A. Deur, S. E. Kuhn, M. Ripani, X. Zheng, A. G. Acar, P. Achenbach, K. P. Adhikari, J. S. Alvarado, M. J. Amaryan, W. R. Armstrong, H. Atac, H. Avakian, L. Baashen, N. A. Baltzell, L. Barion, M. Bashkanov, M. Battaglieri, B. Benkel, F. Benmokhtar, A. Bianconi, A. S. Biselli, W. A. Booth, F. B ossu, P. Bosted, S. Boiarinov, K. Th. Brinkmann, W. J. Briscoe, S. Bueltmann, V. D. Burkert, D. S. Carman, P. Chatagnon, J. P. Chen, G. Ciullo, P. L. Cole, M. Contalbrigo, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, M. Defurne, S. Diehl, C. Djalali, V. A. Drozdov, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, L. Elouadrhiri, P. Eugenio, J. C. Faggert, S. Fegan, R. Fersch, A. Filippi, K. Gates, G. Gavalian, G. P. Gilfoyle, R. W. Gothe, L. Guo, H. Hakobyan, M. Hattawy, F. Hauenstein, D. Heddle, A. Hobart, M. Holtrop, D. G. Ireland, E. L. Isupov, H. Jiang, H. S. Jo, S. Joosten, H. Kang, C. Keith, M. Khandaker, W. Kim, F. J. Klein, V. Klimenko, P. Konczykowski, K. Kovacs, A. Kripko, V. Kubarovsky, L. Lanza, S. Lee, P. Lenisa, X. Li, E. Long, I. J. D. MacGregor, D. Marchand, V. Mascagna, D. Matamoros, B. McKinnon, D. Meekins, S. Migliorati, T. Mineeva, M. Mirazita, V. Mokeev, C. Munoz-Camacho, P. Nadel-Turonski, T. Nagorna, K. Neupane, S. Niccolai, M. Osipenko, A. I. Ostrovidov, P. Pandey, M. Paolone, L. L. Pappalardo, R. Paremuzyan, E. Pasyuk, S. J. Paul, W. Phelps, S. K. Phillips, J. Pierce, N. Pilleux, M. Pokhrel, J. W. Price, Y. Prok, A. Radic, T. Reed, J. Richards, G. Rosner, P. Rossi, A. A. Rusova, C. Salgado, A. Schmidt, R. A. Schumacher, Y. G. Sharabian, E. V. Shirokov, U. Shrestha, S. Sirca, N. Sparveris, M. Spreafico, S. Stepanyan, I. I. Strakovsky, S. Strauch, V. Sulkosky, J. A. Tan, M. Tenorio, N. Trotta, R. Tyson, M. Ungaro, D. W. Upton, S. Vallarino, L. Venturelli, H. Voskanyan, E. Voutier, D. P. Watts, X. Wei, M. H. Wood, N. Zachariou, J. Zhang, M. Zurek
The spin structure functions of the proton and the deuteron were measured during the EG4 experiment at Jefferson Lab in 2006. Data were collected for longitudinally polarized electron scattering off longitudinally polarized NH$_3$ and ND$_3$ targets, for $Q^2$ values as small as 0.012 and 0.02 GeV$^2$, respectively, using the CEBAF Large Acceptance Spectrometer (CLAS). This is the archival paper of the EG4 experiment that summaries the previously reported results of the polarized structure functions $g_1$, $A_1F_1$, and their moments $overline Gamma_1$, $overline gamma_0$, and $overline I_{TT}$, for both the proton and the deuteron. In addition, we report on new results on the neutron $g_1$ extracted by combining proton and deuteron data and correcting for Fermi smearing, and on the neutron moments $overline Gamma_1$, $overline gamma_0$, and $overline I_{TT}$ formed directly from those of the proton and the deuteron. Our data are in good agreement with the Gerasimov-Drell-Hearn sum rule for the proton, deuteron, and neutron. Furthermore, the isovector combination was formed for $g_1$ and the Bjorken integral $overline Gamma_1^{p-n}$, and compared to available theoretical predictions. All of our results provide for the first time extensive tests of spin observable predictions from chiral effective field theory ($chi$EFT) in a $Q^2$ range commensurate with the pion mass. They motivate further improvement in $chi$EFT calculations from other approaches such as the lattice gauge method.
{"title":"Measurement of the nucleon spin structure functions for $0.01","authors":"A. Deur, S. E. Kuhn, M. Ripani, X. Zheng, A. G. Acar, P. Achenbach, K. P. Adhikari, J. S. Alvarado, M. J. Amaryan, W. R. Armstrong, H. Atac, H. Avakian, L. Baashen, N. A. Baltzell, L. Barion, M. Bashkanov, M. Battaglieri, B. Benkel, F. Benmokhtar, A. Bianconi, A. S. Biselli, W. A. Booth, F. B ossu, P. Bosted, S. Boiarinov, K. Th. Brinkmann, W. J. Briscoe, S. Bueltmann, V. D. Burkert, D. S. Carman, P. Chatagnon, J. P. Chen, G. Ciullo, P. L. Cole, M. Contalbrigo, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, M. Defurne, S. Diehl, C. Djalali, V. A. Drozdov, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, L. Elouadrhiri, P. Eugenio, J. C. Faggert, S. Fegan, R. Fersch, A. Filippi, K. Gates, G. Gavalian, G. P. Gilfoyle, R. W. Gothe, L. Guo, H. Hakobyan, M. Hattawy, F. Hauenstein, D. Heddle, A. Hobart, M. Holtrop, D. G. Ireland, E. L. Isupov, H. Jiang, H. S. Jo, S. Joosten, H. Kang, C. Keith, M. Khandaker, W. Kim, F. J. Klein, V. Klimenko, P. Konczykowski, K. Kovacs, A. Kripko, V. Kubarovsky, L. Lanza, S. Lee, P. Lenisa, X. Li, E. Long, I. J. D. MacGregor, D. Marchand, V. Mascagna, D. Matamoros, B. McKinnon, D. Meekins, S. Migliorati, T. Mineeva, M. Mirazita, V. Mokeev, C. Munoz-Camacho, P. Nadel-Turonski, T. Nagorna, K. Neupane, S. Niccolai, M. Osipenko, A. I. Ostrovidov, P. Pandey, M. Paolone, L. L. Pappalardo, R. Paremuzyan, E. Pasyuk, S. J. Paul, W. Phelps, S. K. Phillips, J. Pierce, N. Pilleux, M. Pokhrel, J. W. Price, Y. Prok, A. Radic, T. Reed, J. Richards, G. Rosner, P. Rossi, A. A. Rusova, C. Salgado, A. Schmidt, R. A. Schumacher, Y. G. Sharabian, E. V. Shirokov, U. Shrestha, S. Sirca, N. Sparveris, M. Spreafico, S. Stepanyan, I. I. Strakovsky, S. Strauch, V. Sulkosky, J. A. Tan, M. Tenorio, N. Trotta, R. Tyson, M. Ungaro, D. W. Upton, S. Vallarino, L. Venturelli, H. Voskanyan, E. Voutier, D. P. Watts, X. Wei, M. H. Wood, N. Zachariou, J. Zhang, M. Zurek","doi":"arxiv-2409.08365","DOIUrl":"https://doi.org/arxiv-2409.08365","url":null,"abstract":"The spin structure functions of the proton and the deuteron were measured\u0000during the EG4 experiment at Jefferson Lab in 2006. Data were collected for\u0000longitudinally polarized electron scattering off longitudinally polarized\u0000NH$_3$ and ND$_3$ targets, for $Q^2$ values as small as 0.012 and 0.02 GeV$^2$,\u0000respectively, using the CEBAF Large Acceptance Spectrometer (CLAS). This is the\u0000archival paper of the EG4 experiment that summaries the previously reported\u0000results of the polarized structure functions $g_1$, $A_1F_1$, and their moments\u0000$overline Gamma_1$, $overline gamma_0$, and $overline I_{TT}$, for both\u0000the proton and the deuteron. In addition, we report on new results on the\u0000neutron $g_1$ extracted by combining proton and deuteron data and correcting\u0000for Fermi smearing, and on the neutron moments $overline Gamma_1$, $overline\u0000gamma_0$, and $overline I_{TT}$ formed directly from those of the proton and\u0000the deuteron. Our data are in good agreement with the Gerasimov-Drell-Hearn sum\u0000rule for the proton, deuteron, and neutron. Furthermore, the isovector\u0000combination was formed for $g_1$ and the Bjorken integral $overline\u0000Gamma_1^{p-n}$, and compared to available theoretical predictions. All of our\u0000results provide for the first time extensive tests of spin observable\u0000predictions from chiral effective field theory ($chi$EFT) in a $Q^2$ range\u0000commensurate with the pion mass. They motivate further improvement in $chi$EFT\u0000calculations from other approaches such as the lattice gauge method.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The production cross sections of B$^0_mathrm{s}$ and B$^+$ mesons are reported in proton-proton (pp) collisions recorded by the CMS experiment at the CERN LHC with a center-of-mass energy of 5.02 TeV. The data sample corresponds to an integrated luminosity of 302 pb$^{-1}$. The cross sections are based on measurements of the B$^0_mathrm{s}$ $to$ J/$psi(mu^+mu^-)phi$(1020)(K$^+$K$^-$) and B$^+$ $to$ J/$psi(mu^+mu^-)$K$^+$ decay channels. Results are presented in the transverse momentum ($p_mathrm{T}$) range 7-50 GeV/$c$ and the rapidity interval $lvert y rvert$ $lt$ 2.4 for the B mesons. The measured $p_mathrm{T}$-differential cross sections of B$^+$ and B$^0_mathrm{s}$ in pp collisions are well described by fixed-order plus next-to-leading logarithm perturbative quantum chromodynamics calculations. Using previous PbPb collision measurements at the same nucleon-nucleon center-of-mass energy, the nuclear modification factors, $R_mathrm{AA}$, of the B mesons are determined. For $p_mathrm{T}$ $lt$ 10 GeV/$c$, both mesons are found to be suppressed in PbPb collisions (with $R_mathrm{AA}$ values significantly below unity), with less suppression observed for the B$^0_mathrm{s}$ mesons. In this $p_mathrm{T}$ range, the $R_mathrm{AA}$ values for the B$^+$ mesons are consistent with those for inclusive charged hadrons and D$^0$ mesons. Below 10 GeV/$c$, both B$^+$ and B$^0_mathrm{s}$s are found to be less suppressed than either inclusive charged hadrons or D$^0$ mesons, with the B$^0_mathrm{s}$ $R_mathrm{AA}$ value consistent with unity. The $R_mathrm{AA}$ values found for the B$^+$ and B$^0_mathrm{s}$ are compared to theoretical calculations, providing constraints on the mechanism of bottom quark energy loss and hadronization in the quark-gluon plasma, the hot and dense matter created in ultrarelativistic heavy ion collisions.
{"title":"Bottom quark energy loss and hadronization with B$^+$ and B$^0_mathrm{s}$ nuclear modification factors using pp and PbPb collisions at $sqrt{s_mathrm{NN}}$ = 5.02 TeV","authors":"CMS Collaboration","doi":"arxiv-2409.07258","DOIUrl":"https://doi.org/arxiv-2409.07258","url":null,"abstract":"The production cross sections of B$^0_mathrm{s}$ and B$^+$ mesons are\u0000reported in proton-proton (pp) collisions recorded by the CMS experiment at the\u0000CERN LHC with a center-of-mass energy of 5.02 TeV. The data sample corresponds\u0000to an integrated luminosity of 302 pb$^{-1}$. The cross sections are based on\u0000measurements of the B$^0_mathrm{s}$ $to$\u0000J/$psi(mu^+mu^-)phi$(1020)(K$^+$K$^-$) and B$^+$ $to$\u0000J/$psi(mu^+mu^-)$K$^+$ decay channels. Results are presented in the\u0000transverse momentum ($p_mathrm{T}$) range 7-50 GeV/$c$ and the rapidity\u0000interval $lvert y rvert$ $lt$ 2.4 for the B mesons. The measured\u0000$p_mathrm{T}$-differential cross sections of B$^+$ and B$^0_mathrm{s}$ in pp\u0000collisions are well described by fixed-order plus next-to-leading logarithm\u0000perturbative quantum chromodynamics calculations. Using previous PbPb collision\u0000measurements at the same nucleon-nucleon center-of-mass energy, the nuclear\u0000modification factors, $R_mathrm{AA}$, of the B mesons are determined. For\u0000$p_mathrm{T}$ $lt$ 10 GeV/$c$, both mesons are found to be suppressed in PbPb\u0000collisions (with $R_mathrm{AA}$ values significantly below unity), with less\u0000suppression observed for the B$^0_mathrm{s}$ mesons. In this $p_mathrm{T}$\u0000range, the $R_mathrm{AA}$ values for the B$^+$ mesons are consistent with\u0000those for inclusive charged hadrons and D$^0$ mesons. Below 10 GeV/$c$, both\u0000B$^+$ and B$^0_mathrm{s}$s are found to be less suppressed than either\u0000inclusive charged hadrons or D$^0$ mesons, with the B$^0_mathrm{s}$\u0000$R_mathrm{AA}$ value consistent with unity. The $R_mathrm{AA}$ values found\u0000for the B$^+$ and B$^0_mathrm{s}$ are compared to theoretical calculations,\u0000providing constraints on the mechanism of bottom quark energy loss and\u0000hadronization in the quark-gluon plasma, the hot and dense matter created in\u0000ultrarelativistic heavy ion collisions.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"273 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This thesis summarizes the work of the author in two directions, both aimed at the study of quantum chromodynamics (QCD). The first topic presented is a measurement of groomed event shapes using archived data collected by the H1 experiment at HERA. The data analysis methods and physics implications of the results are discussed, with the goal of improving the theoretical description of the hadronic final state in electron-hadron collisions before the construction of the Electron-Ion Collider (EIC). The second topic concerns the sPHENIX experiment, which is now installed at the Relativistic Heavy Ion Collider (RHIC). The sPHENIX physics program and apparatus will be discussed, along with a description of each of the subdetectors. Special attention will be dedicated to the operating principles, design, and construction of the time projection chamber (TPC).
{"title":"Groomed Event Shapes at HERA and the sPHENIX TPC","authors":"Henry T. Klest","doi":"arxiv-2409.06876","DOIUrl":"https://doi.org/arxiv-2409.06876","url":null,"abstract":"This thesis summarizes the work of the author in two directions, both aimed\u0000at the study of quantum chromodynamics (QCD). The first topic presented is a\u0000measurement of groomed event shapes using archived data collected by the H1\u0000experiment at HERA. The data analysis methods and physics implications of the\u0000results are discussed, with the goal of improving the theoretical description\u0000of the hadronic final state in electron-hadron collisions before the\u0000construction of the Electron-Ion Collider (EIC). The second topic concerns the\u0000sPHENIX experiment, which is now installed at the Relativistic Heavy Ion\u0000Collider (RHIC). The sPHENIX physics program and apparatus will be discussed,\u0000along with a description of each of the subdetectors. Special attention will be\u0000dedicated to the operating principles, design, and construction of the time\u0000projection chamber (TPC).","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. K. Kornegrutsa, D. A. Artemenkov, V. Bradnova, P. I. Zarubin, I. G. Zarubina, R. R. Kattabekov, K. Z. Mamatkulov, P. A. Rukoyatkin, V. V. Rusakova
The charge topology of peripheral fragmentation of 1.2 A GeV $^7$Be nuclei in a nuclear emulsion is presented. The dissociation of $^7$Be nuclei via the channels $^7$Be$rightarrow ^4$He + $^3$He, $^7$Be$rightarrow$2$^3$He + n and $^7$Be$rightarrow ^4$He + 2$^1$H is considered in detail. It is found that in the channel $^7$Be$rightarrow ^4$He + 2$^1$H, events related to the channel $^7$Be$rightarrow ^6$Be + n with the cascade decay $^6$Be$rightarrow ^4$He + 2p account for about 27 %.
{"title":"Fragmentation of 1.2 A GeV $^7$Be nuclei in nuclear photographic emulsion","authors":"N. K. Kornegrutsa, D. A. Artemenkov, V. Bradnova, P. I. Zarubin, I. G. Zarubina, R. R. Kattabekov, K. Z. Mamatkulov, P. A. Rukoyatkin, V. V. Rusakova","doi":"arxiv-2409.06293","DOIUrl":"https://doi.org/arxiv-2409.06293","url":null,"abstract":"The charge topology of peripheral fragmentation of 1.2 A GeV $^7$Be nuclei in\u0000a nuclear emulsion is presented. The dissociation of $^7$Be nuclei via the\u0000channels $^7$Be$rightarrow ^4$He + $^3$He, $^7$Be$rightarrow$2$^3$He + n and\u0000$^7$Be$rightarrow ^4$He + 2$^1$H is considered in detail. It is found that in\u0000the channel $^7$Be$rightarrow ^4$He + 2$^1$H, events related to the channel\u0000$^7$Be$rightarrow ^6$Be + n with the cascade decay $^6$Be$rightarrow ^4$He +\u00002p account for about 27 %.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"102 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. MusedinovicNorth Carolina State University, L. S. BloklandIndiana University, Bloomington, C. B. Cude-WoodsLos Alamos National Laboratory, M. SinghLos Alamos National Laboratory, M. A. BlatnikLos Alamos National LaboratoryKellogg Radiation Laboratory, California Institute of Technology, N. CallahanArgonne National Laboratory, J. H. ChoiNorth Carolina State University, S. ClaytonLos Alamos National Laboratory, B. W. FilipponeKellogg Radiation Laboratory, California Institute of Technology, W. R. FoxIndiana University, Bloomington, E. FriesKellogg Radiation Laboratory, California Institute of Technology, P. GeltenbortInstitut Laue-Langevin, F. M. GonzalezOak Ridge National Laboratory, L. HayenNorth Carolina State University, K. P. HickersonKellogg Radiation Laboratory, California Institute of Technology, A. T. HolleyTennessee Technological University, T. M. ItoLos Alamos National Laboratory, A. KomivesDePauw University, S LinLos Alamos National Laboratory, Chen-Yu LiuUniversity of Illinois, M. F. MakelaLos Alamos National Laboratory, C. M. O'ShaughnessyLos Alamos National Laboratory, R. W. Pattie JrEast Tennessee State University, J. C. RamseyOak Ridge National Laboratory, D. J. SalvatIndiana University, Bloomington, A. SaundersOak Ridge National Laboratory, S. J. SeestromLos Alamos National Laboratory, E. I. SharapovJoint Institute for Nuclear Research, Z. TangLos Alamos National Laboratory, F. W. UhrichLos Alamos National Laboratory, J. VanderwerpIndiana University, Bloomington, P. WalstromLos Alamos National Laboratory, Z. WangLos Alamos National Laboratory, A. R. YoungNorth Carolina State UniversityTriangle Universities Nuclear Laboratory, C. L. MorrisLos Alamos National Laboratory
Here we publish three years of data for the UCNtau experiment performed at the Los Alamos Ultra Cold Neutron Facility at the Los Alamos Neutron Science Center. These data are in addition to our previously published data. Our goals in this paper are to better understand and quantify systematic uncertainties and to improve the lifetime statistical precision. We report a measured value for these runs from 2020-2022 for the neutron lifetime of 877.94+/-0.37 s; when all the data from UCNtau are averaged we report an updated value for the lifetime of 877.82+/-0.22 (statistical)+0.20-0.17 (systematic) s. We utilized improved monitor detectors, reduced our correction due to UCN upscattering on ambient gas, and employed four different main UCN detector geometries both to reduce the correction required for rate dependence and explore potential contributions due to phase space evolution.
{"title":"Measurement of the Free Neutron Lifetime in a Magneto-Gravitational Trap with In Situ Detection","authors":"R. MusedinovicNorth Carolina State University, L. S. BloklandIndiana University, Bloomington, C. B. Cude-WoodsLos Alamos National Laboratory, M. SinghLos Alamos National Laboratory, M. A. BlatnikLos Alamos National LaboratoryKellogg Radiation Laboratory, California Institute of Technology, N. CallahanArgonne National Laboratory, J. H. ChoiNorth Carolina State University, S. ClaytonLos Alamos National Laboratory, B. W. FilipponeKellogg Radiation Laboratory, California Institute of Technology, W. R. FoxIndiana University, Bloomington, E. FriesKellogg Radiation Laboratory, California Institute of Technology, P. GeltenbortInstitut Laue-Langevin, F. M. GonzalezOak Ridge National Laboratory, L. HayenNorth Carolina State University, K. P. HickersonKellogg Radiation Laboratory, California Institute of Technology, A. T. HolleyTennessee Technological University, T. M. ItoLos Alamos National Laboratory, A. KomivesDePauw University, S LinLos Alamos National Laboratory, Chen-Yu LiuUniversity of Illinois, M. F. MakelaLos Alamos National Laboratory, C. M. O'ShaughnessyLos Alamos National Laboratory, R. W. Pattie JrEast Tennessee State University, J. C. RamseyOak Ridge National Laboratory, D. J. SalvatIndiana University, Bloomington, A. SaundersOak Ridge National Laboratory, S. J. SeestromLos Alamos National Laboratory, E. I. SharapovJoint Institute for Nuclear Research, Z. TangLos Alamos National Laboratory, F. W. UhrichLos Alamos National Laboratory, J. VanderwerpIndiana University, Bloomington, P. WalstromLos Alamos National Laboratory, Z. WangLos Alamos National Laboratory, A. R. YoungNorth Carolina State UniversityTriangle Universities Nuclear Laboratory, C. L. MorrisLos Alamos National Laboratory","doi":"arxiv-2409.05560","DOIUrl":"https://doi.org/arxiv-2409.05560","url":null,"abstract":"Here we publish three years of data for the UCNtau experiment performed at\u0000the Los Alamos Ultra Cold Neutron Facility at the Los Alamos Neutron Science\u0000Center. These data are in addition to our previously published data. Our goals\u0000in this paper are to better understand and quantify systematic uncertainties\u0000and to improve the lifetime statistical precision. We report a measured value\u0000for these runs from 2020-2022 for the neutron lifetime of 877.94+/-0.37 s; when\u0000all the data from UCNtau are averaged we report an updated value for the\u0000lifetime of 877.82+/-0.22 (statistical)+0.20-0.17 (systematic) s. We utilized\u0000improved monitor detectors, reduced our correction due to UCN upscattering on\u0000ambient gas, and employed four different main UCN detector geometries both to\u0000reduce the correction required for rate dependence and explore potential\u0000contributions due to phase space evolution.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Short-range correlations between charged particles are studied via two-particle angular correlations in pp collisions at $sqrt{s}=13$ TeV. The correlation functions are measured as a function of the relative azimuthal angle $Deltavarphi$ and the pseudorapidity separation $Deltaeta$ for pairs of primary charged particles within the pseudorapidity interval $|eta| < 0.9$ and the transverse-momentum range $1 < p_{rm T} < 8$ GeV/$c$. Near-side ($|Deltavarphi|<1.3$) peak widths are extracted from a generalised Gaussian fitted over the correlations in full pseudorapidity separation ($|Deltaeta|<1.8$), while the per-trigger associated near-side yields are extracted for the short-range correlations ($|Deltaeta|<1.3$). Both are evaluated as a function of charged-particle multiplicity obtained by two different event activity estimators. The width of the near-side peak decreases with increasing multiplicity, and this trend is reproduced qualitatively by the Monte Carlo event generators PYTHIA 8, AMPT, and EPOS. However, the models overestimate the width in the low transverse-momentum region ($p_{rm T} < 3$ GeV/$c$). The per-trigger associated near-side yield increases with increasing multiplicity. Although this trend is also captured qualitatively by the considered event generators, the yield is mostly overestimated by the models in the considered kinematic range. The measurement of the shape and yield of the short-range correlation peak can help us understand the interplay between jet fragmentation and event activity, quantify the narrowing trend of the near-side peak as a function of transverse momentum and multiplicity selections in pp collisions, and search for final-state jet modification in small collision systems.
{"title":"Multiplicity-dependent jet modification from di-hadron correlations in pp collisions at $sqrt{s} = 13$ TeV","authors":"ALICE Collaboration","doi":"arxiv-2409.04501","DOIUrl":"https://doi.org/arxiv-2409.04501","url":null,"abstract":"Short-range correlations between charged particles are studied via\u0000two-particle angular correlations in pp collisions at $sqrt{s}=13$ TeV. The\u0000correlation functions are measured as a function of the relative azimuthal\u0000angle $Deltavarphi$ and the pseudorapidity separation $Deltaeta$ for pairs\u0000of primary charged particles within the pseudorapidity interval $|eta| < 0.9$\u0000and the transverse-momentum range $1 < p_{rm T} < 8$ GeV/$c$. Near-side\u0000($|Deltavarphi|<1.3$) peak widths are extracted from a generalised Gaussian\u0000fitted over the correlations in full pseudorapidity separation\u0000($|Deltaeta|<1.8$), while the per-trigger associated near-side yields are\u0000extracted for the short-range correlations ($|Deltaeta|<1.3$). Both are\u0000evaluated as a function of charged-particle multiplicity obtained by two\u0000different event activity estimators. The width of the near-side peak decreases\u0000with increasing multiplicity, and this trend is reproduced qualitatively by the\u0000Monte Carlo event generators PYTHIA 8, AMPT, and EPOS. However, the models\u0000overestimate the width in the low transverse-momentum region ($p_{rm T} < 3$\u0000GeV/$c$). The per-trigger associated near-side yield increases with increasing\u0000multiplicity. Although this trend is also captured qualitatively by the\u0000considered event generators, the yield is mostly overestimated by the models in\u0000the considered kinematic range. The measurement of the shape and yield of the\u0000short-range correlation peak can help us understand the interplay between jet\u0000fragmentation and event activity, quantify the narrowing trend of the near-side\u0000peak as a function of transverse momentum and multiplicity selections in pp\u0000collisions, and search for final-state jet modification in small collision\u0000systems. ","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We report on the measurement of inclusive, non-prompt, and prompt J/$psi$-hadron correlations by the ALICE Collaboration at the CERN Large Hadron Collider in pp collisions at a center-of-mass energy of 13 TeV. The correlations are studied at midrapidity ($|y| < 0.9$) in the transverse momentum ranges $p_{rm T} < 40~text{GeV}/c$ for the J/$psi$ and $0.15 <