首页 > 最新文献

arXiv - PHYS - Instrumentation and Methods for Astrophysics最新文献

英文 中文
Recent and Upcoming Upgrades for MIRC-X and MYSTIC on the CHARA Array 最近和即将对 CHARA 阵列上的 MIRC-X 和 MYSTIC 进行的升级
Pub Date : 2024-08-07 DOI: arxiv-2408.04038
Noura IbrahimUniversity of Michigan, Mayra GutierrezUniversity of Michigan, John D. MonnierUniversity of Michigan, Stefan KrausUniversity of Exeter, Jean-Baptiste Le BouquinIPAG, Narsireddy AnuguThe CHARA Array, Theo ten BrummelaarThe CHARA Array, Sorabh ChhabraUniversity of Exeter, Isabelle CodronUniversity of Exeter, Julien DejongheObservatoire de la Côte d'Azur, Aaron LabdonEuropean Southern Observatory, Daniel LecronObservatoire de la Côte d'Azur, Daniel MortimerMax-Planck-Institut für Astronomie, Denis MourardObservatoire de la Côte d'Azur, Gail SchaeferThe CHARA Array, Benjamin SetterholmMax-Planck-Institut für Astronomie, Manuela ArnóINAF, Andrea BiancoINAF, Michele FrangiamoreINAF, Laurent JocouIPAG
MIRC-X and MYSTIC are six-telescope near-infrared beam (1.08-2.38 ${mu}$m)combiners at the CHARA Array on Mt Wilson CA, USA. Ever since the commissioningof MIRC-X (J and H bands) in 2018 and MYSTIC (K bands) in 2021, they have beenthe most popular and over-subscribed instruments at the array. Observers havebeen able to image stellar objects with sensitivity down to 8.1 mag in H and7.8 mag in K-band under the very best conditions. In 2022 MYSTIC was upgradedwith a new ABCD mode using the VLTI/GRAVITY 4-beam integrated optics chip, withthe goal of improving the sensitivity and calibration. The ABCD mode has beenused to observe more than 20 T Tauri stars; however, the data pipeline is stillbeing developed. Alongside software upgrades, we detail planned upgrades toboth instruments in this paper. The main upgrades are: 1) Adding a motorizedfilter wheel to MIRC-X along with new high spectral resolution modes 2)Updating MIRC-X optics to allow for simultaneous 6T J+H observations 3)Removing the warm window between the spectrograph and the warm optics in MYSTIC4) Adding a 6T ABCD mode to MIRC-X in collaboration with CHARA/SPICA 5)Updating the MIRC-X CRED-ONE camera funded by Prof. Kraus from U. Exeter 6)Carrying out science verification of the MIRC-X polarization mode 7) Developingnew software for ABCD-mode data reduction and more efficient calibrationroutines. We expect these upgrades to not only improve the observingexperience, but also increase the sensitivity by 0.4 mag in J+H-bands, and 1mag in K-band.
MIRC-X和MYSTIC是美国加利福尼亚州威尔逊山CHARA阵列上的六台望远镜近红外波束(1.08-2.38 ${mu}$m)组合仪。自2018年MIRC-X(J波段和H波段)和2021年MYSTIC(K波段)投入使用以来,它们一直是阵列中最受欢迎和超额认购的仪器。在最佳条件下,观测者能够对恒星天体进行成像,H 波段的灵敏度低至 8.1 等,K 波段的灵敏度低至 7.8 等。2022 年,MYSTIC 进行了升级,采用了新的 ABCD 模式,使用了 VLTI/GRAVITY 4 波束集成光学芯片,目的是提高灵敏度和校准能力。ABCD 模式已用于观测 20 多颗金牛座恒星;不过,数据管道仍在开发中。除了软件升级,我们还在本文中详细介绍了两台仪器的升级计划。主要升级包括1)为 MIRC-X 增加电动滤波轮和新的高光谱分辨率模式2)更新 MIRC-X 光学系统,以便同时进行 6T J+H 观测3)移除 MYSTIC 中摄谱仪与暖光学系统之间的暖窗口4)与 CHARA/SPICA 合作,为 MIRC-X 增加 6T ABCD 模式5)更新 MIRC-X CRED-ONE 相机,由埃克塞特大学的 Kraus 教授资助。6) 对 MIRC-X 偏振模式进行科学验证 7) 开发用于 ABCD 模式数据还原的新软件和更高效的校准程序。我们希望这些升级不仅能改善观测体验,还能将 J+H 波段的灵敏度提高 0.4 个马格,将 K 波段的灵敏度提高 1 个马格。
{"title":"Recent and Upcoming Upgrades for MIRC-X and MYSTIC on the CHARA Array","authors":"Noura IbrahimUniversity of Michigan, Mayra GutierrezUniversity of Michigan, John D. MonnierUniversity of Michigan, Stefan KrausUniversity of Exeter, Jean-Baptiste Le BouquinIPAG, Narsireddy AnuguThe CHARA Array, Theo ten BrummelaarThe CHARA Array, Sorabh ChhabraUniversity of Exeter, Isabelle CodronUniversity of Exeter, Julien DejongheObservatoire de la Côte d'Azur, Aaron LabdonEuropean Southern Observatory, Daniel LecronObservatoire de la Côte d'Azur, Daniel MortimerMax-Planck-Institut für Astronomie, Denis MourardObservatoire de la Côte d'Azur, Gail SchaeferThe CHARA Array, Benjamin SetterholmMax-Planck-Institut für Astronomie, Manuela ArnóINAF, Andrea BiancoINAF, Michele FrangiamoreINAF, Laurent JocouIPAG","doi":"arxiv-2408.04038","DOIUrl":"https://doi.org/arxiv-2408.04038","url":null,"abstract":"MIRC-X and MYSTIC are six-telescope near-infrared beam (1.08-2.38 ${mu}$m)\u0000combiners at the CHARA Array on Mt Wilson CA, USA. Ever since the commissioning\u0000of MIRC-X (J and H bands) in 2018 and MYSTIC (K bands) in 2021, they have been\u0000the most popular and over-subscribed instruments at the array. Observers have\u0000been able to image stellar objects with sensitivity down to 8.1 mag in H and\u00007.8 mag in K-band under the very best conditions. In 2022 MYSTIC was upgraded\u0000with a new ABCD mode using the VLTI/GRAVITY 4-beam integrated optics chip, with\u0000the goal of improving the sensitivity and calibration. The ABCD mode has been\u0000used to observe more than 20 T Tauri stars; however, the data pipeline is still\u0000being developed. Alongside software upgrades, we detail planned upgrades to\u0000both instruments in this paper. The main upgrades are: 1) Adding a motorized\u0000filter wheel to MIRC-X along with new high spectral resolution modes 2)\u0000Updating MIRC-X optics to allow for simultaneous 6T J+H observations 3)\u0000Removing the warm window between the spectrograph and the warm optics in MYSTIC\u00004) Adding a 6T ABCD mode to MIRC-X in collaboration with CHARA/SPICA 5)\u0000Updating the MIRC-X CRED-ONE camera funded by Prof. Kraus from U. Exeter 6)\u0000Carrying out science verification of the MIRC-X polarization mode 7) Developing\u0000new software for ABCD-mode data reduction and more efficient calibration\u0000routines. We expect these upgrades to not only improve the observing\u0000experience, but also increase the sensitivity by 0.4 mag in J+H-bands, and 1\u0000mag in K-band.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spacecraft inertial parameters estimation using time series clustering and reinforcement learning 利用时间序列聚类和强化学习估算航天器惯性参数
Pub Date : 2024-08-06 DOI: arxiv-2408.03445
Konstantinos Platanitis, Miguel Arana-Catania, Leonardo Capicchiano, Saurabh Upadhyay, Leonard Felicetti
This paper presents a machine learning approach to estimate the inertialparameters of a spacecraft in cases when those change during operations, e.g.multiple deployments of payloads, unfolding of appendages and booms, propellantconsumption as well as during in-orbit servicing and active debris removaloperations. The machine learning approach uses time series clustering togetherwith an optimised actuation sequence generated by reinforcement learning tofacilitate distinguishing among different inertial parameter sets. Theperformance of the proposed strategy is assessed against the case of amulti-satellite deployment system showing that the algorithm is resilienttowards common disturbances in such kinds of operations.
本文提出了一种机器学习方法,用于估计航天器在运行过程中发生变化时的惯性参数,例如有效载荷的多次部署、附属装置和吊杆的展开、推进剂消耗以及在轨维修和主动碎片清除运行过程中的惯性参数。机器学习方法使用时间序列聚类和强化学习生成的优化执行序列来区分不同的惯性参数集。以多卫星部署系统为例,对所提策略的性能进行了评估,结果表明该算法能够抵御此类操作中的常见干扰。
{"title":"Spacecraft inertial parameters estimation using time series clustering and reinforcement learning","authors":"Konstantinos Platanitis, Miguel Arana-Catania, Leonardo Capicchiano, Saurabh Upadhyay, Leonard Felicetti","doi":"arxiv-2408.03445","DOIUrl":"https://doi.org/arxiv-2408.03445","url":null,"abstract":"This paper presents a machine learning approach to estimate the inertial\u0000parameters of a spacecraft in cases when those change during operations, e.g.\u0000multiple deployments of payloads, unfolding of appendages and booms, propellant\u0000consumption as well as during in-orbit servicing and active debris removal\u0000operations. The machine learning approach uses time series clustering together\u0000with an optimised actuation sequence generated by reinforcement learning to\u0000facilitate distinguishing among different inertial parameter sets. The\u0000performance of the proposed strategy is assessed against the case of a\u0000multi-satellite deployment system showing that the algorithm is resilient\u0000towards common disturbances in such kinds of operations.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"90 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-dimensional optimisation of the scanning strategy for the LiteBIRD space mission 多维优化 LiteBIRD 空间任务的扫描策略
Pub Date : 2024-08-06 DOI: arxiv-2408.03040
Y. Takasefor the LiteBIRD Collaboration, L. Vacherfor the LiteBIRD Collaboration, H. Ishinofor the LiteBIRD Collaboration, G. Patanchonfor the LiteBIRD Collaboration, L. Montierfor the LiteBIRD Collaboration, S. L. Steverfor the LiteBIRD Collaboration, K. Ishizakafor the LiteBIRD Collaboration, Y. Naganofor the LiteBIRD Collaboration, W. Wangfor the LiteBIRD Collaboration, J. Aumontfor the LiteBIRD Collaboration, K. Aizawafor the LiteBIRD Collaboration, A. Anandfor the LiteBIRD Collaboration, C. Baccigalupifor the LiteBIRD Collaboration, M. Ballardinifor the LiteBIRD Collaboration, A. J. Bandayfor the LiteBIRD Collaboration, R. B. Barreirofor the LiteBIRD Collaboration, N. Bartolofor the LiteBIRD Collaboration, S. Basakfor the LiteBIRD Collaboration, M. Bersanellifor the LiteBIRD Collaboration, M. Bortolamifor the LiteBIRD Collaboration, T. Brinckmannfor the LiteBIRD Collaboration, E. Calabresefor the LiteBIRD Collaboration, P. Campetifor the LiteBIRD Collaboration, E. Carinosfor the LiteBIRD Collaboration, A. Caronesfor the LiteBIRD Collaboration, F. J. Casasfor the LiteBIRD Collaboration, K. Cheungfor the LiteBIRD Collaboration, L. Clermontfor the LiteBIRD Collaboration, F. Columbrofor the LiteBIRD Collaboration, A. Coppolecchiafor the LiteBIRD Collaboration, F. Cuttaiafor the LiteBIRD Collaboration, P. de Bernardisfor the LiteBIRD Collaboration, T. de Haanfor the LiteBIRD Collaboration, E. de la Hozfor the LiteBIRD Collaboration, S. Della Torrefor the LiteBIRD Collaboration, P. Diego-Palazuelosfor the LiteBIRD Collaboration, G. D'Alessandrofor the LiteBIRD Collaboration, H. K. Eriksenfor the LiteBIRD Collaboration, J. Errardfor the LiteBIRD Collaboration, F. Finellifor the LiteBIRD Collaboration, U. Fuskelandfor the LiteBIRD Collaboration, G. Gallonifor the LiteBIRD Collaboration, M. Gallowayfor the LiteBIRD Collaboration, M. Gervasifor the LiteBIRD Collaboration, T. Ghignafor the LiteBIRD Collaboration, S. Giardiellofor the LiteBIRD Collaboration, C. Gimeno-Amofor the LiteBIRD Collaboration, E. Gjerløwfor the LiteBIRD Collaboration, R. González Gonzálezfor the LiteBIRD Collaboration, A. Gruppusofor the LiteBIRD Collaboration, M. Hazumifor the LiteBIRD Collaboration, S. Henrot-Versilléfor the LiteBIRD Collaboration, L. T. Hergtfor the LiteBIRD Collaboration, K. Ikumafor the LiteBIRD Collaboration, K. Kohrifor the LiteBIRD Collaboration, L. Lamagnafor the LiteBIRD Collaboration, M. Lattanzifor the LiteBIRD Collaboration, C. Leloupfor the LiteBIRD Collaboration, M. Lembofor the LiteBIRD Collaboration, F. Levrierfor the LiteBIRD Collaboration, A. I. Lonappanfor the LiteBIRD Collaboration, M. López-Caniegofor the LiteBIRD Collaboration, G. Luzzifor the LiteBIRD Collaboration, B. Maffeifor the LiteBIRD Collaboration, E. Martínez-Gonzálezfor the LiteBIRD Collaboration, S. Masifor the LiteBIRD Collaboration, S. Matarresefor the LiteBIRD Collaboration, F. T. Matsudafor the LiteBIRD Collaboration, T. Matsumurafor the LiteBIRD Collaboration, S. Michelifor the LiteBIRD Collaboration, M. Migliacciofor the LiteBIRD Collaboration, M. Monellifor the LiteBIRD Collaboration, G. Morgantefor the LiteBIRD Collaboration, B. Motfor the LiteBIRD Collaboration, R. Nagatafor the LiteBIRD Collaboration, T. Namikawafor the LiteBIRD Collaboration, A. Novellifor the LiteBIRD Collaboration, K. Odagirifor the LiteBIRD Collaboration, S. Ogurifor the LiteBIRD Collaboration, R. Omaefor the LiteBIRD Collaboration, L. Paganofor the LiteBIRD Collaboration, D. Paolettifor the LiteBIRD Collaboration, F. Piacentinifor the LiteBIRD Collaboration, M. Pincherafor the LiteBIRD Collaboration, G. Polentafor the LiteBIRD Collaboration, L. Porcellifor the LiteBIRD Collaboration, N. Raffuzzifor the LiteBIRD Collaboration, M. Remazeillesfor the LiteBIRD Collaboration, A. Ritaccofor the LiteBIRD Collaboration, M. Ruiz-Grandafor the LiteBIRD Collaboration, Y. Sakuraifor the LiteBIRD Collaboration, D. Scottfor the LiteBIRD Collaboration, Y. Sekimotofor the LiteBIRD Collaboration, M. Shiraishifor the LiteBIRD Collaboration, G. Signorellifor the LiteBIRD Collaboration, R. M. Sullivanfor the LiteBIRD Collaboration, H. Takakurafor the LiteBIRD Collaboration, L. Terenzifor the LiteBIRD Collaboration, M. Tomasifor the LiteBIRD Collaboration, M. Tristramfor the LiteBIRD Collaboration, B. van Tentfor the LiteBIRD Collaboration, P. Vielvafor the LiteBIRD Collaboration, I. K. Wehusfor the LiteBIRD Collaboration, B. Westbrookfor the LiteBIRD Collaboration, G. Weymann-Despresfor the LiteBIRD Collaboration, E. J. Wollackfor the LiteBIRD Collaboration, M. Zannonifor the LiteBIRD Collaboration, Y. Zhoufor the LiteBIRD Collaboration
Large angular scale surveys in the absence of atmosphere are essential formeasuring the primordial $B$-mode power spectrum of the Cosmic MicrowaveBackground (CMB). Since this proposed measurement is about three to four ordersof magnitude fainter than the temperature anisotropies of the CMB, in-flightcalibration of the instruments and active suppression of systematic effects arecrucial. We investigate the effect of changing the parameters of the scanningstrategy on the in-flight calibration effectiveness, the suppression of thesystematic effects themselves, and the ability to distinguish systematiceffects by null-tests. Next-generation missions such as LiteBIRD, modulated bya Half-Wave Plate (HWP), will be able to observe polarisation using a singledetector, eliminating the need to combine several detectors to measurepolarisation, as done in many previous experiments and hence avoiding theconsequent systematic effects. While the HWP is expected to suppress manysystematic effects, some of them will remain. We use an analytical approach tocomprehensively address the mitigation of these systematic effects and identifythe characteristics of scanning strategies that are the most effective forimplementing a variety of calibration strategies in the multi-dimensional spaceof common spacecraft scan parameters. We also present Falcons, a fastspacecraft scanning simulator that we developed to investigate this scanningparameter space.
在没有大气层的情况下进行大角度尺度测量,对于测量宇宙微波背景(CMB)的原始B模式功率谱至关重要。由于这种拟议的测量比 CMB 的温度各向异性要暗三到四个数量级,因此对仪器进行飞行校准和积极抑制系统效应至关重要。我们研究了改变扫描策略参数对飞行中校准效果的影响、对系统效应本身的抑制,以及通过无效检验区分系统效应的能力。像 LiteBIRD 这样由半波板(HWP)调制的下一代飞行任务将能够使用单个探测器来观测偏振,从而无需像以前的许多实验那样结合多个探测器来测量偏振,从而避免了随之而来的系统效应。虽然 HWP 预计会抑制许多系统效应,但其中一些效应仍将存在。我们使用一种分析方法来全面解决这些系统效应的缓解问题,并确定扫描策略的特征,这些特征对于在常见航天器扫描参数的多维空间中实施各种校准策略最为有效。我们还介绍了我们为研究这一扫描参数空间而开发的快速航天器扫描模拟器 Falcons。
{"title":"Multi-dimensional optimisation of the scanning strategy for the LiteBIRD space mission","authors":"Y. Takasefor the LiteBIRD Collaboration, L. Vacherfor the LiteBIRD Collaboration, H. Ishinofor the LiteBIRD Collaboration, G. Patanchonfor the LiteBIRD Collaboration, L. Montierfor the LiteBIRD Collaboration, S. L. Steverfor the LiteBIRD Collaboration, K. Ishizakafor the LiteBIRD Collaboration, Y. Naganofor the LiteBIRD Collaboration, W. Wangfor the LiteBIRD Collaboration, J. Aumontfor the LiteBIRD Collaboration, K. Aizawafor the LiteBIRD Collaboration, A. Anandfor the LiteBIRD Collaboration, C. Baccigalupifor the LiteBIRD Collaboration, M. Ballardinifor the LiteBIRD Collaboration, A. J. Bandayfor the LiteBIRD Collaboration, R. B. Barreirofor the LiteBIRD Collaboration, N. Bartolofor the LiteBIRD Collaboration, S. Basakfor the LiteBIRD Collaboration, M. Bersanellifor the LiteBIRD Collaboration, M. Bortolamifor the LiteBIRD Collaboration, T. Brinckmannfor the LiteBIRD Collaboration, E. Calabresefor the LiteBIRD Collaboration, P. Campetifor the LiteBIRD Collaboration, E. Carinosfor the LiteBIRD Collaboration, A. Caronesfor the LiteBIRD Collaboration, F. J. Casasfor the LiteBIRD Collaboration, K. Cheungfor the LiteBIRD Collaboration, L. Clermontfor the LiteBIRD Collaboration, F. Columbrofor the LiteBIRD Collaboration, A. Coppolecchiafor the LiteBIRD Collaboration, F. Cuttaiafor the LiteBIRD Collaboration, P. de Bernardisfor the LiteBIRD Collaboration, T. de Haanfor the LiteBIRD Collaboration, E. de la Hozfor the LiteBIRD Collaboration, S. Della Torrefor the LiteBIRD Collaboration, P. Diego-Palazuelosfor the LiteBIRD Collaboration, G. D'Alessandrofor the LiteBIRD Collaboration, H. K. Eriksenfor the LiteBIRD Collaboration, J. Errardfor the LiteBIRD Collaboration, F. Finellifor the LiteBIRD Collaboration, U. Fuskelandfor the LiteBIRD Collaboration, G. Gallonifor the LiteBIRD Collaboration, M. Gallowayfor the LiteBIRD Collaboration, M. Gervasifor the LiteBIRD Collaboration, T. Ghignafor the LiteBIRD Collaboration, S. Giardiellofor the LiteBIRD Collaboration, C. Gimeno-Amofor the LiteBIRD Collaboration, E. Gjerløwfor the LiteBIRD Collaboration, R. González Gonzálezfor the LiteBIRD Collaboration, A. Gruppusofor the LiteBIRD Collaboration, M. Hazumifor the LiteBIRD Collaboration, S. Henrot-Versilléfor the LiteBIRD Collaboration, L. T. Hergtfor the LiteBIRD Collaboration, K. Ikumafor the LiteBIRD Collaboration, K. Kohrifor the LiteBIRD Collaboration, L. Lamagnafor the LiteBIRD Collaboration, M. Lattanzifor the LiteBIRD Collaboration, C. Leloupfor the LiteBIRD Collaboration, M. Lembofor the LiteBIRD Collaboration, F. Levrierfor the LiteBIRD Collaboration, A. I. Lonappanfor the LiteBIRD Collaboration, M. López-Caniegofor the LiteBIRD Collaboration, G. Luzzifor the LiteBIRD Collaboration, B. Maffeifor the LiteBIRD Collaboration, E. Martínez-Gonzálezfor the LiteBIRD Collaboration, S. Masifor the LiteBIRD Collaboration, S. Matarresefor the LiteBIRD Collaboration, F. T. Matsudafor the LiteBIRD Collaboration, T. Matsumurafor the LiteBIRD Collaboration, S. Michelifor the LiteBIRD Collaboration, M. Migliacciofor the LiteBIRD Collaboration, M. Monellifor the LiteBIRD Collaboration, G. Morgantefor the LiteBIRD Collaboration, B. Motfor the LiteBIRD Collaboration, R. Nagatafor the LiteBIRD Collaboration, T. Namikawafor the LiteBIRD Collaboration, A. Novellifor the LiteBIRD Collaboration, K. Odagirifor the LiteBIRD Collaboration, S. Ogurifor the LiteBIRD Collaboration, R. Omaefor the LiteBIRD Collaboration, L. Paganofor the LiteBIRD Collaboration, D. Paolettifor the LiteBIRD Collaboration, F. Piacentinifor the LiteBIRD Collaboration, M. Pincherafor the LiteBIRD Collaboration, G. Polentafor the LiteBIRD Collaboration, L. Porcellifor the LiteBIRD Collaboration, N. Raffuzzifor the LiteBIRD Collaboration, M. Remazeillesfor the LiteBIRD Collaboration, A. Ritaccofor the LiteBIRD Collaboration, M. Ruiz-Grandafor the LiteBIRD Collaboration, Y. Sakuraifor the LiteBIRD Collaboration, D. Scottfor the LiteBIRD Collaboration, Y. Sekimotofor the LiteBIRD Collaboration, M. Shiraishifor the LiteBIRD Collaboration, G. Signorellifor the LiteBIRD Collaboration, R. M. Sullivanfor the LiteBIRD Collaboration, H. Takakurafor the LiteBIRD Collaboration, L. Terenzifor the LiteBIRD Collaboration, M. Tomasifor the LiteBIRD Collaboration, M. Tristramfor the LiteBIRD Collaboration, B. van Tentfor the LiteBIRD Collaboration, P. Vielvafor the LiteBIRD Collaboration, I. K. Wehusfor the LiteBIRD Collaboration, B. Westbrookfor the LiteBIRD Collaboration, G. Weymann-Despresfor the LiteBIRD Collaboration, E. J. Wollackfor the LiteBIRD Collaboration, M. Zannonifor the LiteBIRD Collaboration, Y. Zhoufor the LiteBIRD Collaboration","doi":"arxiv-2408.03040","DOIUrl":"https://doi.org/arxiv-2408.03040","url":null,"abstract":"Large angular scale surveys in the absence of atmosphere are essential for\u0000measuring the primordial $B$-mode power spectrum of the Cosmic Microwave\u0000Background (CMB). Since this proposed measurement is about three to four orders\u0000of magnitude fainter than the temperature anisotropies of the CMB, in-flight\u0000calibration of the instruments and active suppression of systematic effects are\u0000crucial. We investigate the effect of changing the parameters of the scanning\u0000strategy on the in-flight calibration effectiveness, the suppression of the\u0000systematic effects themselves, and the ability to distinguish systematic\u0000effects by null-tests. Next-generation missions such as LiteBIRD, modulated by\u0000a Half-Wave Plate (HWP), will be able to observe polarisation using a single\u0000detector, eliminating the need to combine several detectors to measure\u0000polarisation, as done in many previous experiments and hence avoiding the\u0000consequent systematic effects. While the HWP is expected to suppress many\u0000systematic effects, some of them will remain. We use an analytical approach to\u0000comprehensively address the mitigation of these systematic effects and identify\u0000the characteristics of scanning strategies that are the most effective for\u0000implementing a variety of calibration strategies in the multi-dimensional space\u0000of common spacecraft scan parameters. We also present Falcons, a fast\u0000spacecraft scanning simulator that we developed to investigate this scanning\u0000parameter space.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconstruction of energy and arrival directions of UHECRs registered by fluorescence telescopes with a neural network 用神经网络重构荧光望远镜记录的超高频红外辐射的能量和到达方向
Pub Date : 2024-08-05 DOI: arxiv-2408.02440
Mikhail Zotovfor the JEM-EUSO Collaboration
Fluorescence telescopes are important instruments widely used in modernexperiments for registering ultraviolet radiation from extensive air showers(EASs) generated by cosmic rays of ultra-high energies. We present aproof-of-concept convolutional neural network aimed at reconstruction of energyand arrival directions of primary particles using model data for two telescopesdeveloped by the international JEM-EUSO collaboration. We also demonstrate howa simple convolutional encoder-decoder can be used for EAS track recognition.The approach is generic and can be adopted for other fluorescence telescopes.
荧光望远镜是现代实验中广泛使用的重要仪器,用于记录由超高能量宇宙射线产生的大范围空气淋浴(EAS)的紫外线辐射。我们介绍了一个概念验证卷积神经网络,旨在利用国际 JEM-EUSO 合作组织开发的两台望远镜的模型数据重建原生粒子的能量和到达方向。我们还演示了如何将简单的卷积编码器-解码器用于 EAS 轨迹识别。该方法具有通用性,可用于其他荧光望远镜。
{"title":"Reconstruction of energy and arrival directions of UHECRs registered by fluorescence telescopes with a neural network","authors":"Mikhail Zotovfor the JEM-EUSO Collaboration","doi":"arxiv-2408.02440","DOIUrl":"https://doi.org/arxiv-2408.02440","url":null,"abstract":"Fluorescence telescopes are important instruments widely used in modern\u0000experiments for registering ultraviolet radiation from extensive air showers\u0000(EASs) generated by cosmic rays of ultra-high energies. We present a\u0000proof-of-concept convolutional neural network aimed at reconstruction of energy\u0000and arrival directions of primary particles using model data for two telescopes\u0000developed by the international JEM-EUSO collaboration. We also demonstrate how\u0000a simple convolutional encoder-decoder can be used for EAS track recognition.\u0000The approach is generic and can be adopted for other fluorescence telescopes.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GALI -- A GAmma-ray burst Localizing Instrument: Results from Full Size Engineering Model GALI -- GAmma射线迸发定位仪器:全尺寸工程模型的结果
Pub Date : 2024-08-04 DOI: arxiv-2408.02144
Julia Saleh-Natur, Ehud Behar, Omer Reich, Shlomit Tarem, Zvika Tarem, Alex Vdovin, Amir Feigenboim, Roi Rahin, Avner Kaidar, Hovhannes Agalarian, Alon Osovizky, Max Ghelman
We present a full-size engineering model of GALI - The GAmma-ray burstLocalizing Instrument, composed of 362 CsI(Tl) small cubic scintillators,distributed within a small volume of $sim2$l, and read out by siliconphoto-multipliers. GALI can provide directional information about GRBs withhigh angular accuracy from angle-dependent mutual obstruction between itsscintillators. Here, we demonstrate GALI's laboratory experiments with an$^{241}$Am source, which achieved directional reconstruction of $<$3$^circ$accuracy, in agreement with our Monte-Carlo simulations. GALI has a wide fieldview of the unobstructed sky. With its current cubic configuration, GALI'seffective area varies between 97 cm$^2$ (face on) and 138 cm$^2$ (from thecorners at 45$^circ$), which is verified in the current experiment.
我们展示了GALI--GAmma射线暴定位仪器的全尺寸工程模型,它由362个铯(Tl)小立方闪烁体组成,分布在$sim2$l的小体积内,由硅光电倍增器读出。GALI可以通过闪烁体之间与角度相关的相互阻挡,提供具有高角度精度的GRB定向信息。在这里,我们用一个^{241}$Am源演示了GALI的实验室实验,它实现了<$3$^circ$精度的方向重建,与我们的蒙特卡洛模拟一致。GALI 具有无遮挡天空的宽视场。在当前的立方配置下,GALI 的有效面积在 97 cm$^2$ (正面)和 138 cm$^2$ (从角 45$^circ$ 处)之间变化,这在当前的实验中得到了验证。
{"title":"GALI -- A GAmma-ray burst Localizing Instrument: Results from Full Size Engineering Model","authors":"Julia Saleh-Natur, Ehud Behar, Omer Reich, Shlomit Tarem, Zvika Tarem, Alex Vdovin, Amir Feigenboim, Roi Rahin, Avner Kaidar, Hovhannes Agalarian, Alon Osovizky, Max Ghelman","doi":"arxiv-2408.02144","DOIUrl":"https://doi.org/arxiv-2408.02144","url":null,"abstract":"We present a full-size engineering model of GALI - The GAmma-ray burst\u0000Localizing Instrument, composed of 362 CsI(Tl) small cubic scintillators,\u0000distributed within a small volume of $sim2$l, and read out by silicon\u0000photo-multipliers. GALI can provide directional information about GRBs with\u0000high angular accuracy from angle-dependent mutual obstruction between its\u0000scintillators. Here, we demonstrate GALI's laboratory experiments with an\u0000$^{241}$Am source, which achieved directional reconstruction of $<$3$^circ$\u0000accuracy, in agreement with our Monte-Carlo simulations. GALI has a wide field\u0000view of the unobstructed sky. With its current cubic configuration, GALI's\u0000effective area varies between 97 cm$^2$ (face on) and 138 cm$^2$ (from the\u0000corners at 45$^circ$), which is verified in the current experiment.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"63 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metrics of Astrometric Variability in the International Celestial Reference Frame: I. Statistical analysis and selection of the most variable sources 国际天体参照基准中的天体测量可变性度量:I. 统计分析和最易变异源的选择
Pub Date : 2024-08-02 DOI: arxiv-2408.01373
Phil Cigan, Valeri Makarov, Nathan Secrest, David Gordon, Megan Johnson, Sebastien Lambert
Using very long baseline interferometry data for the sources that comprisethe third International Celestial Reference Frame (ICRF3), we examine thequality of the formal source position uncertainties of ICRF3 by determining theexcess astrometric variability (unexplained variance) for each source as afunction of time. We also quantify multiple qualitatively distinct aspects ofastrometric variability seen in the data, using a variety of metrics. Averageposition offsets, statistical dispersion measures, and coherent trends overtime as explored by smoothing the data are combined to characterize the mostand least positionally stable ICRF3 sources. We find a notable dependence ofthe excess variance and statistical variability measures on declination, as isexpected for unmodeled ionospheric delay errors and the northern hemispheredominated network geometries of most astrometric and geodetic observingcampaigns.
利用构成第三个国际天体参考框架(ICRF3)的源的甚长基线干涉测量数据,我们通过确定每个源随时间变化的天体测量变异性(未解释方差),来检验国际天体参考框架3的正式源位置不确定性的质量。我们还利用各种指标对数据中出现的天体测量变异性的多个不同质量方面进行了量化。我们将平均位置偏移、统计离散度量以及通过平滑数据探索出的超时相干趋势结合起来,以描述位置最稳定和最不稳定的 ICRF3 来源。我们发现过量方差和统计变异度量对偏角有明显的依赖性,这是未模拟的电离层延迟误差和大多数天体测量和大地测量观测运动以北半球为主的网络几何所预期的。
{"title":"Metrics of Astrometric Variability in the International Celestial Reference Frame: I. Statistical analysis and selection of the most variable sources","authors":"Phil Cigan, Valeri Makarov, Nathan Secrest, David Gordon, Megan Johnson, Sebastien Lambert","doi":"arxiv-2408.01373","DOIUrl":"https://doi.org/arxiv-2408.01373","url":null,"abstract":"Using very long baseline interferometry data for the sources that comprise\u0000the third International Celestial Reference Frame (ICRF3), we examine the\u0000quality of the formal source position uncertainties of ICRF3 by determining the\u0000excess astrometric variability (unexplained variance) for each source as a\u0000function of time. We also quantify multiple qualitatively distinct aspects of\u0000astrometric variability seen in the data, using a variety of metrics. Average\u0000position offsets, statistical dispersion measures, and coherent trends over\u0000time as explored by smoothing the data are combined to characterize the most\u0000and least positionally stable ICRF3 sources. We find a notable dependence of\u0000the excess variance and statistical variability measures on declination, as is\u0000expected for unmodeled ionospheric delay errors and the northern hemisphere\u0000dominated network geometries of most astrometric and geodetic observing\u0000campaigns.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"90 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MoonLITE: a CLPS-delivered NASA Astrophysics Pioneers lunar optical interferometer for sensitive, milliarcsecond observing MoonLITE:CLPS交付的美国宇航局天体物理学先锋月球光学干涉仪,用于敏感的毫微秒观测
Pub Date : 2024-08-02 DOI: arxiv-2408.01392
Gerard T. van Belle, David Ciardi, Daniel Hillsberry, Anders Jorgensen, John Monnier, Krista Lynne Smith, Tabetha Boyajian, Kenneth Carpenter, Catherine Clark, Gioia Rau, Gail Schaefer
MoonLITE (Lunar InTerferometry Explorer) is an Astrophysics Pioneers proposalto develop, build, fly, and operate the first separated-aperture opticalinterferometer in space, delivering sub-mas science results. MoonLITE willleverage the Pioneers opportunity for utilizing NASA's Commercial Lunar PayloadServices (CLPS) to deliver an optical interferometer to the lunar surface,enabling unprecedented discovery power by combining high spatial resolutionfrom optical interferometry with deep sensitivity from the stability of thelunar surface. Following landing, the CLPS-provided rover will deploy thepre-loaded MoonLITE outboard optical telescope 100 meters from the lander'sinboard telescope, establishing a two-element interferometric observatory witha single deployment. MoonLITE will observe targets as faint as 17th magnitudein the visible, exceeding ground-based interferometric sensitivity by manymagnitudes, and surpassing space-based optical systems resolution by a factorof 50 times. The capabilities of MoonLITE open a unique discovery space thatincludes direct size measurements of the smallest, coolest stars and substellarbrown dwarfs; searches for close-in stellar companions orbitingexoplanet-hosting stars that could confound our understanding andcharacterization of the frequency of Earth-like planets; direct sizemeasurements of young stellar objects and characterization of the terrestrialplanet-forming regions of these young stars; measurements of the inner regionsand binary fraction of active galactic nuclei; and a probe of the very natureof spacetime foam itself. A portion of the observing time will also be madeavailable to the broader community via a guest observer program. MoonLITE takesadvantage of the CLPS opportunity and delivers an unprecedented combination ofsensitivity and angular resolution at the remarkably affordable cost point ofPioneers.
MoonLITE(月球干涉测量探测器)是天体物理学先锋计划的一项提案,旨在开发、建造、飞行和运行第一台空间分离孔径光学干涉仪,提供亚玛斯科学成果。MoonLITE将利用先驱者计划的机会,利用NASA的商业月球有效载荷服务(CLPS)将光学干涉仪运送到月球表面,通过结合光学干涉测量的高空间分辨率和月球表面稳定性的高灵敏度,实现前所未有的发现能力。着陆后,CLPS 提供的漫游车将在距离着陆器板载望远镜 100 米处部署预先装载的 MoonLITE 板载光学望远镜,通过一次部署建立一个双元素干涉测量天文台。MoonLITE 将观测可见光中暗至 17 等的目标,其灵敏度比地面干涉测量仪高出许多个量级,比空间光学系统的分辨率高出 50 倍。MoonLITE 的能力开辟了一个独特的发现空间,包括直接测量最小、最冷恒星和亚恒星褐矮星的大小;寻找环绕外行星寄主恒星的近距离恒星伴星,这些伴星可能会混淆我们对类地行星频率的理解和描述;直接测量年轻恒星天体的大小,描述这些年轻恒星的陆地行星形成区域;测量活动星系核的内部区域和双星部分;以及探测时空泡沫本身的性质。部分观测时间还将通过客座观察员计划提供给更广泛的群体。MoonLITE利用了CLPS的机会,以 "先驱者 "的极低成本提供了前所未有的灵敏度和角分辨率组合。
{"title":"MoonLITE: a CLPS-delivered NASA Astrophysics Pioneers lunar optical interferometer for sensitive, milliarcsecond observing","authors":"Gerard T. van Belle, David Ciardi, Daniel Hillsberry, Anders Jorgensen, John Monnier, Krista Lynne Smith, Tabetha Boyajian, Kenneth Carpenter, Catherine Clark, Gioia Rau, Gail Schaefer","doi":"arxiv-2408.01392","DOIUrl":"https://doi.org/arxiv-2408.01392","url":null,"abstract":"MoonLITE (Lunar InTerferometry Explorer) is an Astrophysics Pioneers proposal\u0000to develop, build, fly, and operate the first separated-aperture optical\u0000interferometer in space, delivering sub-mas science results. MoonLITE will\u0000leverage the Pioneers opportunity for utilizing NASA's Commercial Lunar Payload\u0000Services (CLPS) to deliver an optical interferometer to the lunar surface,\u0000enabling unprecedented discovery power by combining high spatial resolution\u0000from optical interferometry with deep sensitivity from the stability of the\u0000lunar surface. Following landing, the CLPS-provided rover will deploy the\u0000pre-loaded MoonLITE outboard optical telescope 100 meters from the lander's\u0000inboard telescope, establishing a two-element interferometric observatory with\u0000a single deployment. MoonLITE will observe targets as faint as 17th magnitude\u0000in the visible, exceeding ground-based interferometric sensitivity by many\u0000magnitudes, and surpassing space-based optical systems resolution by a factor\u0000of 50 times. The capabilities of MoonLITE open a unique discovery space that\u0000includes direct size measurements of the smallest, coolest stars and substellar\u0000brown dwarfs; searches for close-in stellar companions orbiting\u0000exoplanet-hosting stars that could confound our understanding and\u0000characterization of the frequency of Earth-like planets; direct size\u0000measurements of young stellar objects and characterization of the terrestrial\u0000planet-forming regions of these young stars; measurements of the inner regions\u0000and binary fraction of active galactic nuclei; and a probe of the very nature\u0000of spacetime foam itself. A portion of the observing time will also be made\u0000available to the broader community via a guest observer program. MoonLITE takes\u0000advantage of the CLPS opportunity and delivers an unprecedented combination of\u0000sensitivity and angular resolution at the remarkably affordable cost point of\u0000Pioneers.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictions for Sparse Photometry of Jupiter-Family Comet Nuclei in the LSST Era 对 LSST 时代木星族彗核稀疏光度的预测
Pub Date : 2024-08-02 DOI: arxiv-2408.01315
A. Donaldson, C. Snodgrass, R. Kokotanekova, A. Rożek
The Legacy Survey of Space and Time (LSST) at Vera C. Rubin Observatory willdeliver high-quality, temporally-sparse observations of millions of SolarSystem objects on an unprecedented scale. Such datasets will likely enable theprecise estimation of small body properties on a population-wide basis. In thiswork, we consider the possible applications of photometric data points from theLSST to the characterisation of Jupiter-family comet (JFC) nuclei. We simulatesparse-in-time lightcurve points with an LSST-like cadence for the orbit of aJFC between 2024-2033. Convex lightcurve inversion is used to assess whetherthe simulation input parameters can be accurately reproduced for a sample ofnucleus rotation periods, pole orientations, activity onsets, shapes and sizes.We find that the rotation period and pole direction can be reliably constrainedacross all nucleus variants tested, and that the convex shape models, whilelimited in their ability to describe complex or bilobed nuclei, are effectivefor correcting sparse photometry for rotational modulation to improve estimatesof nucleus phase functions. Based on this analysis, we anticipate that LSSTphotometry will significantly enhance our present understanding of thespin-state and phase function distributions of JFC nuclei.
Vera C. Rubin 天文台的时空遗产巡天(LSST)将以前所未有的规模对数百万太阳系天体进行高质量、时间稀疏的观测。这样的数据集将有可能在整个群体的基础上实现对小天体特性的精确估算。在这项工作中,我们考虑了将来自LSST的测光数据点应用于描述木星眷属彗星(JFC)核特性的可能性。我们以类似于 LSST 的节奏模拟了 2024-2033 年间木星彗星轨道上的实时光曲线点。我们发现,旋转周期和极点方向可以在所有测试过的彗核变体中得到可靠的约束,而凸形模型虽然在描述复杂或双叶彗核方面能力有限,但却可以有效地校正稀疏的旋转调制光度,从而改进对彗核相位函数的估计。基于上述分析,我们预计 LSST 光度测量将大大提高我们目前对 JFC 核的自旋态和相位函数分布的认识。
{"title":"Predictions for Sparse Photometry of Jupiter-Family Comet Nuclei in the LSST Era","authors":"A. Donaldson, C. Snodgrass, R. Kokotanekova, A. Rożek","doi":"arxiv-2408.01315","DOIUrl":"https://doi.org/arxiv-2408.01315","url":null,"abstract":"The Legacy Survey of Space and Time (LSST) at Vera C. Rubin Observatory will\u0000deliver high-quality, temporally-sparse observations of millions of Solar\u0000System objects on an unprecedented scale. Such datasets will likely enable the\u0000precise estimation of small body properties on a population-wide basis. In this\u0000work, we consider the possible applications of photometric data points from the\u0000LSST to the characterisation of Jupiter-family comet (JFC) nuclei. We simulate\u0000sparse-in-time lightcurve points with an LSST-like cadence for the orbit of a\u0000JFC between 2024-2033. Convex lightcurve inversion is used to assess whether\u0000the simulation input parameters can be accurately reproduced for a sample of\u0000nucleus rotation periods, pole orientations, activity onsets, shapes and sizes.\u0000We find that the rotation period and pole direction can be reliably constrained\u0000across all nucleus variants tested, and that the convex shape models, while\u0000limited in their ability to describe complex or bilobed nuclei, are effective\u0000for correcting sparse photometry for rotational modulation to improve estimates\u0000of nucleus phase functions. Based on this analysis, we anticipate that LSST\u0000photometry will significantly enhance our present understanding of the\u0000spin-state and phase function distributions of JFC nuclei.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polarized X-rays Correlated with Short--Timescale Variability of Cygnus X-1 偏振 X 射线与天鹅座 X-1 的短时标变化率相关
Pub Date : 2024-08-02 DOI: arxiv-2408.00980
Kaito Ninoyu, Yuusuke Uchida, Shinya Yamada, Takayoshi Kohmura, Taichi Igarashi, Ryota Hayakawa, Tenyo Kawamura
We systematically investigate the variability of polarized X-rays on atimescale of a few seconds in the low/hard state of the black hole binaryCygnus X-1. The correlation between polarization degrees and angles with X-Rayintensity was analyzed using data collected by the Imaging X-ray PolarimetryExplorer (IXPE) in June 2022. Given that X-Ray variability in the low/hardstate of Cygnus X-1 is non-periodic, flux peaks were aggregated to suppressstatistical fluctuations. We divided the temporal profiles of these aggregatedflux peaks into seven time segments and evaluated the polarization for eachsegment. The results reveal that the polarization degree was 4.6%$pm$1.2 and5.3%$pm$1.2 before and after the peak, respectively, but decreased to3.4%$pm$1.1 and 2.7%$pm$1.1 in the segments including and immediatelyfollowing the peak. Furthermore, the polarization angle exhibited a slightshift from approximately 30$^{circ}$ to $sim$40$^{circ}$ before and afterthe peak. These findings suggest that the accretion disk contracts withincreasing X-Ray luminosity, and the closer proximity of the X-Ray emitting gasto the black hole may lead to reduced polarization.
我们系统地研究了黑洞双星天鹅座X-1在低/硬状态下几秒钟尺度上偏振X射线的变化。利用成像X射线偏振探测仪(IXPE)在2022年6月收集的数据分析了偏振度和偏振角与X射线强度之间的相关性。鉴于天鹅座 X-1 低/硬态的 X 射线变化是非周期性的,因此对通量峰值进行了聚合,以抑制统计波动。我们将这些聚合流量峰的时间剖面分为七个时间段,并对每个时间段的偏振情况进行了评估。结果显示,在峰值之前和之后,极化度分别为 4.6%$pm$1.2 和 5.3%/$pm$1.2,但在包括峰值和紧随峰值之后的时间段,极化度分别下降到 3.4%$pm$1.1 和 2.7%/$pm$1.1。此外,偏振角在峰值前后出现了轻微的偏移,从大约 30$^{circ}$ 到 $sim$40$^{circ}$ 。这些发现表明,吸积盘在X射线光度不断增加的情况下会发生收缩,而发射X射线的气体与黑洞的距离越来越近,可能会导致偏振的减弱。
{"title":"Polarized X-rays Correlated with Short--Timescale Variability of Cygnus X-1","authors":"Kaito Ninoyu, Yuusuke Uchida, Shinya Yamada, Takayoshi Kohmura, Taichi Igarashi, Ryota Hayakawa, Tenyo Kawamura","doi":"arxiv-2408.00980","DOIUrl":"https://doi.org/arxiv-2408.00980","url":null,"abstract":"We systematically investigate the variability of polarized X-rays on a\u0000timescale of a few seconds in the low/hard state of the black hole binary\u0000Cygnus X-1. The correlation between polarization degrees and angles with X-Ray\u0000intensity was analyzed using data collected by the Imaging X-ray Polarimetry\u0000Explorer (IXPE) in June 2022. Given that X-Ray variability in the low/hard\u0000state of Cygnus X-1 is non-periodic, flux peaks were aggregated to suppress\u0000statistical fluctuations. We divided the temporal profiles of these aggregated\u0000flux peaks into seven time segments and evaluated the polarization for each\u0000segment. The results reveal that the polarization degree was 4.6%$pm$1.2 and\u00005.3%$pm$1.2 before and after the peak, respectively, but decreased to\u00003.4%$pm$1.1 and 2.7%$pm$1.1 in the segments including and immediately\u0000following the peak. Furthermore, the polarization angle exhibited a slight\u0000shift from approximately 30$^{circ}$ to $sim$40$^{circ}$ before and after\u0000the peak. These findings suggest that the accretion disk contracts with\u0000increasing X-Ray luminosity, and the closer proximity of the X-Ray emitting gas\u0000to the black hole may lead to reduced polarization.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"64 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Big Fringe Telescope 大边缘望远镜
Pub Date : 2024-08-02 DOI: arxiv-2408.01386
Gerard T. van Belle, Anders M. Jorgensen
The Big Fringe Telescope (BFT) is a facility concept under development for anext-generation, kilometer-scale optical interferometer. Observations over thepast two decades from routinely operational facilities such as CHARA and VLTIhave produced groundbreaking scientific results, reflecting the mature state ofthe techniques in optical interferometry. However, routine imaging of brightmain sequence stars remains a surprisingly unexplored scientific realm.Additionally, the three-plus decade old technology infrastructure of thesefacilities leads to high operations & maintenance costs, and limitsperformance. We are developing the BFT, based upon robust, modern,commercially-available, automated technologies with low capital constructionand O&M costs, in support of kilometer-scale optical interferometers that willopen the door to regular `snapshot' imaging of main sequence stars. Focusing onextreme angular resolution for bright objects leads to substantial reductionsin expected costs through use of COTS elements and simplified infrastructure.
大边缘望远镜(BFT)是正在开发的下一代千米级光学干涉仪的设施概念。过去二十年来,CHARA 和 VLTI 等常规运行设施的观测取得了突破性的科学成果,反映了光学干涉测量技术的成熟状况。然而,明亮主序星的常规成像仍然是一个令人惊讶的未开发科学领域。此外,这些设施的技术基础设施已有三十多年的历史,导致运行和维护成本高昂,性能受到限制。我们正在开发基于强大、现代、商业化、自动化技术的BFT,其基本建设和运行维护成本较低,可支持千米级光学干涉仪,这将为主序星的定期 "快照 "成像打开大门。通过使用现成的元件和简化的基础设施,将重点放在明亮天体的最高角度分辨率上,从而大大降低了预期成本。
{"title":"The Big Fringe Telescope","authors":"Gerard T. van Belle, Anders M. Jorgensen","doi":"arxiv-2408.01386","DOIUrl":"https://doi.org/arxiv-2408.01386","url":null,"abstract":"The Big Fringe Telescope (BFT) is a facility concept under development for a\u0000next-generation, kilometer-scale optical interferometer. Observations over the\u0000past two decades from routinely operational facilities such as CHARA and VLTI\u0000have produced groundbreaking scientific results, reflecting the mature state of\u0000the techniques in optical interferometry. However, routine imaging of bright\u0000main sequence stars remains a surprisingly unexplored scientific realm.\u0000Additionally, the three-plus decade old technology infrastructure of these\u0000facilities leads to high operations & maintenance costs, and limits\u0000performance. We are developing the BFT, based upon robust, modern,\u0000commercially-available, automated technologies with low capital construction\u0000and O&M costs, in support of kilometer-scale optical interferometers that will\u0000open the door to regular `snapshot' imaging of main sequence stars. Focusing on\u0000extreme angular resolution for bright objects leads to substantial reductions\u0000in expected costs through use of COTS elements and simplified infrastructure.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"63 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
arXiv - PHYS - Instrumentation and Methods for Astrophysics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1