首页 > 最新文献

Journal of Nonparametric Statistics最新文献

英文 中文
Errors-in-variables regression for mixed Euclidean and non-Euclidean predictors 欧氏和非欧氏混合预测变量的变量误差回归
IF 1.2 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-07-24 DOI: 10.1080/10485252.2024.2378897
Jeong Min Jeon
In this paper, we explore a novel regression problem encompassing both Euclidean and non-Euclidean predictors, all of which are subject to measurement errors. Specifically, we focus on a non-Euclid...
在本文中,我们探讨了一个新颖的回归问题,其中包括欧氏和非欧氏预测因子,所有这些预测因子都存在测量误差。具体来说,我们将重点放在一个非欧几里得...
{"title":"Errors-in-variables regression for mixed Euclidean and non-Euclidean predictors","authors":"Jeong Min Jeon","doi":"10.1080/10485252.2024.2378897","DOIUrl":"https://doi.org/10.1080/10485252.2024.2378897","url":null,"abstract":"In this paper, we explore a novel regression problem encompassing both Euclidean and non-Euclidean predictors, all of which are subject to measurement errors. Specifically, we focus on a non-Euclid...","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"20 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clustering of high-dimensional observations 高维观测数据的聚类
IF 1.2 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-07-24 DOI: 10.1080/10485252.2024.2378904
Yong Wang, Reza Modarres
We present a novel clustering method for high-dimensional, low sample size (HDLSS) data. The method is distance-based, takes advantage of the distance concentration phenomenon and the limiting valu...
我们提出了一种适用于高维、低样本量(HDLSS)数据的新型聚类方法。该方法以距离为基础,利用距离集中现象和极限值,对高维、低样本量(HDLSS)数据进行聚类。
{"title":"Clustering of high-dimensional observations","authors":"Yong Wang, Reza Modarres","doi":"10.1080/10485252.2024.2378904","DOIUrl":"https://doi.org/10.1080/10485252.2024.2378904","url":null,"abstract":"We present a novel clustering method for high-dimensional, low sample size (HDLSS) data. The method is distance-based, takes advantage of the distance concentration phenomenon and the limiting valu...","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"38 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tracking full posterior in online Bayesian classification learning: a particle filter approach 在线贝叶斯分类学习中的全后验跟踪:粒子过滤器方法
IF 1.2 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-07-09 DOI: 10.1080/10485252.2024.2368631
Enze Shi, Jinhan Xie, Shenggang Hu, Ke Sun, Hongsheng Dai, Bei Jiang, Linglong Kong, Lingzhu Li
The rapid growth of data volume and velocity is challenging traditional methods of classification, making it impossible to store so much data in memory. Developing online classification methods is ...
数据量和速度的快速增长对传统的分类方法提出了挑战,使得内存无法存储如此多的数据。开发在线分类方法 ...
{"title":"Tracking full posterior in online Bayesian classification learning: a particle filter approach","authors":"Enze Shi, Jinhan Xie, Shenggang Hu, Ke Sun, Hongsheng Dai, Bei Jiang, Linglong Kong, Lingzhu Li","doi":"10.1080/10485252.2024.2368631","DOIUrl":"https://doi.org/10.1080/10485252.2024.2368631","url":null,"abstract":"The rapid growth of data volume and velocity is challenging traditional methods of classification, making it impossible to store so much data in memory. Developing online classification methods is ...","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"30 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141608361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Group inference of high-dimensional single-index models 高维单指数模型的分组推断
IF 1.2 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-07-03 DOI: 10.1080/10485252.2024.2371524
Dongxiao Han, Miao Han, Meiling Hao, Liuquan Sun, Siyang Wang
For the supervised and semi-supervised settings, a group inference method is proposed for regression parameters in high-dimensional semi-parametric single-index models with an unknown random link f...
针对监督和半监督设置,提出了一种分组推断方法,用于具有未知随机联系的高维半参数单指标模型中的回归参数。
{"title":"Group inference of high-dimensional single-index models","authors":"Dongxiao Han, Miao Han, Meiling Hao, Liuquan Sun, Siyang Wang","doi":"10.1080/10485252.2024.2371524","DOIUrl":"https://doi.org/10.1080/10485252.2024.2371524","url":null,"abstract":"For the supervised and semi-supervised settings, a group inference method is proposed for regression parameters in high-dimensional semi-parametric single-index models with an unknown random link f...","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"78 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141608359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonparametric screening for additive quantile regression in ultra-high dimension 超高维度加法量化回归的非参数筛选
IF 1.2 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-06-18 DOI: 10.1080/10485252.2024.2366978
Daoji Li, Yinfei Kong, Dawit Zerom
In practical applications, one often does not know the ‘true’ structure of the underlying conditional quantile function, especially in the ultra-high dimensional setting. To deal with ultra-high di...
在实际应用中,人们往往不知道底层条件量子函数的 "真实 "结构,尤其是在超高维环境下。为了解决超高维问题,我们需要对条件量子函数的...
{"title":"Nonparametric screening for additive quantile regression in ultra-high dimension","authors":"Daoji Li, Yinfei Kong, Dawit Zerom","doi":"10.1080/10485252.2024.2366978","DOIUrl":"https://doi.org/10.1080/10485252.2024.2366978","url":null,"abstract":"In practical applications, one often does not know the ‘true’ structure of the underlying conditional quantile function, especially in the ultra-high dimensional setting. To deal with ultra-high di...","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"31 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trajectory clustering with adjustment for time-varying covariate effects 轨迹聚类,调整时变协变量效应
IF 1.2 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-05-27 DOI: 10.1080/10485252.2024.2358435
Chunxi Liu, Chao Han, Weiping Zhang
In this paper, we propose a penalized regression method to detect subgroups of trajectories while accounting for the time-varying effects of given covariates. Specifically, we allow both the latent...
在本文中,我们提出了一种惩罚回归方法来检测轨迹子群,同时考虑给定协变量的时变效应。具体来说,我们允许潜...
{"title":"Trajectory clustering with adjustment for time-varying covariate effects","authors":"Chunxi Liu, Chao Han, Weiping Zhang","doi":"10.1080/10485252.2024.2358435","DOIUrl":"https://doi.org/10.1080/10485252.2024.2358435","url":null,"abstract":"In this paper, we propose a penalized regression method to detect subgroups of trajectories while accounting for the time-varying effects of given covariates. Specifically, we allow both the latent...","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"67 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel framework for online supervised learning with feature selection 带特征选择的在线监督学习新框架
IF 1.2 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-05-24 DOI: 10.1080/10485252.2024.2359057
Lizhe Sun, Mingyuan Wang, Siquan Zhu, Adrian Barbu
Current online learning methods suffer issues such as lower convergence rates and limited capability to select important features compared to their offline counterparts. In this paper, a novel fram...
与离线学习方法相比,当前的在线学习方法存在收敛率较低、选择重要特征的能力有限等问题。在本文中,一个新颖的框架...
{"title":"A novel framework for online supervised learning with feature selection","authors":"Lizhe Sun, Mingyuan Wang, Siquan Zhu, Adrian Barbu","doi":"10.1080/10485252.2024.2359057","DOIUrl":"https://doi.org/10.1080/10485252.2024.2359057","url":null,"abstract":"Current online learning methods suffer issues such as lower convergence rates and limited capability to select important features compared to their offline counterparts. In this paper, a novel fram...","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"40 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equivalence between constrained optimal smoothing and Bayesian estimation 受限最优平滑法与贝叶斯估计法的等效性
IF 1.2 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-05-03 DOI: 10.1080/10485252.2024.2348542
L. Grammont, H. Maatouk, X. Bay
In this paper, we extend the correspondence between Bayesian estimation and optimal smoothing in a Reproducing Kernel Hilbert Space (RKHS) by adding convex constraints to the problem. Through a seq...
本文通过为问题添加凸约束,扩展了贝叶斯估计与再现核希尔伯特空间(RKHS)中最优平滑之间的对应关系。通过一系列...
{"title":"Equivalence between constrained optimal smoothing and Bayesian estimation","authors":"L. Grammont, H. Maatouk, X. Bay","doi":"10.1080/10485252.2024.2348542","DOIUrl":"https://doi.org/10.1080/10485252.2024.2348542","url":null,"abstract":"In this paper, we extend the correspondence between Bayesian estimation and optimal smoothing in a Reproducing Kernel Hilbert Space (RKHS) by adding convex constraints to the problem. Through a seq...","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"35 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-driven resistant kernel regression 数据驱动的抗核回归
IF 1.2 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-04-03 DOI: 10.1080/10485252.2024.2335494
Jianhua Zhou, Christopher F. Parmeter
We investigate data-driven bandwidth selection within the confines of robust (resistant) kernel smoothing. While several approaches presently exist, they require user defined robustness parameters....
我们在鲁棒(抗性)核平滑的范围内研究了数据驱动的带宽选择。虽然目前存在几种方法,但它们都需要用户定义鲁棒性参数....
{"title":"Data-driven resistant kernel regression","authors":"Jianhua Zhou, Christopher F. Parmeter","doi":"10.1080/10485252.2024.2335494","DOIUrl":"https://doi.org/10.1080/10485252.2024.2335494","url":null,"abstract":"We investigate data-driven bandwidth selection within the confines of robust (resistant) kernel smoothing. While several approaches presently exist, they require user defined robustness parameters....","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"25 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140576413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced doubly robust estimation with concave link functions for estimands in clinical trials 针对临床试验中的估算对象,利用凹链接函数增强双重稳健性估算
IF 1.2 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-03-12 DOI: 10.1080/10485252.2024.2328078
Junyi Zhang, Ao Yuan, Ming T. Tan
For observational studies or clinical trials not fully randomised, the baseline covariates are often not balanced between the treatment and control groups. In this case, the traditional estimates o...
对于非完全随机的观察性研究或临床试验,治疗组和对照组之间的基线协变量往往并不平衡。在这种情况下,传统的估计...
{"title":"Enhanced doubly robust estimation with concave link functions for estimands in clinical trials","authors":"Junyi Zhang, Ao Yuan, Ming T. Tan","doi":"10.1080/10485252.2024.2328078","DOIUrl":"https://doi.org/10.1080/10485252.2024.2328078","url":null,"abstract":"For observational studies or clinical trials not fully randomised, the baseline covariates are often not balanced between the treatment and control groups. In this case, the traditional estimates o...","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"131 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140148493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Nonparametric Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1