We introduce a family of local ranks $D_Q$ depending on a finite set Q of pairs of the form $(varphi (x,y),q(y)),$ where $varphi (x,y)$ is a formula and $q(y)$ is a global type. We prove that in any NSOP$_1$ theory these ranks satisfy some desirable properties; in particular, $D_Q(x=x)<omega $ for any finite tuple of variables x and any Q, if $qsupseteq p$ is a Kim-forking extension of types, then $D_Q(q)<D_Q(p)$ for some Q, and if $qsupseteq p$
{"title":"ON RANK NOT ONLY IN NSOP THEORIES","authors":"JAN DOBROWOLSKI, DANIEL MAX HOFFMANN","doi":"10.1017/jsl.2024.9","DOIUrl":"https://doi.org/10.1017/jsl.2024.9","url":null,"abstract":"<p>We introduce a family of local ranks <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$D_Q$</span></span></img></span></span> depending on a finite set <span>Q</span> of pairs of the form <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$(varphi (x,y),q(y)),$</span></span></img></span></span> where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$varphi (x,y)$</span></span></img></span></span> is a formula and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$q(y)$</span></span></img></span></span> is a global type. We prove that in any NSOP<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$_1$</span></span></img></span></span> theory these ranks satisfy some desirable properties; in particular, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$D_Q(x=x)<omega $</span></span></img></span></span> for any finite tuple of variables <span>x</span> and any <span>Q</span>, if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$qsupseteq p$</span></span></img></span></span> is a Kim-forking extension of types, then <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$D_Q(q)<D_Q(p)$</span></span></img></span></span> for some <span>Q</span>, and if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240327105301107-0039:S0022481224000094:S0022481224000094_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$qsupseteq p$</span></spa","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"65 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140587758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this article, we introduce a hierarchy on the class of non-archimedean Polish groups that admit a compatible complete left-invariant metric. We denote this hierarchy by $alpha $-CLI and L-$alpha $-CLI where $alpha $ is a countable ordinal. We establish three results:
(1)G is $0$-CLI iff $G={1_G}$;
(2)G is $1$-CLI iff G admits a compatible complete two-sided invariant metric; and
(3)G is L-$alpha $-CLI iff G is locally $alpha $-CLI, i.e., G contains an open subgroup that is
在这篇文章中,我们介绍了一类非archimedean波兰群的层次结构,它们承认一个兼容的完全左不变度量。我们用 $alpha $-CLI 和 L-$alpha $-CLI 表示这个层次,其中 $alpha $ 是一个可数序号。我们建立了三个结果:(1)如果 $G={1_G}$ 是 $0$-CLI,则 G 是 $0$-CLI;(2)如果 G 允许一个兼容的完整双面不变度量,则 G 是 $1$-CLI;(3)如果 G 是局部 $alpha $-CLI,即 G 包含一个开放子群,而这个开放子群在 G 的局部是 $alpha $-CLI,则 G 是 L-$alpha $-CLI、随后,我们通过为$alpha <omega _1$构造非拱顶的CLI波兰群$G_alpha $和$H_alpha $来证明这个层次结构是合适的,这样的话:(1) $H_alpha $ 是 $alpha $-CLI 但不是 L-$beta $-CLI for $beta <alpha $;(2) $G_alpha $ 是 $(alpha +1)$-CLI 但不是 L-$alpha $-CLI。
{"title":"A HIERARCHY ON NON-ARCHIMEDEAN POLISH GROUPS ADMITTING A COMPATIBLE COMPLETE LEFT-INVARIANT METRIC","authors":"LONGYUN DING, XU WANG","doi":"10.1017/jsl.2024.7","DOIUrl":"https://doi.org/10.1017/jsl.2024.7","url":null,"abstract":"<p>In this article, we introduce a hierarchy on the class of non-archimedean Polish groups that admit a compatible complete left-invariant metric. We denote this hierarchy by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$alpha $</span></span></img></span></span>-CLI and L-<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$alpha $</span></span></img></span></span>-CLI where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$alpha $</span></span></img></span></span> is a countable ordinal. We establish three results: </p><ol><li><p><span>(1)</span> <span>G</span> is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$0$</span></span></img></span></span>-CLI iff <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$G={1_G}$</span></span></img></span></span>;</p></li><li><p><span>(2)</span> <span>G</span> is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$1$</span></span></img></span></span>-CLI iff <span>G</span> admits a compatible complete two-sided invariant metric; and</p></li><li><p><span>(3)</span> <span>G</span> is L-<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$alpha $</span></span></img></span></span>-CLI iff <span>G</span> is locally <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226125007514-0272:S0022481224000070:S0022481224000070_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$alpha $</span></span></img></span></span>-CLI, i.e., <span>G</span> contains an open subgroup that is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140011282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We introduce and study a class of betweenness algebras—Boolean algebras with binary operators, closely related to ternary frames with a betweenness relation. From various axioms for betweenness, we chose those that are most common, which makes our work applicable to a wide range of betweenness structures studied in the literature. On the algebraic side, we work with two operators of possibility and of sufficiency.
{"title":"BETWEENNESS ALGEBRAS","authors":"IVO DÜNTSCH, RAFAŁ GRUSZCZYŃSKI, PAULA MENCHÓN","doi":"10.1017/jsl.2023.86","DOIUrl":"https://doi.org/10.1017/jsl.2023.86","url":null,"abstract":"We introduce and study a class of <jats:italic>betweenness algebras</jats:italic>—Boolean algebras with binary operators, closely related to ternary frames with a betweenness relation. From various axioms for betweenness, we chose those that are most common, which makes our work applicable to a wide range of betweenness structures studied in the literature. On the algebraic side, we work with two operators of <jats:italic>possibility</jats:italic> and of <jats:italic>sufficiency</jats:italic>.","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"208 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139760278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wilkie proved in 1977 that every countable model ${mathcal M}$ of Peano Arithmetic has an elementary end extension ${mathcal N}$ such that the interstructure lattice $operatorname {mathrm {Lt}}({mathcal N} / {mathcal M})$ is the pentagon lattice ${mathbf N}_5$. This theorem implies that every countable nonstandard ${mathcal M}$ has an elementary cofinal extension ${mathcal N}$ such that $operatorname {mathrm {Lt}}({mathcal N} / {mathcal M}) cong {mathbf N}_5$. It is proved here that whenever ${mathcal M} prec {mathcal N} models mathsf {PA}$ and
{"title":"THE PENTAGON AS A SUBSTRUCTURE LATTICE OF MODELS OF PEANO ARITHMETIC","authors":"JAMES H. SCHMERL","doi":"10.1017/jsl.2024.6","DOIUrl":"https://doi.org/10.1017/jsl.2024.6","url":null,"abstract":"<p>Wilkie proved in 1977 that every countable model <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal M}$</span></span></img></span></span> of Peano Arithmetic has an elementary end extension <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal N}$</span></span></img></span></span> such that the interstructure lattice <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$operatorname {mathrm {Lt}}({mathcal N} / {mathcal M})$</span></span></img></span></span> is the pentagon lattice <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${mathbf N}_5$</span></span></img></span></span>. This theorem implies that every countable nonstandard <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal M}$</span></span></img></span></span> has an elementary cofinal extension <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline6.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal N}$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$operatorname {mathrm {Lt}}({mathcal N} / {mathcal M}) cong {mathbf N}_5$</span></span></img></span></span>. It is proved here that whenever <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal M} prec {mathcal N} models mathsf {PA}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240426094705323-0134:S0022481224000069:S0022481224000069_inline9.png\"><span dat","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We call an $alpha in mathbb {R}$regainingly approximable if there exists a computable nondecreasing sequence $(a_n)_n$ of rational numbers converging to $alpha $ with $alpha - a_n < 2^{-n}$ for infinitely many ${n in mathbb {N}}$. We also call a set $Asubseteq mathbb {N}$regainingly approximable if it is c.e. and the strongly left-computable number $2^{-A}$ is regainingly approximable. We show that the set of regainingly approximable sets is neither closed under union nor intersection and that every c.e. Turing degree contains such a set. Furthermore, the regainingly approximable numbers lie properly between the computable and the left-computable numbers and are not closed under addition. While regainingly approximable numbers are easily seen to be i.o. K-trivial, we construct such an
{"title":"REGAININGLY APPROXIMABLE NUMBERS AND SETS","authors":"PETER HERTLING, RUPERT HÖLZL, PHILIP JANICKI","doi":"10.1017/jsl.2024.5","DOIUrl":"https://doi.org/10.1017/jsl.2024.5","url":null,"abstract":"<p>We call an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$alpha in mathbb {R}$</span></span></img></span></span> <span>regainingly approximable</span> if there exists a computable nondecreasing sequence <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$(a_n)_n$</span></span></img></span></span> of rational numbers converging to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$alpha $</span></span></img></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$alpha - a_n < 2^{-n}$</span></span></img></span></span> for infinitely many <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${n in mathbb {N}}$</span></span></img></span></span>. We also call a set <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$Asubseteq mathbb {N}$</span></span></img></span></span> <span>regainingly approximable</span> if it is c.e. and the strongly left-computable number <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$2^{-A}$</span></span></img></span></span> is regainingly approximable. We show that the set of regainingly approximable sets is neither closed under union nor intersection and that every c.e. Turing degree contains such a set. Furthermore, the regainingly approximable numbers lie properly between the computable and the left-computable numbers and are not closed under addition. While regainingly approximable numbers are easily seen to be i.o. <span>K</span>-trivial, we construct such an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240227060042912-0720:S0022481224000057:S0022481224000057_inline8.png\"","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"2020 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"POLISH SPACE PARTITION PRINCIPLES AND THE HALPERN-LÄUCHLI THEOREM","authors":"C. Lambie-Hanson, Andy Zucker","doi":"10.1017/jsl.2024.4","DOIUrl":"https://doi.org/10.1017/jsl.2024.4","url":null,"abstract":"","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"86 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139612799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We investigate degree of satisfiability questions in the context of Heyting algebras and intuitionistic logic. We classify all equations in one free variable with respect to finite satisfiability gap, and determine which common principles of classical logic in multiple free variables have finite satisfiability gap. In particular we prove that, in a finite non-Boolean Heyting algebra, the probability that a randomly chosen element satisfies $x vee neg x = top $ is no larger than $frac {2}{3}$. Finally, we generalize our results to infinite Heyting algebras, and present their applications to point-set topology, black-box algebras, and the philosophy of logic.
我们以海廷代数和直觉逻辑为背景,研究可满足程度问题。我们根据有限可满足性差距对一个自由变量中的所有方程进行了分类,并确定了在多个自由变量中哪些经典逻辑的普通原理具有有限可满足性差距。我们特别证明,在有限非布尔海廷代数中,随机选择的元素满足 $x vee neg x = top $ 的概率不大于 $frac {2}{3}$。最后,我们将我们的结果推广到无限海丁代数,并介绍了它们在点集拓扑学、黑盒子代数和逻辑哲学中的应用。
{"title":"DEGREE OF SATISFIABILITY IN HEYTING ALGEBRAS","authors":"BENJAMIN MERLIN BUMPUS, ZOLTAN A. KOCSIS","doi":"10.1017/jsl.2024.2","DOIUrl":"https://doi.org/10.1017/jsl.2024.2","url":null,"abstract":"<p>We investigate degree of satisfiability questions in the context of Heyting algebras and intuitionistic logic. We classify all equations in one free variable with respect to finite satisfiability gap, and determine which common principles of classical logic in multiple free variables have finite satisfiability gap. In particular we prove that, in a finite non-Boolean Heyting algebra, the probability that a randomly chosen element satisfies <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226124105987-0144:S0022481224000021:S0022481224000021_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$x vee neg x = top $</span></span></img></span></span> is no larger than <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226124105987-0144:S0022481224000021:S0022481224000021_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$frac {2}{3}$</span></span></img></span></span>. Finally, we generalize our results to infinite Heyting algebras, and present their applications to point-set topology, black-box algebras, and the philosophy of logic.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"80 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Baire algebra of a topological space X is the quotient of the algebra of all subsets of X modulo the meager sets. We show that this Boolean algebra can be endowed with a natural closure operator, resulting in a closure algebra which we denote $mathbf {Baire}(X)$. We identify the modal logic of such algebras to be the well-known system $mathsf {S5}$, and prove soundness and strong completeness for the cases where X is crowded and either completely metrizable and continuum-sized or locally compact Hausdorff. We also show that every extension of $mathsf {S5}$ is the modal logic of a subalgebra of $mathbf {Baire}(X)$, and that soundness and strong completeness also holds in the language with the universal modality.
拓扑空间 X 的贝叶尔代数是 X 的所有子集调制集代数的商。我们证明,这个布尔代数可以被赋予一个自然闭包算子,从而得到一个闭包代数,我们将其命名为 $mathbf {Baire}(X)$ 。我们确定这种代数的模态逻辑是著名的 $mathsf {S5}$ 系统,并证明了 X 是拥挤的、完全可元化的和连续体大小的或局部紧凑的 Hausdorff 的情况下的健全性和强完备性。我们还证明$edmathsf {S5}$的每一个扩展都是$mathbf {Baire}(X)$ 的一个子代数的模态逻辑,并且在具有普遍模态的语言中健全性和强完备性也成立。
{"title":"THE BAIRE CLOSURE AND ITS LOGIC","authors":"G. BEZHANISHVILI, D. FERNÁNDEZ-DUQUE","doi":"10.1017/jsl.2024.1","DOIUrl":"https://doi.org/10.1017/jsl.2024.1","url":null,"abstract":"<p>The Baire algebra of a topological space <span>X</span> is the quotient of the algebra of all subsets of <span>X</span> modulo the meager sets. We show that this Boolean algebra can be endowed with a natural closure operator, resulting in a closure algebra which we denote <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127131651504-0594:S002248122400001X:S002248122400001X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$mathbf {Baire}(X)$</span></span></img></span></span>. We identify the modal logic of such algebras to be the well-known system <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127131651504-0594:S002248122400001X:S002248122400001X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$mathsf {S5}$</span></span></img></span></span>, and prove soundness and strong completeness for the cases where <span>X</span> is crowded and either completely metrizable and continuum-sized or locally compact Hausdorff. We also show that every extension of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127131651504-0594:S002248122400001X:S002248122400001X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$mathsf {S5}$</span></span></img></span></span> is the modal logic of a subalgebra of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127131651504-0594:S002248122400001X:S002248122400001X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$mathbf {Baire}(X)$</span></span></img></span></span>, and that soundness and strong completeness also holds in the language with the universal modality.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139582440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Note on implying","authors":"Sean Cody","doi":"10.1017/jsl.2023.98","DOIUrl":"https://doi.org/10.1017/jsl.2023.98","url":null,"abstract":"","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"34 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139385176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cummings, Foreman, and Magidor proved that Jensen’s square principle is non-compact at $aleph _omega $, meaning that it is consistent that $square _{aleph _n}$ holds for all $n<omega $ while $square _{aleph _omega }$ fails. We investigate the natural question of whether this phenomenon generalizes to singulars of uncountable cofinality. Surprisingly, we show that under some mild ${{mathsf {PCF}}}$-theoretic hypotheses, the weak square principle $square _kappa ^*$ is in fact compact at singulars of uncountable cofinality.
{"title":"ON COMPACTNESS OF WEAK SQUARE AT SINGULARS OF UNCOUNTABLE COFINALITY","authors":"MAXWELL LEVINE","doi":"10.1017/jsl.2023.101","DOIUrl":"https://doi.org/10.1017/jsl.2023.101","url":null,"abstract":"<p>Cummings, Foreman, and Magidor proved that Jensen’s square principle is non-compact at <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$aleph _omega $</span></span></img></span></span>, meaning that it is consistent that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$square _{aleph _n}$</span></span></img></span></span> holds for all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$n<omega $</span></span></img></span></span> while <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$square _{aleph _omega }$</span></span></img></span></span> fails. We investigate the natural question of whether this phenomenon generalizes to singulars of uncountable cofinality. Surprisingly, we show that under some mild <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${{mathsf {PCF}}}$</span></span></img></span></span>-theoretic hypotheses, the weak square principle <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240418113432529-0233:S0022481223001019:S0022481223001019_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$square _kappa ^*$</span></span></img></span></span> is in fact compact at singulars of uncountable cofinality.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}