Pub Date : 2023-06-01DOI: 10.1007/s00232-023-00287-9
Helan Satish, Ramasubba Reddy Machireddy
Heart diseases such as arrhythmia are the main causes of sudden death. Arrhythmias are typically caused by mutations in specific genes, damage in the cardiac tissue, or due to some chemical exposure. Arrhythmias caused due to mutation is called inherited arrhythmia. Induced arrhythmias are caused due to tissue damage or chemical exposure. Mutations in genes that encode ion channels of the cardiac cells usually result in (dysfunction) improper functioning of the channel. Improper functioning of the ion channel may lead to major changes in the action potential (AP) of the cardiac cells. This further leads to distorted electrical activity of the heart. Distorted electrical activity will affect the ECG that results in arrhythmia. KCNQ1 P535T mutation is one such gene mutation that encodes the potassium ion channel (KV7.1) of the cardiac ventricular tissue. Its clinical significance is not known. This study aims to perform a simulation study on P535T mutation in the KCNQ1 gene that encodes the potassium ion channel KV7.1 in the ventricular tissue grid. The effect of P535T mutation on transmural tissue grids for three genotypes (wild type, heterozygous, and homozygous) of cells are studied and the generated pseudo-ECGs are compared. Results show the delayed repolarization in the cells of ventricular tissue grid. Slower propagation of action potential in the transmural tissue grid is observed in the mutated (heterozygous and homozygous) genotypes. Longer QT interval is also observed in the pseudo-ECG of heterozygous and homozygous genotype tissue grids. From the pseudo-ECGs, it is observed that KCNQ1 P535T mutation leads to Long QT Syndrome (LQTS) which may result in life-threatening arrhythmias, such as Torsade de Pointes (TdP), Jervell and Lange-Nielsen syndrome (JLNS), and Romano-Ward syndrome (RWS).
心律失常等心脏疾病是导致猝死的主要原因。心律失常通常是由特定基因的突变、心脏组织的损伤或某些化学物质暴露引起的。由基因突变引起的心律失常称为遗传性心律失常。诱发性心律失常是由于组织损伤或化学物质暴露引起的。心肌细胞离子通道编码基因的突变通常会导致离子通道功能不正常。离子通道功能不正常可导致心肌细胞动作电位(AP)发生重大变化。这进一步导致了心脏电活动的扭曲。扭曲的电活动将影响心电图,导致心律失常。KCNQ1 P535T突变就是其中一种编码心脏心室组织钾离子通道(KV7.1)的基因突变。其临床意义尚不清楚。本研究旨在对编码心室组织网格钾离子通道KV7.1的KCNQ1基因P535T突变进行模拟研究。研究了P535T突变对三种基因型(野生型、杂合型和纯合型)细胞跨壁组织网格的影响,并比较了产生的伪心电图。结果表明,脑室组织网格细胞存在延迟复极现象。在突变(杂合和纯合)基因型中观察到跨壁组织网格中动作电位的缓慢传播。杂合子和纯合子基因型组织网格的伪心电图QT间期也较长。伪心电图显示,KCNQ1 P535T突变可导致长QT综合征(LQTS), LQTS可导致危及生命的心律失常,如Torsade de Pointes (TdP)、Jervell and lge - nielsen综合征(JLNS)、Romano-Ward综合征(RWS)。
{"title":"Computational Study on Effect of KCNQ1 P535T Mutation in a Cardiac Ventricular Tissue.","authors":"Helan Satish, Ramasubba Reddy Machireddy","doi":"10.1007/s00232-023-00287-9","DOIUrl":"https://doi.org/10.1007/s00232-023-00287-9","url":null,"abstract":"<p><p>Heart diseases such as arrhythmia are the main causes of sudden death. Arrhythmias are typically caused by mutations in specific genes, damage in the cardiac tissue, or due to some chemical exposure. Arrhythmias caused due to mutation is called inherited arrhythmia. Induced arrhythmias are caused due to tissue damage or chemical exposure. Mutations in genes that encode ion channels of the cardiac cells usually result in (dysfunction) improper functioning of the channel. Improper functioning of the ion channel may lead to major changes in the action potential (AP) of the cardiac cells. This further leads to distorted electrical activity of the heart. Distorted electrical activity will affect the ECG that results in arrhythmia. KCNQ1 P535T mutation is one such gene mutation that encodes the potassium ion channel (KV7.1) of the cardiac ventricular tissue. Its clinical significance is not known. This study aims to perform a simulation study on P535T mutation in the KCNQ1 gene that encodes the potassium ion channel KV7.1 in the ventricular tissue grid. The effect of P535T mutation on transmural tissue grids for three genotypes (wild type, heterozygous, and homozygous) of cells are studied and the generated pseudo-ECGs are compared. Results show the delayed repolarization in the cells of ventricular tissue grid. Slower propagation of action potential in the transmural tissue grid is observed in the mutated (heterozygous and homozygous) genotypes. Longer QT interval is also observed in the pseudo-ECG of heterozygous and homozygous genotype tissue grids. From the pseudo-ECGs, it is observed that KCNQ1 P535T mutation leads to Long QT Syndrome (LQTS) which may result in life-threatening arrhythmias, such as Torsade de Pointes (TdP), Jervell and Lange-Nielsen syndrome (JLNS), and Romano-Ward syndrome (RWS).</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":"256 3","pages":"287-297"},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9674530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1007/s00232-023-00285-x
Orestes Quesada, Joel E González-Nieves, José Colón, Rafael Maldonado-Hernández, Carol González-Freire, Jesús Acevedo-Cintrón, Irvin D Rosado-Millán, José A Lasalde-Dominicci
The main objective of the present study was to find detergents that can maintain the functionality and stability of the Torpedo californica nicotinic acetylcholine receptor (Tc-nAChR). We examined the functionality, stability, and purity analysis of affinity-purified Tc-nAChR solubilized in detergents from the Cyclofos (CF) family [cyclofoscholine 4 (CF-4), cyclofoscholine 6 (CF-6), and cyclofloscholine 7 (CF-7)]. The functionality of the CF-Tc-nAChR-detergent complex (DC) was evaluated using the Two Electrode Voltage Clamp (TEVC) method. To assess stability, we used the florescence recovery after photobleaching (FRAP) in Lipidic Cubic Phase (LCP) methodology. We also performed a lipidomic analysis using Ultra-Performance Liquid Chromatography (UPLC) coupled to electrospray ionization mass spectrometry (ESI-MS/MS) to evaluate the lipid composition of the CF-Tc-nAChR-DCs. The CF-4-Tc-nAChR-DC displayed a robust macroscopic current (- 200 ± 60 nA); however, the CF-6-Tc-nAChR-DC and CF-7-Tc-nAChR-DC displayed significant reductions in the macroscopic currents. The CF-6-Tc-nAChR and CF-4-Tc-nAChR displayed higher fractional florescence recovery. Addition of cholesterol produced a mild enhancement of the mobile fraction on the CF-6-Tc-nAChR. The lipidomic analysis revealed that the CF-7-Tc-nAChR-DC displayed substantial delipidation, consistent with the lack of stability and functional response of this complex. Although the CF-6-nAChR-DC complex retained the largest amount of lipids, it showed a loss of six lipid species [SM(d16:1/18:0); PC(18:2/14:1); PC(14:0/18:1); PC(16:0/18:1); PC(20:5/20:4), and PC(20:4/20:5)] that are present in the CF-4-nAChR-DC. Overall, the CF-4-nAChR displayed robust functionality, significant stability, and the best purity among the three CF detergents; therefore, CF-4 is a suitable candidate to prepare Tc-nAChR crystals for structural studies.
{"title":"Assessment of Purity, Functionality, Stability, and Lipid Composition of Cyclofos-nAChR-Detergent Complexes from Torpedo californica Using Lipid Matrix and Macroscopic Electrophysiology.","authors":"Orestes Quesada, Joel E González-Nieves, José Colón, Rafael Maldonado-Hernández, Carol González-Freire, Jesús Acevedo-Cintrón, Irvin D Rosado-Millán, José A Lasalde-Dominicci","doi":"10.1007/s00232-023-00285-x","DOIUrl":"https://doi.org/10.1007/s00232-023-00285-x","url":null,"abstract":"<p><p>The main objective of the present study was to find detergents that can maintain the functionality and stability of the Torpedo californica nicotinic acetylcholine receptor (Tc-nAChR). We examined the functionality, stability, and purity analysis of affinity-purified Tc-nAChR solubilized in detergents from the Cyclofos (CF) family [cyclofoscholine 4 (CF-4), cyclofoscholine 6 (CF-6), and cyclofloscholine 7 (CF-7)]. The functionality of the CF-Tc-nAChR-detergent complex (DC) was evaluated using the Two Electrode Voltage Clamp (TEVC) method. To assess stability, we used the florescence recovery after photobleaching (FRAP) in Lipidic Cubic Phase (LCP) methodology. We also performed a lipidomic analysis using Ultra-Performance Liquid Chromatography (UPLC) coupled to electrospray ionization mass spectrometry (ESI-MS/MS) to evaluate the lipid composition of the CF-Tc-nAChR-DCs. The CF-4-Tc-nAChR-DC displayed a robust macroscopic current (- 200 ± 60 nA); however, the CF-6-Tc-nAChR-DC and CF-7-Tc-nAChR-DC displayed significant reductions in the macroscopic currents. The CF-6-Tc-nAChR and CF-4-Tc-nAChR displayed higher fractional florescence recovery. Addition of cholesterol produced a mild enhancement of the mobile fraction on the CF-6-Tc-nAChR. The lipidomic analysis revealed that the CF-7-Tc-nAChR-DC displayed substantial delipidation, consistent with the lack of stability and functional response of this complex. Although the CF-6-nAChR-DC complex retained the largest amount of lipids, it showed a loss of six lipid species [SM(d16:1/18:0); PC(18:2/14:1); PC(14:0/18:1); PC(16:0/18:1); PC(20:5/20:4), and PC(20:4/20:5)] that are present in the CF-4-nAChR-DC. Overall, the CF-4-nAChR displayed robust functionality, significant stability, and the best purity among the three CF detergents; therefore, CF-4 is a suitable candidate to prepare Tc-nAChR crystals for structural studies.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":"256 3","pages":"271-285"},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157581/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10039612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1007/s00232-023-00284-y
Anne Ritzer, Tobias Roeschl, Sandra Nay, Elena Rudakova, Tilmann Volk
The L-type calcium current (ICaL) is the first step in cardiac excitation-contraction-coupling and plays an important role in regulating contractility, but also in electrical and mechanical remodeling. Primary culture of cardiomyocytes, a widely used tool in cardiac ion channel research, is associated with substantial morphological, functional and electrical changes some of which may be prevented by electrical pacing. We therefore investigated ICaL directly after cell isolation and after 24 h of primary culture with and without regular pacing at 1 and 3 Hz in rat left ventricular myocytes. Moreover, we analyzed total mRNA expression of the pore forming subunit of the L-type Ca2+ channel (cacna1c) as well as the expression of splice variants of its exon 1 that contribute to specificity of ICaL in different tissue such as cardiac myocytes or smooth muscle. 24 h incubation without pacing decreased ICaL density by ~ 10% only. Consistent with this decrease we observed a decrease in the expression of total cacna1c and of exon 1a, the dominant variant of cardiomyocytes, while expression of exon 1b and 1c increased. Pacing for 24 h at 1 and 3 Hz led to a substantial decrease in ICaL density by 30%, mildly slowed ICaL inactivation and shifted steady-state inactivation to more negative potentials. Total cacna1c mRNA expression was substantially decreased by pacing, as was the expression of exon 1b and 1c. Taken together, electrical silence introduces fewer alterations in ICaL density and cacna1c mRNA expression than pacing for 24 h and should therefore be the preferred approach for primary culture of cardiomyocytes.
{"title":"Rapid Pacing Decreases L-type Ca<sup>2+</sup> Current and Alters Cacna1c Isogene Expression in Primary Cultured Rat Left Ventricular Myocytes.","authors":"Anne Ritzer, Tobias Roeschl, Sandra Nay, Elena Rudakova, Tilmann Volk","doi":"10.1007/s00232-023-00284-y","DOIUrl":"https://doi.org/10.1007/s00232-023-00284-y","url":null,"abstract":"<p><p>The L-type calcium current (I<sub>CaL</sub>) is the first step in cardiac excitation-contraction-coupling and plays an important role in regulating contractility, but also in electrical and mechanical remodeling. Primary culture of cardiomyocytes, a widely used tool in cardiac ion channel research, is associated with substantial morphological, functional and electrical changes some of which may be prevented by electrical pacing. We therefore investigated I<sub>CaL</sub> directly after cell isolation and after 24 h of primary culture with and without regular pacing at 1 and 3 Hz in rat left ventricular myocytes. Moreover, we analyzed total mRNA expression of the pore forming subunit of the L-type Ca<sup>2+</sup> channel (cacna1c) as well as the expression of splice variants of its exon 1 that contribute to specificity of I<sub>CaL</sub> in different tissue such as cardiac myocytes or smooth muscle. 24 h incubation without pacing decreased I<sub>CaL</sub> density by ~ 10% only. Consistent with this decrease we observed a decrease in the expression of total cacna1c and of exon 1a, the dominant variant of cardiomyocytes, while expression of exon 1b and 1c increased. Pacing for 24 h at 1 and 3 Hz led to a substantial decrease in I<sub>CaL</sub> density by 30%, mildly slowed I<sub>CaL</sub> inactivation and shifted steady-state inactivation to more negative potentials. Total cacna1c mRNA expression was substantially decreased by pacing, as was the expression of exon 1b and 1c. Taken together, electrical silence introduces fewer alterations in I<sub>CaL</sub> density and cacna1c mRNA expression than pacing for 24 h and should therefore be the preferred approach for primary culture of cardiomyocytes.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":"256 3","pages":"257-269"},"PeriodicalIF":2.4,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10219890/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9686064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-30DOI: 10.14579/membrane_journal.2023.33.2.77
Ga Jin Kwak, Do Hyeong Kim, S. Nam
{"title":"Development of Pore Filled Anion Exchange Membrane Using UV Polymerization Method for Anion Exchange Membrane Fuel Cell Application","authors":"Ga Jin Kwak, Do Hyeong Kim, S. Nam","doi":"10.14579/membrane_journal.2023.33.2.77","DOIUrl":"https://doi.org/10.14579/membrane_journal.2023.33.2.77","url":null,"abstract":"","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":"2013 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73364382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-30DOI: 10.14579/membrane_journal.2023.33.2.61
Donghyun R Park, B. Nguyen, Bich Phuong Nguyen Thi, Jeong F. Kim
{"title":"Membrane Technology for Artificial Lungs and Blood Oxygenators","authors":"Donghyun R Park, B. Nguyen, Bich Phuong Nguyen Thi, Jeong F. Kim","doi":"10.14579/membrane_journal.2023.33.2.61","DOIUrl":"https://doi.org/10.14579/membrane_journal.2023.33.2.61","url":null,"abstract":"","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":"103 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88981218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-30DOI: 10.14579/membrane_journal.2023.33.2.70
Chul Ho Park, S. Cho, Ook Choi
{"title":"Forward Osmosis Technology for Concentrating the Heavy Water","authors":"Chul Ho Park, S. Cho, Ook Choi","doi":"10.14579/membrane_journal.2023.33.2.70","DOIUrl":"https://doi.org/10.14579/membrane_journal.2023.33.2.70","url":null,"abstract":"","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":"47 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75747499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-30DOI: 10.14579/membrane_journal.2023.33.2.53
Rabea Kahkahni, R. Patel
{"title":"Membrane Based Triboelectric Nanogenerator: A Review","authors":"Rabea Kahkahni, R. Patel","doi":"10.14579/membrane_journal.2023.33.2.53","DOIUrl":"https://doi.org/10.14579/membrane_journal.2023.33.2.53","url":null,"abstract":"","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":"12 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89521862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glioblastoma (GBM) is a highly malignant primary brain tumor, and epidermal growth factor receptor (EGFR) is a well characterized biomaker on GBM. Treatment of GBM with EGFR inhibitors achieved limited efficacy due to low blood-brain barrier (BBB) permeability, and BBB-penetrant drugs are required. In this study, the BBB penetration of erlotinib and JN037 were studied using molecular dynamics method with explicit membrane model. The free energy profiles indicate that JCN037 has a lower central energy barrier than erlotinib, and it has a local minimum at lipid-water interface while erlotinib has not. Unconstrained MD simulations found that erlotinib prefers staying in water while JCN037 tends to interact with lipid molecules. Further analysis reveals that the Br atom of JCN037 plays an important role in its interaction with lipid molecules, and the adjacent F atom enhances the interaction of Br. The two flexible methoxyethoxy chains of erlotinib are responsible for its poor penetration. Our computational results agree well with the experimental results, providing useful information in the design and improvement of drugs with good BBB permeation.
{"title":"Predicting Blood-Brain Barrier Permeation of Erlotinib and JCN037 by Molecular Simulation.","authors":"Yanshu Liang, Shuang Zhi, Zhixia Qiao, Fancui Meng","doi":"10.1007/s00232-022-00274-6","DOIUrl":"https://doi.org/10.1007/s00232-022-00274-6","url":null,"abstract":"<p><p>Glioblastoma (GBM) is a highly malignant primary brain tumor, and epidermal growth factor receptor (EGFR) is a well characterized biomaker on GBM. Treatment of GBM with EGFR inhibitors achieved limited efficacy due to low blood-brain barrier (BBB) permeability, and BBB-penetrant drugs are required. In this study, the BBB penetration of erlotinib and JN037 were studied using molecular dynamics method with explicit membrane model. The free energy profiles indicate that JCN037 has a lower central energy barrier than erlotinib, and it has a local minimum at lipid-water interface while erlotinib has not. Unconstrained MD simulations found that erlotinib prefers staying in water while JCN037 tends to interact with lipid molecules. Further analysis reveals that the Br atom of JCN037 plays an important role in its interaction with lipid molecules, and the adjacent F atom enhances the interaction of Br. The two flexible methoxyethoxy chains of erlotinib are responsible for its poor penetration. Our computational results agree well with the experimental results, providing useful information in the design and improvement of drugs with good BBB permeation.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":"256 2","pages":"147-157"},"PeriodicalIF":2.4,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10037537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1007/s00232-022-00275-5
Génesis Mantilla, María C Peréz-Gordones, Soledad Cisneros-Montufar, Gustavo Benaim, Juan-Carlos Navarro, Marta Mendoza, José R Ramírez-Iglesias
The plasma membrane and autoinhibited Ca2+-ATPases contribute to the Ca2+ homeostasis in a wide variety of organisms. The enzymatic activity of these pumps is stimulated by calmodulin, which interacts with the target protein through the calmodulin-binding domain (CaMBD). Most information about this region is related to all calmodulin modulated proteins, which indicates general chemical properties and there is no established relation between Ca2+ pump sequences and taxonomic classification. Thus, the aim of this study was to perform an in silico analysis of the CaMBD from several Ca2+-ATPases, in order to determine their diversity and to detect specific patterns and amino acid selection in different species. Patterns related to potential and confirmed CaMBD were detected using sequences retrieved from the literature. The occurrence of these patterns was determined across 120 sequences from 17 taxonomical classes, which were analyzed by a phylogenetic tree to establish phylogenetic groups. Predicted physicochemical characteristics including hydropathy and net charge were calculated for each group of sequences. 22 Ca2+-ATPases sequences from animals, unicellular eukaryotes, and plants were retrieved from bioinformatic databases. These sequences allow us to establish the Patterns 1(GQILWVRGLTRLQTQ), 3(KNPSLEALQRW), and 4(SRWRRLQAEHVKK), which are present at the beginning of putative CaMBD of metazoan, parasites, and land plants. A pattern 2 (IRVVNAFR) was consistently found at the end of most analyzed sequences. The amino acid preference in the CaMBDs changed depending on the phylogenetic groups, with predominance of several aliphatic and charged residues, to confer amphiphilic properties. The results here displayed show a conserved mechanism to contribute to the Ca2+ homeostasis across evolution and may help to detect putative CaMBDs.
{"title":"Structural Analysis and Diversity of Calmodulin-Binding Domains in Membrane and Intracellular Ca<sup>2+</sup>-ATPases.","authors":"Génesis Mantilla, María C Peréz-Gordones, Soledad Cisneros-Montufar, Gustavo Benaim, Juan-Carlos Navarro, Marta Mendoza, José R Ramírez-Iglesias","doi":"10.1007/s00232-022-00275-5","DOIUrl":"https://doi.org/10.1007/s00232-022-00275-5","url":null,"abstract":"<p><p>The plasma membrane and autoinhibited Ca<sup>2+</sup>-ATPases contribute to the Ca<sup>2+</sup> homeostasis in a wide variety of organisms. The enzymatic activity of these pumps is stimulated by calmodulin, which interacts with the target protein through the calmodulin-binding domain (CaMBD). Most information about this region is related to all calmodulin modulated proteins, which indicates general chemical properties and there is no established relation between Ca<sup>2+</sup> pump sequences and taxonomic classification. Thus, the aim of this study was to perform an in silico analysis of the CaMBD from several Ca<sup>2+</sup>-ATPases, in order to determine their diversity and to detect specific patterns and amino acid selection in different species. Patterns related to potential and confirmed CaMBD were detected using sequences retrieved from the literature. The occurrence of these patterns was determined across 120 sequences from 17 taxonomical classes, which were analyzed by a phylogenetic tree to establish phylogenetic groups. Predicted physicochemical characteristics including hydropathy and net charge were calculated for each group of sequences. 22 Ca<sup>2+</sup>-ATPases sequences from animals, unicellular eukaryotes, and plants were retrieved from bioinformatic databases. These sequences allow us to establish the Patterns 1(GQILWVRGLTRLQTQ), 3(KNPSLEALQRW), and 4(SRWRRLQAEHVKK), which are present at the beginning of putative CaMBD of metazoan, parasites, and land plants. A pattern 2 (IRVVNAFR) was consistently found at the end of most analyzed sequences. The amino acid preference in the CaMBDs changed depending on the phylogenetic groups, with predominance of several aliphatic and charged residues, to confer amphiphilic properties. The results here displayed show a conserved mechanism to contribute to the Ca<sup>2+</sup> homeostasis across evolution and may help to detect putative CaMBDs.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":"256 2","pages":"159-174"},"PeriodicalIF":2.4,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9685005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1007/s00232-022-00272-8
Deepak Anand, Arunima Chaudhuri
Nucleus is at the center stage of cellular drama orchestrated in the life of a cell and the nucleoplasm is surrounded by a double membranous compartment constituting the Nuclear membrane/envelope (NE) that separates it from the cytoplasm in nucleated cells. The initial understanding of the NE was that of a border security entity between the nucleus and the cytoplasm, separating gene regulation and transcription in the nucleus from translation in the cytoplasm. However, the discovery of a wide array of inherited diseases caused by mutations in genes encoding proteins that reside or interact with NE diverted the interest into deciphering the lipid-protein-rich environment of the NE. Today, the NE is considered a dynamic organelle which forms a functional linkage between the nucleus and the rest of the cell. The exposure of NE to constant mechanical constraints by its connectivity to the large polymer network of the lamina and chromatin on one side, and to the cytoskeleton on the other side results, in a variety of shape changes. We discuss two such deformation, the formation of nuclear blebs and nucleoplasmic reticulum (NER). Although the protein and the lipid composition of NE comprises a small fraction of the total lipid-protein load of the cell, the ability to define the lipid-protein composition of Inner nuclear membrane (INM) and Outer nuclear membrane (ONM) with precision is crucial for obtaining a deeper mechanistic understanding of their lipid-protein interaction and the various signaling pathways that are triggered by them. In addition, this allows us to further understand the direct and indirect roles of NE machinery in the chromosomal organization and gene regulation.
{"title":"Grease in the Nucleus: Insights into the Dynamic Life of Nuclear Membranes.","authors":"Deepak Anand, Arunima Chaudhuri","doi":"10.1007/s00232-022-00272-8","DOIUrl":"https://doi.org/10.1007/s00232-022-00272-8","url":null,"abstract":"<p><p>Nucleus is at the center stage of cellular drama orchestrated in the life of a cell and the nucleoplasm is surrounded by a double membranous compartment constituting the Nuclear membrane/envelope (NE) that separates it from the cytoplasm in nucleated cells. The initial understanding of the NE was that of a border security entity between the nucleus and the cytoplasm, separating gene regulation and transcription in the nucleus from translation in the cytoplasm. However, the discovery of a wide array of inherited diseases caused by mutations in genes encoding proteins that reside or interact with NE diverted the interest into deciphering the lipid-protein-rich environment of the NE. Today, the NE is considered a dynamic organelle which forms a functional linkage between the nucleus and the rest of the cell. The exposure of NE to constant mechanical constraints by its connectivity to the large polymer network of the lamina and chromatin on one side, and to the cytoskeleton on the other side results, in a variety of shape changes. We discuss two such deformation, the formation of nuclear blebs and nucleoplasmic reticulum (NER). Although the protein and the lipid composition of NE comprises a small fraction of the total lipid-protein load of the cell, the ability to define the lipid-protein composition of Inner nuclear membrane (INM) and Outer nuclear membrane (ONM) with precision is crucial for obtaining a deeper mechanistic understanding of their lipid-protein interaction and the various signaling pathways that are triggered by them. In addition, this allows us to further understand the direct and indirect roles of NE machinery in the chromosomal organization and gene regulation.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":"256 2","pages":"137-145"},"PeriodicalIF":2.4,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082704/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10037523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}