首页 > 最新文献

The Journal of Symbolic Logic最新文献

英文 中文
ON RANK NOT ONLY IN NSOP THEORIES 不仅在 NSOP 理论中,而且在等级上
Pub Date : 2024-02-12 DOI: 10.1017/jsl.2024.9
JAN DOBROWOLSKI, DANIEL MAX HOFFMANN

We introduce a family of local ranks $D_Q$ depending on a finite set Q of pairs of the form $(varphi (x,y),q(y)),$ where $varphi (x,y)$ is a formula and $q(y)$ is a global type. We prove that in any NSOP$_1$ theory these ranks satisfy some desirable properties; in particular, $D_Q(x=x)<omega $ for any finite tuple of variables x and any Q, if $qsupseteq p$ is a Kim-forking extension of types, then $D_Q(q)<D_Q(p)$ for some Q, and if $qsupseteq p$

我们引入了一系列局部等级 $D_Q$,它们取决于形式为 $(varphi (x,y),q(y))$的成对有限集合 Q,其中 $varphi (x,y)$ 是一个公式,$q(y)$ 是一个全局类型。我们证明,在任何 NSOP$_1$ 理论中,这些等级都满足一些理想的性质;特别是,对于任意有限变量元组 x 和任意 Q,如果 $qsupseteq p$ 是类型的金叉扩展,那么 $D_Q(q)<;D_Q(p)$ 对于某个 Q,如果 $qsupseteq p$ 是一个金-非分叉扩展,那么 $D_Q(q)=D_Q(p)$ 对于每一个只涉及莫里幂为-稳态的不变类型的 Q。我们给出了一些 NSOP$_1$ 理论中满足这一性质的不变类型族的自然例子。我们还回答了格兰杰提出的一个问题,即在具有通用双线性形式的向量空间的 $T_infty $ 理论中,分割和有限分割是等价的。我们的结论是,在 $T_infty $ 中,分叉等同于除法,这加强了我们之前的观察,即 $T_infty $ 满足分叉独立性的存在公理。最后,我们稍稍修改了我们的定义,并超越了 NSOP$_1$ ,发现我们的局部秩是由众所周知的秩限定的:inp-秩(负担),因此,特别是由 dp-秩。因此,只要 dp-rank 是有限的,我们的局部秩就是有限的,例如,如果 T 是 dp-minimal 的话。因此,我们的秩概念确定了一类包含所有 NSOP$_1$ 和 NTP$_2$ 理论的非难理论。
{"title":"ON RANK NOT ONLY IN NSOP THEORIES","authors":"JAN DOBROWOLSKI, DANIEL MAX HOFFMANN","doi":"10.1017/jsl.2024.9","DOIUrl":"https://doi.org/10.1017/jsl.2024.9","url":null,"abstract":"<p>We introduce a family of local ranks <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$D_Q$</span></span></img></span></span> depending on a finite set <span>Q</span> of pairs of the form <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$(varphi (x,y),q(y)),$</span></span></img></span></span> where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$varphi (x,y)$</span></span></img></span></span> is a formula and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$q(y)$</span></span></img></span></span> is a global type. We prove that in any NSOP<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$_1$</span></span></img></span></span> theory these ranks satisfy some desirable properties; in particular, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$D_Q(x=x)&lt;omega $</span></span></img></span></span> for any finite tuple of variables <span>x</span> and any <span>Q</span>, if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$qsupseteq p$</span></span></img></span></span> is a Kim-forking extension of types, then <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$D_Q(q)&lt;D_Q(p)$</span></span></img></span></span> for some <span>Q</span>, and if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$qsupseteq p$</span></spa","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"65 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140587758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A HIERARCHY ON NON-ARCHIMEDEAN POLISH GROUPS ADMITTING A COMPATIBLE COMPLETE LEFT-INVARIANT METRIC 允許相容完整左不變度量的非archimedean拋光群上的階級結構
Pub Date : 2024-02-06 DOI: 10.1017/jsl.2024.7
LONGYUN DING, XU WANG

In this article, we introduce a hierarchy on the class of non-archimedean Polish groups that admit a compatible complete left-invariant metric. We denote this hierarchy by $alpha $-CLI and L-$alpha $-CLI where $alpha $ is a countable ordinal. We establish three results:

  1. (1) G is $0$-CLI iff $G={1_G}$;

  2. (2) G is $1$-CLI iff G admits a compatible complete two-sided invariant metric; and

  3. (3) G is L-$alpha $-CLI iff G is locally $alpha $-CLI, i.e., G contains an open subgroup that is

    在这篇文章中,我们介绍了一类非archimedean波兰群的层次结构,它们承认一个兼容的完全左不变度量。我们用 $alpha $-CLI 和 L-$alpha $-CLI 表示这个层次,其中 $alpha $ 是一个可数序号。我们建立了三个结果:(1)如果 $G={1_G}$ 是 $0$-CLI,则 G 是 $0$-CLI;(2)如果 G 允许一个兼容的完整双面不变度量,则 G 是 $1$-CLI;(3)如果 G 是局部 $alpha $-CLI,即 G 包含一个开放子群,而这个开放子群在 G 的局部是 $alpha $-CLI,则 G 是 L-$alpha $-CLI、随后,我们通过为$alpha <omega _1$构造非拱顶的CLI波兰群$G_alpha $和$H_alpha $来证明这个层次结构是合适的,这样的话:(1) $H_alpha $ 是 $alpha $-CLI 但不是 L-$beta $-CLI for $beta <alpha $;(2) $G_alpha $ 是 $(alpha +1)$-CLI 但不是 L-$alpha $-CLI。
{"title":"A HIERARCHY ON NON-ARCHIMEDEAN POLISH GROUPS ADMITTING A COMPATIBLE COMPLETE LEFT-INVARIANT METRIC","authors":"LONGYUN DING, XU WANG","doi":"10.1017/jsl.2024.7","DOIUrl":"https://doi.org/10.1017/jsl.2024.7","url":null,"abstract":"<p>In this article, we introduce a hierarchy on the class of non-archimedean Polish groups that admit a compatible complete left-invariant metric. We denote this hierarchy by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$alpha $</span></span></img></span></span>-CLI and L-<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$alpha $</span></span></img></span></span>-CLI where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$alpha $</span></span></img></span></span> is a countable ordinal. We establish three results: </p><ol><li><p><span>(1)</span> <span>G</span> is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$0$</span></span></img></span></span>-CLI iff <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$G={1_G}$</span></span></img></span></span>;</p></li><li><p><span>(2)</span> <span>G</span> is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$1$</span></span></img></span></span>-CLI iff <span>G</span> admits a compatible complete two-sided invariant metric; and</p></li><li><p><span>(3)</span> <span>G</span> is L-<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$alpha $</span></span></img></span></span>-CLI iff <span>G</span> is locally <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$alpha $</span></span></img></span></span>-CLI, i.e., <span>G</span> contains an open subgroup that is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140011282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BETWEENNESS ALGEBRAS 间隔数
Pub Date : 2024-02-06 DOI: 10.1017/jsl.2023.86
IVO DÜNTSCH, RAFAŁ GRUSZCZYŃSKI, PAULA MENCHÓN
We introduce and study a class of betweenness algebras—Boolean algebras with binary operators, closely related to ternary frames with a betweenness relation. From various axioms for betweenness, we chose those that are most common, which makes our work applicable to a wide range of betweenness structures studied in the literature. On the algebraic side, we work with two operators of possibility and of sufficiency.
我们介绍并研究了一类间性代数--带有二元算子的布尔代数,它与带有间性关系的三元框架密切相关。我们从各种间性公理中选择了最常见的公理,这使得我们的工作适用于文献中研究的各种间性结构。在代数方面,我们使用两个可能性算子和充分性算子。
{"title":"BETWEENNESS ALGEBRAS","authors":"IVO DÜNTSCH, RAFAŁ GRUSZCZYŃSKI, PAULA MENCHÓN","doi":"10.1017/jsl.2023.86","DOIUrl":"https://doi.org/10.1017/jsl.2023.86","url":null,"abstract":"We introduce and study a class of <jats:italic>betweenness algebras</jats:italic>—Boolean algebras with binary operators, closely related to ternary frames with a betweenness relation. From various axioms for betweenness, we chose those that are most common, which makes our work applicable to a wide range of betweenness structures studied in the literature. On the algebraic side, we work with two operators of <jats:italic>possibility</jats:italic> and of <jats:italic>sufficiency</jats:italic>.","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"208 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139760278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THE PENTAGON AS A SUBSTRUCTURE LATTICE OF MODELS OF PEANO ARITHMETIC 五边形作为皮亚诺算术模型的子结构网格
Pub Date : 2024-01-29 DOI: 10.1017/jsl.2024.6
JAMES H. SCHMERL

Wilkie proved in 1977 that every countable model ${mathcal M}$ of Peano Arithmetic has an elementary end extension ${mathcal N}$ such that the interstructure lattice $operatorname {mathrm {Lt}}({mathcal N} / {mathcal M})$ is the pentagon lattice ${mathbf N}_5$. This theorem implies that every countable nonstandard ${mathcal M}$ has an elementary cofinal extension ${mathcal N}$ such that $operatorname {mathrm {Lt}}({mathcal N} / {mathcal M}) cong {mathbf N}_5$. It is proved here that whenever ${mathcal M} prec {mathcal N} models mathsf {PA}$ and

威尔基(Wilkie)在1977年证明了每一个皮亚诺算术的可数模型${/mathcal M}$都有一个基本末端扩展${/mathcal N}$,使得结构间网格$operatorname {mathrm {Lt}}({mathcal N} / {mathcal M})$ 是五边形网格${/mathbf N}_5$。这个定理意味着,每一个可数非标准 ${mathcal M}$ 都有一个基本同尾扩展 ${mathcal N}$ ,使得 $operatorname {mathrm {Lt}}({mathcal N} / {mathcal M}) cong {mathbf N}_5$.这里证明,只要 ${mathcal M}就可以证明且 $operatorname {mathrm {Lt}}({mathcal N} / {mathcal M}) cong {mathbf N}_5$ 时,那么 ${mathcal N}$ 一定是 ${mathcal M}$ 的末尾或共末尾扩展。相反地有 ${mathcal M}^* prec {mathcal N}^* models mathsf {PA}^*$ 使得 $operatorname {mathrm {Lt}}({mathcal N}^* / {mathcal M}^*) cong {mathbf N}_5$ 并且 ${mathcal N}^*$ 既不是末端也不是 ${mathcal M}^*$ 的同末端扩展。
{"title":"THE PENTAGON AS A SUBSTRUCTURE LATTICE OF MODELS OF PEANO ARITHMETIC","authors":"JAMES H. SCHMERL","doi":"10.1017/jsl.2024.6","DOIUrl":"https://doi.org/10.1017/jsl.2024.6","url":null,"abstract":"<p>Wilkie proved in 1977 that every countable model <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal M}$</span></span></img></span></span> of Peano Arithmetic has an elementary end extension <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal N}$</span></span></img></span></span> such that the interstructure lattice <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$operatorname {mathrm {Lt}}({mathcal N} / {mathcal M})$</span></span></img></span></span> is the pentagon lattice <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${mathbf N}_5$</span></span></img></span></span>. This theorem implies that every countable nonstandard <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal M}$</span></span></img></span></span> has an elementary cofinal extension <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline6.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal N}$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$operatorname {mathrm {Lt}}({mathcal N} / {mathcal M}) cong {mathbf N}_5$</span></span></img></span></span>. It is proved here that whenever <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal M} prec {mathcal N} models mathsf {PA}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline9.png\"><span dat","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
REGAININGLY APPROXIMABLE NUMBERS AND SETS 回归近似数和集合
Pub Date : 2024-01-22 DOI: 10.1017/jsl.2024.5
PETER HERTLING, RUPERT HÖLZL, PHILIP JANICKI

We call an $alpha in mathbb {R}$ regainingly approximable if there exists a computable nondecreasing sequence $(a_n)_n$ of rational numbers converging to $alpha $ with $alpha - a_n < 2^{-n}$ for infinitely many ${n in mathbb {N}}$. We also call a set $Asubseteq mathbb {N}$ regainingly approximable if it is c.e. and the strongly left-computable number $2^{-A}$ is regainingly approximable. We show that the set of regainingly approximable sets is neither closed under union nor intersection and that every c.e. Turing degree contains such a set. Furthermore, the regainingly approximable numbers lie properly between the computable and the left-computable numbers and are not closed under addition. While regainingly approximable numbers are easily seen to be i.o. K-trivial, we construct such an

如果存在一个可计算的非递减有理数序列$(a_n)_n$,对于无限多的${n in mathbb {N}}$来说,该序列以$alpha - a_n < 2^{-n}$收敛于$alpha$,那么我们称$alpha in mathbb {R}$为可重获逼近。如果一个集合 $Asubseteq mathbb {N}$ 是 c.e.的,并且强左可计算数 $2^{-A}$ 是可重获近似的,那么我们也称这个集合为可重获近似集合。我们证明了可恢复逼近集合的集合既不封闭于并集也不封闭于交集,而且每个 c.e. 图灵度都包含这样一个集合。此外,可再近似数恰当地位于可计算数和左可计算数之间,并且在加法下不封闭。虽然我们很容易看到可重现近似数是i.o. K-trivial的,但我们构造了这样一个$alpha $,使得${K(alpha restriction n)>n}$对于无限多的n。最后,有一种统一算法可以把有规律的实数分成两个仍然有规律的可再近似数。
{"title":"REGAININGLY APPROXIMABLE NUMBERS AND SETS","authors":"PETER HERTLING, RUPERT HÖLZL, PHILIP JANICKI","doi":"10.1017/jsl.2024.5","DOIUrl":"https://doi.org/10.1017/jsl.2024.5","url":null,"abstract":"<p>We call an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$alpha in mathbb {R}$</span></span></img></span></span> <span>regainingly approximable</span> if there exists a computable nondecreasing sequence <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$(a_n)_n$</span></span></img></span></span> of rational numbers converging to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$alpha $</span></span></img></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$alpha - a_n &lt; 2^{-n}$</span></span></img></span></span> for infinitely many <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${n in mathbb {N}}$</span></span></img></span></span>. We also call a set <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$Asubseteq mathbb {N}$</span></span></img></span></span> <span>regainingly approximable</span> if it is c.e. and the strongly left-computable number <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$2^{-A}$</span></span></img></span></span> is regainingly approximable. We show that the set of regainingly approximable sets is neither closed under union nor intersection and that every c.e. Turing degree contains such a set. Furthermore, the regainingly approximable numbers lie properly between the computable and the left-computable numbers and are not closed under addition. While regainingly approximable numbers are easily seen to be i.o. <span>K</span>-trivial, we construct such an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline8.png\"","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"2020 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
POLISH SPACE PARTITION PRINCIPLES AND THE HALPERN-LÄUCHLI THEOREM 抛光空间分割原理和哈尔彭-莱乌赫利定理
Pub Date : 2024-01-19 DOI: 10.1017/jsl.2024.4
C. Lambie-Hanson, Andy Zucker
{"title":"POLISH SPACE PARTITION PRINCIPLES AND THE HALPERN-LÄUCHLI THEOREM","authors":"C. Lambie-Hanson, Andy Zucker","doi":"10.1017/jsl.2024.4","DOIUrl":"https://doi.org/10.1017/jsl.2024.4","url":null,"abstract":"","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"86 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139612799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DEGREE OF SATISFIABILITY IN HEYTING ALGEBRAS 黑汀代数的可满足度
Pub Date : 2024-01-09 DOI: 10.1017/jsl.2024.2
BENJAMIN MERLIN BUMPUS, ZOLTAN A. KOCSIS

We investigate degree of satisfiability questions in the context of Heyting algebras and intuitionistic logic. We classify all equations in one free variable with respect to finite satisfiability gap, and determine which common principles of classical logic in multiple free variables have finite satisfiability gap. In particular we prove that, in a finite non-Boolean Heyting algebra, the probability that a randomly chosen element satisfies $x vee neg x = top $ is no larger than $frac {2}{3}$. Finally, we generalize our results to infinite Heyting algebras, and present their applications to point-set topology, black-box algebras, and the philosophy of logic.

我们以海廷代数和直觉逻辑为背景,研究可满足程度问题。我们根据有限可满足性差距对一个自由变量中的所有方程进行了分类,并确定了在多个自由变量中哪些经典逻辑的普通原理具有有限可满足性差距。我们特别证明,在有限非布尔海廷代数中,随机选择的元素满足 $x vee neg x = top $ 的概率不大于 $frac {2}{3}$。最后,我们将我们的结果推广到无限海丁代数,并介绍了它们在点集拓扑学、黑盒子代数和逻辑哲学中的应用。
{"title":"DEGREE OF SATISFIABILITY IN HEYTING ALGEBRAS","authors":"BENJAMIN MERLIN BUMPUS, ZOLTAN A. KOCSIS","doi":"10.1017/jsl.2024.2","DOIUrl":"https://doi.org/10.1017/jsl.2024.2","url":null,"abstract":"<p>We investigate degree of satisfiability questions in the context of Heyting algebras and intuitionistic logic. We classify all equations in one free variable with respect to finite satisfiability gap, and determine which common principles of classical logic in multiple free variables have finite satisfiability gap. In particular we prove that, in a finite non-Boolean Heyting algebra, the probability that a randomly chosen element satisfies <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226124105987-0144:S0022481224000021:S0022481224000021_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$x vee neg x = top $</span></span></img></span></span> is no larger than <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226124105987-0144:S0022481224000021:S0022481224000021_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$frac {2}{3}$</span></span></img></span></span>. Finally, we generalize our results to infinite Heyting algebras, and present their applications to point-set topology, black-box algebras, and the philosophy of logic.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"80 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THE BAIRE CLOSURE AND ITS LOGIC 贝叶封闭及其逻辑
Pub Date : 2024-01-05 DOI: 10.1017/jsl.2024.1
G. BEZHANISHVILI, D. FERNÁNDEZ-DUQUE

The Baire algebra of a topological space X is the quotient of the algebra of all subsets of X modulo the meager sets. We show that this Boolean algebra can be endowed with a natural closure operator, resulting in a closure algebra which we denote $mathbf {Baire}(X)$. We identify the modal logic of such algebras to be the well-known system $mathsf {S5}$, and prove soundness and strong completeness for the cases where X is crowded and either completely metrizable and continuum-sized or locally compact Hausdorff. We also show that every extension of $mathsf {S5}$ is the modal logic of a subalgebra of $mathbf {Baire}(X)$, and that soundness and strong completeness also holds in the language with the universal modality.

拓扑空间 X 的贝叶尔代数是 X 的所有子集调制集代数的商。我们证明,这个布尔代数可以被赋予一个自然闭包算子,从而得到一个闭包代数,我们将其命名为 $mathbf {Baire}(X)$ 。我们确定这种代数的模态逻辑是著名的 $mathsf {S5}$ 系统,并证明了 X 是拥挤的、完全可元化的和连续体大小的或局部紧凑的 Hausdorff 的情况下的健全性和强完备性。我们还证明$edmathsf {S5}$的每一个扩展都是$mathbf {Baire}(X)$ 的一个子代数的模态逻辑,并且在具有普遍模态的语言中健全性和强完备性也成立。
{"title":"THE BAIRE CLOSURE AND ITS LOGIC","authors":"G. BEZHANISHVILI, D. FERNÁNDEZ-DUQUE","doi":"10.1017/jsl.2024.1","DOIUrl":"https://doi.org/10.1017/jsl.2024.1","url":null,"abstract":"<p>The Baire algebra of a topological space <span>X</span> is the quotient of the algebra of all subsets of <span>X</span> modulo the meager sets. We show that this Boolean algebra can be endowed with a natural closure operator, resulting in a closure algebra which we denote <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127131651504-0594:S002248122400001X:S002248122400001X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$mathbf {Baire}(X)$</span></span></img></span></span>. We identify the modal logic of such algebras to be the well-known system <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127131651504-0594:S002248122400001X:S002248122400001X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$mathsf {S5}$</span></span></img></span></span>, and prove soundness and strong completeness for the cases where <span>X</span> is crowded and either completely metrizable and continuum-sized or locally compact Hausdorff. We also show that every extension of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127131651504-0594:S002248122400001X:S002248122400001X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$mathsf {S5}$</span></span></img></span></span> is the modal logic of a subalgebra of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127131651504-0594:S002248122400001X:S002248122400001X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$mathbf {Baire}(X)$</span></span></img></span></span>, and that soundness and strong completeness also holds in the language with the universal modality.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139582440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Note on implying 关于暗示的说明
Pub Date : 2024-01-04 DOI: 10.1017/jsl.2023.98
Sean Cody
{"title":"Note on implying","authors":"Sean Cody","doi":"10.1017/jsl.2023.98","DOIUrl":"https://doi.org/10.1017/jsl.2023.98","url":null,"abstract":"","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"34 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139385176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ON COMPACTNESS OF WEAK SQUARE AT SINGULARS OF UNCOUNTABLE COFINALITY 关于不可数奇点处弱平方的紧凑性
Pub Date : 2024-01-04 DOI: 10.1017/jsl.2023.101
MAXWELL LEVINE

Cummings, Foreman, and Magidor proved that Jensen’s square principle is non-compact at $aleph _omega $, meaning that it is consistent that $square _{aleph _n}$ holds for all $n<omega $ while $square _{aleph _omega }$ fails. We investigate the natural question of whether this phenomenon generalizes to singulars of uncountable cofinality. Surprisingly, we show that under some mild ${{mathsf {PCF}}}$-theoretic hypotheses, the weak square principle $square _kappa ^*$ is in fact compact at singulars of uncountable cofinality.

卡明斯、福尔曼和马吉多尔证明,詹森平方原理在 $aleph _omega $ 时是非紧凑的,这意味着 $square _{aleph _n}$ 对所有 $n<omega $ 都成立,而 $square _{aleph _omega }$ 不成立。我们研究了一个自然问题,即这一现象是否会推广到不可数同频的奇点。令人惊讶的是,我们证明了在一些温和的 ${{/mathsf {PCF}}$ 理论假设下,弱平方原理 $square _kappa ^*$ 在不可数同频的奇点处实际上是紧凑的。
{"title":"ON COMPACTNESS OF WEAK SQUARE AT SINGULARS OF UNCOUNTABLE COFINALITY","authors":"MAXWELL LEVINE","doi":"10.1017/jsl.2023.101","DOIUrl":"https://doi.org/10.1017/jsl.2023.101","url":null,"abstract":"<p>Cummings, Foreman, and Magidor proved that Jensen’s square principle is non-compact at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$aleph _omega $</span></span></img></span></span>, meaning that it is consistent that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$square _{aleph _n}$</span></span></img></span></span> holds for all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$n&lt;omega $</span></span></img></span></span> while <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$square _{aleph _omega }$</span></span></img></span></span> fails. We investigate the natural question of whether this phenomenon generalizes to singulars of uncountable cofinality. Surprisingly, we show that under some mild <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${{mathsf {PCF}}}$</span></span></img></span></span>-theoretic hypotheses, the weak square principle <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$square _kappa ^*$</span></span></img></span></span> is in fact compact at singulars of uncountable cofinality.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
The Journal of Symbolic Logic
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1