过程。然而,在 CO2RR 文献中,这方面的总结和探讨仍然较少。在本综述中,我们从结构、组成和氧化态等方面总结了铜基催化剂在 CO2RR 过程中的动态演化过程。我们强调了演化行为与催化特性之间的相关性。然后,我们讨论了铜基催化剂在 CO2RR 过程中的动态失活过程,包括金属杂质污染和积碳。特别是,我们介绍了原位表征技术的最新进展,这些技术可用于探测工作条件下的动态演化。在综述的最后,我们概述了这一领域所面临的挑战,并对未来的发展机遇提出了个人观点。
{"title":"Dynamic evolution of copper-based catalysts during CO2 electroreduction","authors":"Zhi-Zheng Wu, Peng-Peng Yang, Min-Rui Gao","doi":"10.1016/j.nanoms.2024.01.007","DOIUrl":"https://doi.org/10.1016/j.nanoms.2024.01.007","url":null,"abstract":"<p>The CO<sub>2</sub> electroreduction reaction (CO<sub>2</sub>RR) is a promising approach of using renewable electricity to synthesize fuels and value-added chemicals. At present, Cu is generally considered to be the major monometallic catalyst capable of producing multicarbon products (C<sub>2+</sub>) with high current densities from the CO<sub>2</sub>RR, but it still suffers from the low activity and high overpotential. The challenge of sluggish CO<sub>2</sub>RR kinetics can be overcome by developing efficient Cu-based catalysts, which undergo the dynamic evolution during the reaction process. The dynamic evolution of the Cu-based catalysts taking place under working conditions makes it difficult to study the structure-activity correlation and reaction mechanism present during CO<sub>2</sub>RR. Recently, a number of important works have observed and revealed the dynamic evolution process of Cu-based catalysts by operando characterization techniques. This aspect, however, remains less summarized and prospected in the CO<sub>2</sub>RR literature. In this Review, we summarize the dynamic evolution of Cu-based catalysts during the CO<sub>2</sub>RR from aspects of structure, composition and oxidation state. We highlight the correlations between evolution behaviors and catalytic properties. Then, we discuss the dynamic deactivation process of Cu-based catalysts during CO<sub>2</sub>RR, including metal impurities contamination and carbon accumulation. In particular, we introduce recent advancements in in situ characterization techniques those are employed to probe the dynamic evolution under operating conditions. We end the Review by outlining the challenges and offering personal perspectives on the future development opportunities in this field.</p>","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139689451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MXene multi-functionalization of polyrotaxane based PCMs and the applications in electronic devices thermal management 基于聚二十六烷的 PCM 的 MXene 多功能化及其在电子设备热管理中的应用
Pub Date : 2024-01-27 DOI: 10.1016/j.nanoms.2023.12.004
Guang-Zhong Yin, Alba Marta López, Ignacio Collado, Antonio Vázquez-López, Xiang Ao, Jose Hobson, Silvia G. Prolongo, De-Yi Wang

The aim of this work was to improve the thermal conductivity and electromagnetic shielding of the leakage proof phase change materials (PCMs), in which a polyrotaxane (PLR) was used as a support material to encapsulate PEG 1k or PEG 6k and MXene as multi-functional filler. The PCMs can be processed conveniently by a hot press and the PEG 1k containing samples showed excellent flexibility. We conducted a systematic evaluation of the phase transition behavior of the material, thermal conductivity and electromagnetic shielding performance tests. Notably, the PCMs achieved a high enthalpy values (123.9–159.6 ​J/g). The PCMs exhibited an increase of 44.3 ​%, and 137.5 ​% in thermal conductivity values with higher MXene content (5 ​wt%) for PLR-PEG6k and PLR-PEG1k, respectively, and show high shape stability and no leakage during and after phase transition. The introduction of MXene can significantly improve the electromagnetic shielding performance of PCM composites. Typically, higher conductive samples (samples which contain high MXene contents) offer a higher EMI SE shielding, reaching a maximum of 4.67 ​dB at 5.6 ​GHz for PLR-1K-MX5. These improvements solve the main problems of organic PEG based PCMs, thus making PLR-PEG-MXene based PCMs good candidates for thermoregulators of both solid-state disks and smart phone. It is worth pointing out that the sample PLR-1k-MX5 can decrease 4.3 ​°C of the reference temperature during cellphone running. Moreover, the temperature of the protecting sheet in the simulated solid state disk with PCM was significantly lower (showing a decreasing of 7.9 ​°C) compared with the blank sample.

这项研究的目的是提高防漏相变材料(PCMs)的导热性和电磁屏蔽性,其中使用了聚洛他赛(PLR)作为支撑材料,包裹 PEG 1k 或 PEG 6k,并使用 MXene 作为多功能填料。这种 PCM 可方便地通过热压工艺进行加工,含有 PEG 1k 的样品显示出极佳的柔韧性。我们对材料的相变行为、热导率和电磁屏蔽性能测试进行了系统评估。值得注意的是,PCM 达到了很高的焓值(123.9-159.6 J/g)。PLR-PEG6k 和 PLR-PEG1k 的 MXene 含量越高(5 wt%),PCM 的热导率值分别增加了 44.3% 和 137.5%,并且在相变过程中和相变后显示出较高的形状稳定性和无泄漏性。引入 MXene 可显著提高 PCM 复合材料的电磁屏蔽性能。通常情况下,导电性较高的样品(MXene 含量较高的样品)具有更高的电磁干扰屏蔽性能,PLR-1K-MX5 在 5.6 GHz 时的电磁干扰屏蔽性能最高可达 4.67 dB。这些改进解决了基于有机 PEG 的 PCM 的主要问题,从而使基于 PLR-PEG-MXene 的 PCM 成为固态磁盘和智能手机温度调节器的理想候选材料。值得注意的是,样品 PLR-1k-MX5 在手机运行过程中可将参考温度降低 4.3 °C。此外,与空白样品相比,含有 PCM 的模拟固态盘中保护片的温度明显降低(降低了 7.9 °C)。
{"title":"MXene multi-functionalization of polyrotaxane based PCMs and the applications in electronic devices thermal management","authors":"Guang-Zhong Yin, Alba Marta López, Ignacio Collado, Antonio Vázquez-López, Xiang Ao, Jose Hobson, Silvia G. Prolongo, De-Yi Wang","doi":"10.1016/j.nanoms.2023.12.004","DOIUrl":"https://doi.org/10.1016/j.nanoms.2023.12.004","url":null,"abstract":"<p>The aim of this work was to improve the thermal conductivity and electromagnetic shielding of the leakage proof phase change materials (PCMs), in which a polyrotaxane (<span>PLR</span>) was used as a support material to encapsulate PEG 1k or PEG 6k and MXene as multi-functional filler. The PCMs can be processed conveniently by a hot press and the PEG 1k containing samples showed excellent flexibility. We conducted a systematic evaluation of the phase transition behavior of the material, thermal conductivity and electromagnetic shielding performance tests. Notably, the PCMs achieved a high enthalpy values (123.9–159.6 ​J/g). The PCMs exhibited an increase of 44.3 ​%, and 137.5 ​% in thermal conductivity values with higher MXene content (5 ​wt%) for PLR-PEG6k and PLR-PEG1k, respectively, and show high shape stability and no leakage during and after phase transition. The introduction of MXene can significantly improve the electromagnetic shielding performance of PCM composites. Typically, higher conductive samples (samples which contain high MXene contents) offer a higher EMI SE shielding, reaching a maximum of 4.67 ​dB at 5.6 ​GHz for PLR-1K-MX5. These improvements solve the main problems of organic PEG based PCMs, thus making PLR-PEG-MXene based PCMs good candidates for thermoregulators of both solid-state disks and smart phone. It is worth pointing out that the sample PLR-1k-MX5 can decrease 4.3 ​°C of the reference temperature during cellphone running. Moreover, the temperature of the protecting sheet in the simulated solid state disk with PCM was significantly lower (showing a decreasing of 7.9 ​°C) compared with the blank sample.</p>","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139585930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatially engineering tri-layer nanofiber dressings featuring asymmetric wettability for wound healing 空间工程三层纳米纤维敷料具有非对称润湿性,可促进伤口愈合
Pub Date : 2024-01-27 DOI: 10.1016/j.nanoms.2024.01.008
Tingting Shi, Yuan Liu, Donghui Wang, Dan Xia, Baoe Li, Ruodan Xu, Ning Li, Chunyong Liang, Menglin Chen

Inspired by the skin structure, an asymmetric wettability tri-layer nanofiber membrane (TNM) consisting of hydrophilic inner layer loaded with lidocaine hydrochloride (LID), hydrophobic middle layer with ciprofloxacin (CIP) and hydrophobic outer layer has been created. The hydrophobic outer layer endows the TNM with waterproof function and anti-adhesion from contaminants. The hydrophobic middle layer with CIP preserves long-term inhibition of bacteria growth and the hydrophilic inner layer with LID possesses optimal water-absorbing capacity and air permeability. The TNM dramatically elevates the water contact angles from 10° (inner layer) to 120° (outer layer), indicating an asymmetric wettability, which could directionally transport wound exudate within the materials and meanwhile maintain a comfortable and moist environment to promote wound healing. Furthermore, the sequential release of LID and CIP could relieve pain rapidly and achieve antibacterial effect in the long run, respectively. In addition, the TNM shows superior biocompatibility towards L929 ​cells. The in vivo results show the TNM could prevent infection, accelerate epithelial regeneration and significantly accelerate wound healing. This study indicates the developed TNM with asymmetrical wettability and synergetic drug release shows great potential as a wound dressing in clinical application.

受皮肤结构的启发,一种非对称润湿性三层纳米纤维膜(TNM)应运而生,它由含有盐酸利多卡因(LID)的亲水性内层、含有环丙沙星(CIP)的疏水性中层和疏水性外层组成。疏水性外层赋予 TNM 防水功能,并防止污染物附着。带有 CIP 的疏水性中间层可长期抑制细菌生长,而带有 LID 的亲水性内层则具有最佳的吸水能力和透气性。TNM 显著提高了水接触角,从 10°(内层)到 120°(外层),显示出非对称润湿性,可定向输送材料内的伤口渗出物,同时保持舒适湿润的环境,促进伤口愈合。此外,LID 和 CIP 的顺序释放可分别快速止痛和长期抗菌。此外,TNM 对 L929 细胞具有良好的生物相容性。体内研究结果表明,TNM 可预防感染、加速上皮再生并显著加快伤口愈合。这项研究表明,所开发的具有非对称润湿性和协同药物释放功能的 TNM 作为一种伤口敷料在临床应用方面具有巨大的潜力。
{"title":"Spatially engineering tri-layer nanofiber dressings featuring asymmetric wettability for wound healing","authors":"Tingting Shi, Yuan Liu, Donghui Wang, Dan Xia, Baoe Li, Ruodan Xu, Ning Li, Chunyong Liang, Menglin Chen","doi":"10.1016/j.nanoms.2024.01.008","DOIUrl":"https://doi.org/10.1016/j.nanoms.2024.01.008","url":null,"abstract":"<p>Inspired by the skin structure, an asymmetric wettability tri-layer nanofiber membrane (TNM) consisting of hydrophilic inner layer loaded with lidocaine hydrochloride (LID), hydrophobic middle layer with ciprofloxacin (CIP) and hydrophobic outer layer has been created. The hydrophobic outer layer endows the TNM with waterproof function and anti-adhesion from contaminants. The hydrophobic middle layer with CIP preserves long-term inhibition of bacteria growth and the hydrophilic inner layer with LID possesses optimal water-absorbing capacity and air permeability. The TNM dramatically elevates the water contact angles from 10° (inner layer) to 120° (outer layer), indicating an asymmetric wettability, which could directionally transport wound exudate within the materials and meanwhile maintain a comfortable and moist environment to promote wound healing. Furthermore, the sequential release of LID and CIP could relieve pain rapidly and achieve antibacterial effect in the long run, respectively. In addition, the TNM shows superior biocompatibility towards L929 ​cells. The <em>in vivo</em> results show the TNM could prevent infection, accelerate epithelial regeneration and significantly accelerate wound healing. This study indicates the developed TNM with asymmetrical wettability and synergetic drug release shows great potential as a wound dressing in clinical application.</p>","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139590301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical incorporation of SiO2 into TiO2 layer by green plasma enhancer and quencher agents for synchronized improvements in the protective and bioactive properties 通过绿色等离子体增强剂和淬灭剂将 SiO2 化学掺入 TiO2 层,同步提高保护和生物活性性能
Pub Date : 2024-01-11 DOI: 10.1016/j.nanoms.2024.01.003
Mosab Kaseem, Ananda Repycha Safira, Mohammad Aadil, Han-Choel Choe

This study explores the dynamic interaction between environmentally sustainable plasma enhancer and quencher agents during the incorporation of SiO2 into a TiO2 layer, with the primary objective of simultaneously augmenting protective and bioactive attributes. This enhancement is realized through the synergistic utilization of Tetraethyl orthosilicate (TE) and Stevia (ST) within a plasma-assisted oxidation process. To achieve this goal, Ti–6Al–4V alloy underwent oxidation in an electrolyte solution containing acetate-glycerophosphate, with the addition of TE and ST separately and in combination. TE, as a silicon oxide (SiO2) precursor, facilitates the creation of a calcium-rich, rough, porous layer by undergoing hydrolysis to generate silanol groups (Si–OH), which subsequently condense into silicon-oxygen-silicon (Si–O–Si) bonds, resulting in SiO2 formation. In contrast, ST acts as a plasma quencher, absorbing highly reactive plasma species during the oxidation process, reducing energy levels, and diminishing sparking intensity. The combination of TE and ST results in moderate sparking, balancing Stevia's quenching effect and TE's sparking influence. As a result, this coating exhibits enhanced corrosion resistance and bioactivity compared to using either ST or TE alone. The study highlights the potential of this synergistic approach for advanced TiO2-based coatings.

本研究探讨了在二氧化硅加入二氧化钛层的过程中,环境可持续的等离子体增强剂和淬灭剂之间的动态相互作用,其主要目的是同时增强保护性和生物活性。通过在等离子辅助氧化过程中协同使用正硅酸四乙酯(TE)和甜叶菊(ST),实现了这种增强效果。为了实现这一目标,Ti-6Al-4V 合金在含有醋酸盐-甘油磷酸酯的电解质溶液中进行氧化,并分别和同时加入 TE 和 ST。TE 作为一种氧化硅 (SiO2) 前体,通过水解生成硅醇基团 (Si-OH),进而凝结成硅-氧-硅键 (Si-O-Si),形成 SiO2,从而促进富钙粗糙多孔层的形成。与此相反,ST 可作为等离子体淬火剂,在氧化过程中吸收高活性等离子体物质,降低能量水平,减弱火花强度。TE 和 ST 的组合可产生适度的火花,平衡了甜菊糖的淬火作用和 TE 的火花影响。因此,与单独使用 ST 或 TE 相比,这种涂层具有更强的耐腐蚀性和生物活性。这项研究强调了这种协同方法在基于二氧化钛的先进涂层方面的潜力。
{"title":"Chemical incorporation of SiO2 into TiO2 layer by green plasma enhancer and quencher agents for synchronized improvements in the protective and bioactive properties","authors":"Mosab Kaseem, Ananda Repycha Safira, Mohammad Aadil, Han-Choel Choe","doi":"10.1016/j.nanoms.2024.01.003","DOIUrl":"https://doi.org/10.1016/j.nanoms.2024.01.003","url":null,"abstract":"<p>This study explores the dynamic interaction between environmentally sustainable plasma enhancer and quencher agents during the incorporation of SiO<sub>2</sub> into a TiO<sub>2</sub> layer, with the primary objective of simultaneously augmenting protective and bioactive attributes. This enhancement is realized through the synergistic utilization of Tetraethyl orthosilicate (TE) and Stevia (ST) within a plasma-assisted oxidation process. To achieve this goal, Ti–6Al–4V alloy underwent oxidation in an electrolyte solution containing acetate-glycerophosphate, with the addition of TE and ST separately and in combination. TE, as a silicon oxide (SiO<sub>2</sub>) precursor, facilitates the creation of a calcium-rich, rough, porous layer by undergoing hydrolysis to generate silanol groups (Si–OH), which subsequently condense into silicon-oxygen-silicon (Si–O–Si) bonds, resulting in SiO<sub>2</sub> formation. In contrast, ST acts as a plasma quencher, absorbing highly reactive plasma species during the oxidation process, reducing energy levels, and diminishing sparking intensity. The combination of TE and ST results in moderate sparking, balancing Stevia's quenching effect and TE's sparking influence. As a result, this coating exhibits enhanced corrosion resistance and bioactivity compared to using either ST or TE alone. The study highlights the potential of this synergistic approach for advanced TiO<sub>2</sub>-based coatings.</p>","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139462727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revisiting the mitigation of coke formation: Synergism between support & promoters' role toward robust yield in the CO2 reformation of methane 重新审视焦炭形成的缓解问题:在甲烷的二氧化碳转化过程中,支持和促进剂对提高产量的协同作用
Pub Date : 2024-01-05 DOI: 10.1016/j.nanoms.2023.10.005
Zahra Taherian, Vahid Shahed Gharahshiran, Xiaoxuan Wei, Alireza Khataee, Yeojoon Yoon, Yasin Orooji

CO2 reformation of methane (CRM) and CO2 methanation are two interconnected processes with significant implications for greenhouse gas reduction and sustainable energy production for industrial purposes. While Ni-based catalysis suffers from poor stability due to coke formation or sintering, we report a super stable remedy. The active sites of mesoporous MgO were loaded using wet impregnation. The incorporation of Ni and promoters altered the physical features of the catalysts. Sm–Ni/MgO showed the smallest crystallite size, specific surface area, and pore volume. The Sm–Ni/MgO catalyst was selected as the most suitable candidate for CRM, with 82 ​% CH4 and H2/CO ratio of approximately 100 ​% and also for CO2 methanation with the conversion of carbon dioxide (82 ​%) and the selectivity toward methane reaches 100 ​% at temperatures above 300 C. Furthermore, the Sm–Ni/MgO catalyst was stable for 900 ​min of continuous reaction, without significant carbon deposition. This stability was largely due to the high oxygen mobility on the catalyst surface in the presence of Sm. Overall, we demonstrated the efficacy of using promoted Ni catalysts supported by mesoporous magnesia for the improved reformation of greenhouse gases.

甲烷的二氧化碳重整(CRM)和二氧化碳甲烷化是两个相互关联的过程,对减少温室气体排放和工业用可持续能源生产具有重要意义。镍基催化剂因形成焦炭或烧结而稳定性差,而我们报告了一种超稳定的补救方法。介孔氧化镁的活性位点是通过湿法浸渍负载的。镍和促进剂的加入改变了催化剂的物理特性。Sm-Ni/MgO 的结晶尺寸、比表面积和孔体积最小。Sm-Ni/MgO催化剂被选为 CRM 的最合适候选催化剂,其 CH4 转化率为 82%,H2/CO 比率约为 100%,还可用于 CO2 甲烷化,二氧化碳转化率为 82%,在温度高于 300 ᵒC时,对甲烷的选择性达到 100%。此外,Sm-Ni/MgO 催化剂在连续反应 900 分钟后保持稳定,没有明显的碳沉积。这种稳定性主要归功于催化剂表面在 Sm 存在下的高氧流动性。总之,我们证明了使用介孔镁支撑的促进镍催化剂在改善温室气体转化方面的功效。
{"title":"Revisiting the mitigation of coke formation: Synergism between support & promoters' role toward robust yield in the CO2 reformation of methane","authors":"Zahra Taherian, Vahid Shahed Gharahshiran, Xiaoxuan Wei, Alireza Khataee, Yeojoon Yoon, Yasin Orooji","doi":"10.1016/j.nanoms.2023.10.005","DOIUrl":"https://doi.org/10.1016/j.nanoms.2023.10.005","url":null,"abstract":"<p>CO<sub>2</sub> reformation of methane (CRM) and CO<sub>2</sub> methanation are two interconnected processes with significant implications for greenhouse gas reduction and sustainable energy production for industrial purposes. While Ni-based catalysis suffers from poor stability due to coke formation or sintering, we report a super stable remedy. The active sites of mesoporous MgO were loaded using wet impregnation. The incorporation of Ni and promoters altered the physical features of the catalysts. Sm–Ni/MgO showed the smallest crystallite size, specific surface area, and pore volume. The Sm–Ni/MgO catalyst was selected as the most suitable candidate for CRM, with 82 ​% CH<sub>4</sub> and H<sub>2</sub>/CO ratio of approximately 100 ​% and also for CO<sub>2</sub> methanation with the conversion of carbon dioxide (82 ​%) and the selectivity toward methane reaches 100 ​% at temperatures above 300 <sup>ᵒ</sup>C. Furthermore, the Sm–Ni/MgO catalyst was stable for 900 ​min of continuous reaction, without significant carbon deposition. This stability was largely due to the high oxygen mobility on the catalyst surface in the presence of Sm. Overall, we demonstrated the efficacy of using promoted Ni catalysts supported by mesoporous magnesia for the improved reformation of greenhouse gases.</p>","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139101991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nickel-based superalloy architectures with surface mechanical attrition treatment: Compressive properties and collapse behaviour 经表面机械研磨处理的镍基超级合金结构:抗压性能和塌陷行为
Pub Date : 2024-01-05 DOI: 10.1016/j.nanoms.2023.11.008
Lizi Cheng, Xiaofeng Zhang, Jiacheng Xu, Temitope Olumide Olugbade, Gan Li, Dongdong Dong, Fucong Lyu, Haojie Kong, Mengke Huo, Jian Lu

Surface modifications can introduce natural gradients or structural hierarchy into human-made microlattices, making them simultaneously strong and tough. Herein, we describe our investigations of the mechanical properties and the underlying mechanisms of additively manufactured nickel–chromium superalloy (IN625) microlattices after surface mechanical attrition treatment (SMAT). Our results demonstrated that SMAT increased the yielding strength of these microlattices by more than 64.71% and also triggered a transition in their mechanical behaviour. Two primary failure modes were distinguished: weak global deformation, and layer-by-layer collapse, with the latter enhanced by SMAT. The significantly improved mechanical performance was attributable to the ultrafine and hard graded-nanograin layer induced by SMAT, which effectively leveraged the material and structural effects. These results were further validated by finite element analysis. This work provides insight into collapse behaviour and should facilitate the design of ultralight yet buckling-resistant cellular materials.

表面改性可以在人造微晶格中引入自然梯度或结构层次,使其同时具有强度和韧性。在此,我们介绍了我们对添加制造的镍铬超级合金(IN625)微晶格经过表面机械损耗处理(SMAT)后的机械性能和内在机理的研究。我们的研究结果表明,SMAT 使这些微晶格的屈服强度提高了 64.71% 以上,并引发了其机械性能的转变。我们发现了两种主要的失效模式:微弱的整体变形和逐层塌陷,后者在 SMAT 的作用下得到了增强。机械性能的明显改善归功于 SMAT 诱导的超细和坚硬的分级纳米晶粒层,它有效地利用了材料和结构效应。有限元分析进一步验证了这些结果。这项研究深入揭示了塌陷行为,有助于设计超轻且抗弯曲的蜂窝材料。
{"title":"Nickel-based superalloy architectures with surface mechanical attrition treatment: Compressive properties and collapse behaviour","authors":"Lizi Cheng, Xiaofeng Zhang, Jiacheng Xu, Temitope Olumide Olugbade, Gan Li, Dongdong Dong, Fucong Lyu, Haojie Kong, Mengke Huo, Jian Lu","doi":"10.1016/j.nanoms.2023.11.008","DOIUrl":"https://doi.org/10.1016/j.nanoms.2023.11.008","url":null,"abstract":"<p>Surface modifications can introduce natural gradients or structural hierarchy into human-made microlattices, making them simultaneously strong and tough. Herein, we describe our investigations of the mechanical properties and the underlying mechanisms of additively manufactured nickel–chromium superalloy (IN625) microlattices after surface mechanical attrition treatment (SMAT). Our results demonstrated that SMAT increased the yielding strength of these microlattices by more than 64.71% and also triggered a transition in their mechanical behaviour. Two primary failure modes were distinguished: weak global deformation, and layer-by-layer collapse, with the latter enhanced by SMAT. The significantly improved mechanical performance was attributable to the ultrafine and hard graded-nanograin layer induced by SMAT, which effectively leveraged the material and structural effects. These results were further validated by finite element analysis. This work provides insight into collapse behaviour and should facilitate the design of ultralight yet buckling-resistant cellular materials.</p>","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139102011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure transformation induced bi-component Co–Mo/A-Co(OH)2 as highly efficient hydrogen evolution catalyst in alkaline media 结构转变诱导的双组分 Co-Mo/A-Co(OH)2 作为碱性介质中的高效氢进化催化剂
Pub Date : 2024-01-01 DOI: 10.1016/j.nanoms.2023.11.006
Yingqing Ou, Lu Liu, Xiao Peng, Lili Zhang, Zhongwen Ou, Wendong Zhang, Yunhuai Zhang
{"title":"Structure transformation induced bi-component Co–Mo/A-Co(OH)2 as highly efficient hydrogen evolution catalyst in alkaline media","authors":"Yingqing Ou, Lu Liu, Xiao Peng, Lili Zhang, Zhongwen Ou, Wendong Zhang, Yunhuai Zhang","doi":"10.1016/j.nanoms.2023.11.006","DOIUrl":"https://doi.org/10.1016/j.nanoms.2023.11.006","url":null,"abstract":"","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139393631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silicon-based dielectric elastomer with amino-complexed hybrids towards high actuation performance 硅基介电弹性体与氨基络合混合物的高致动性能
Pub Date : 2023-12-30 DOI: 10.1016/j.nanoms.2023.12.009
Zheng-xing Dai, Qing-qing Liu, Xiao-dong Qi, Nan Zhang, Ting Huang, Jing-hui Yang, Yong Wang

For improving the actuation performance at low electric fields of dielectric elastomers, achieving high dielectric constant (ɛr) and low modulus (Y) simultaneously has been targeted in the past decades, but there are few ways to accomplish both. In contrast to the classical strategies such as incorporating plasticizers or ceramic to prepare the silicon-based dielectric elastomers, here, blending an amino-complexed hybrid (polyethyleneimine (PEI)-Ag) with polydimethylsiloxane (PDMS) elastomer is reported as an alternative strategy to tailor the ɛr and Y. PEI-Ag not only exhibits excellent dielectric enhancement properties but also minimizes the PDMS crosslinking through amino-complexed reaction between PEI and Pt catalysts. The prepared dielectric elastomers have a ɛr of 7.2 @ 103 ​Hz and Y of 1.14 ​MPa, leading to an actuation strain of 22.27 ​% at 35 ​V/μm. Hence, incorporating such novel hybrids based on dual amino-complexed effect on both matrix and particles sufficiently promotes the actuated performance of dielectric elastomers.

为了提高介电弹性体在低电场下的致动性能,过去几十年来,人们一直致力于同时实现高介电常数(ɛr)和低模量(Y),但同时实现这两个目标的方法却不多。与加入增塑剂或陶瓷等传统方法制备硅基介电弹性体不同,本文报道了将氨基络合混合物(聚乙烯亚胺(PEI)-Ag)与聚二甲基硅氧烷(PDMS)弹性体混合作为定制ɛr 和 Y 的替代方法。所制备的介电弹性体的ɛr 为 7.2 @ 103 Hz,Y 为 1.14 MPa,在 35 V/μm 时的致动应变为 22.27 %。因此,在基体和颗粒中加入这种基于双氨基络合效应的新型混合材料,可充分提高介电弹性体的致动性能。
{"title":"Silicon-based dielectric elastomer with amino-complexed hybrids towards high actuation performance","authors":"Zheng-xing Dai, Qing-qing Liu, Xiao-dong Qi, Nan Zhang, Ting Huang, Jing-hui Yang, Yong Wang","doi":"10.1016/j.nanoms.2023.12.009","DOIUrl":"https://doi.org/10.1016/j.nanoms.2023.12.009","url":null,"abstract":"<p>For improving the actuation performance at low electric fields of dielectric elastomers, achieving high dielectric constant (<em>ɛ</em><sub><em>r</em></sub>) and low modulus (<em>Y</em>) simultaneously has been targeted in the past decades, but there are few ways to accomplish both. In contrast to the classical strategies such as incorporating plasticizers or ceramic to prepare the silicon-based dielectric elastomers, here, blending an amino-complexed hybrid (polyethyleneimine (PEI)-Ag) with polydimethylsiloxane (PDMS) elastomer is reported as an alternative strategy to tailor the <em>ɛ</em><sub><em>r</em></sub> and <em>Y</em>. PEI-Ag not only exhibits excellent dielectric enhancement properties but also minimizes the PDMS crosslinking through amino-complexed reaction between PEI and Pt catalysts. The prepared dielectric elastomers have a <em>ɛ</em><sub><em>r</em></sub> of 7.2 @ 10<sup>3</sup> ​Hz and <em>Y</em> of 1.14 ​MPa, leading to an actuation strain of 22.27 ​% at 35 ​V/μm. Hence, incorporating such novel hybrids based on dual amino-complexed effect on both matrix and particles sufficiently promotes the actuated performance of dielectric elastomers.</p>","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139063551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilizing a defective MgO layer for engineering multifunctional Co-MOF hybrid materials with tailored leaf-like and polyhedral structures for optimal electrochemical and photocatalytic activities 利用有缺陷的氧化镁层设计具有定制叶状和多面体结构的多功能 Co-MOF 混合材料,以获得最佳电化学和光催化活性
Pub Date : 2023-12-15 DOI: 10.1016/j.nanoms.2023.12.003
Mohammad Aadil, Muhammad Ali Khan, Safira Ananda Rapycha, Mosab Kaseem

The hybridization of metal-organic framework (MOF) with inorganic layers would lead to the discovery of novel hybrid materials that can provide a compelling strategy for enhancing its photocatalytic and electrochemical response. In the present study, a highly efficient multifunctional hybrid material was developed by exploiting the defective layer formed on AZ31 Mg alloy through plasma electrolytic oxidation (PEO) as a nucleation and growth site for Co-MOF. The concentrations of the organic linker 2-Methylimidazole (2,MIm) and cobalt nitrate as a source of Co2+ ions were varied to control the growth of the obtained Co-MOF. Lower concentrations of the 2, MIm ligand favored the formation of leaf-like MOF structures through an anisotropic, two-dimensional growth, while higher concentrations led to rapid, isotropic nucleation and the creation of polyhedral Co-MOF structures. The sample characterized by polyhedral Co-MOF structures exhibited superior electrochemical stability, with the lowest corrosion current density (3.11 ​× ​10−9 A/cm2) and the highest top layer resistance (2.34 ​× ​106 ​Ω ​cm2), and demonstrated outstanding photocatalytic efficiency, achieving a remarkable 99.98 ​% degradation of methylene blue, an organic pollutant, in model wastewater. To assess the active adsorption sites of the Co-MOF, density functional theory (DFT) was utilized. This study explores the changes in morphologies of the coatings of Co-MOF with the change of solution concentration to form coatings with enhanced properties on the metallic substrate, which could establish the groundwork for the development of next-generation multifunctional frameworks with diverse applications.

金属有机框架(MOF)与无机层的杂化将导致新型杂化材料的发现,从而为增强其光催化和电化学响应提供了一种令人信服的策略。本研究利用等离子电解氧化(PEO)在 AZ31 Mg 合金上形成的缺陷层作为 Co-MOF 的成核和生长场所,开发了一种高效的多功能杂化材料。通过改变有机连接剂 2-甲基咪唑(2,MIm)和作为 Co2+ 离子源的硝酸钴的浓度来控制 Co-MOF 的生长。较低浓度的 2,MIm 配体有利于通过各向异性的二维生长形成叶状 MOF 结构,而较高浓度的 2,MIm 配体则会导致快速的各向同性成核,并形成多面体 Co-MOF 结构。以多面体 Co-MOF 结构为特征的样品表现出卓越的电化学稳定性,具有最低的腐蚀电流密度(3.11 × 10-9 A/cm2)和最高的顶层电阻(2.34 × 106 Ω cm2),并具有出色的光催化效率,对模型废水中的有机污染物亚甲基蓝的降解率高达 99.98%。为了评估 Co-MOF 的活性吸附位点,研究人员采用了密度泛函理论(DFT)。本研究探讨了 Co-MOF 涂层的形态随溶液浓度的变化而变化,从而在金属基底上形成具有增强性能的涂层,这为开发具有多种应用的下一代多功能框架奠定了基础。
{"title":"Utilizing a defective MgO layer for engineering multifunctional Co-MOF hybrid materials with tailored leaf-like and polyhedral structures for optimal electrochemical and photocatalytic activities","authors":"Mohammad Aadil, Muhammad Ali Khan, Safira Ananda Rapycha, Mosab Kaseem","doi":"10.1016/j.nanoms.2023.12.003","DOIUrl":"https://doi.org/10.1016/j.nanoms.2023.12.003","url":null,"abstract":"<p>The hybridization of metal-organic framework (MOF) with inorganic layers would lead to the discovery of novel hybrid materials that can provide a compelling strategy for enhancing its photocatalytic and electrochemical response. In the present study, a highly efficient multifunctional hybrid material was developed by exploiting the defective layer formed on AZ31 Mg alloy through plasma electrolytic oxidation (PEO) as a nucleation and growth site for Co-MOF. The concentrations of the organic linker 2-Methylimidazole (2,MIm) and cobalt nitrate as a source of Co<sup>2+</sup> ions were varied to control the growth of the obtained Co-MOF. Lower concentrations of the 2, MIm ligand favored the formation of leaf-like MOF structures through an anisotropic, two-dimensional growth, while higher concentrations led to rapid, isotropic nucleation and the creation of polyhedral Co-MOF structures. The sample characterized by polyhedral Co-MOF structures exhibited superior electrochemical stability, with the lowest corrosion current density (3.11 ​× ​10<sup>−9</sup> A/cm<sup>2</sup>) and the highest top layer resistance (2.34 ​× ​10<sup>6</sup> ​Ω ​cm<sup>2</sup>), and demonstrated outstanding photocatalytic efficiency, achieving a remarkable 99.98 ​% degradation of methylene blue, an organic pollutant, in model wastewater. To assess the active adsorption sites of the Co-MOF, density functional theory (DFT) was utilized. This study explores the changes in morphologies of the coatings of Co-MOF with the change of solution concentration to form coatings with enhanced properties on the metallic substrate, which could establish the groundwork for the development of next-generation multifunctional frameworks with diverse applications.</p>","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138686967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nano Materials Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1