Qingwei Song, Song Han, Shi Hu, Yiyang Xu, Kaijing Zuo
Verticillium dahliae is a kind of pathogenic fungus that brings about wilt disease and great losses in cotton. The molecular mechanism of the effectors in V. dahliae regulating cotton immunity remains largely unknown. Here we identified an effector of V. dahliae, VdPHB1, whose gene expression is highly induced by infection. VdPHB1 protein is localized in the intercellular space of cotton plants. Knockout VdPHB1 gene in V. dahliae had no effect on pathogen growth, but decreased the virulence in cotton. VdPHB1 ectopically expressed Arabidopsis plants were growth-inhibited and significantly susceptible to V. dahliae. Further, VdPHB1 interacted with the type II metacaspase GhMC4. GhMC4 gene silenced cotton plants were more sensitive to V. dahliae with reduced expressions of pathogen defense-related and programmed cell death genes. The accumulation of GhMC4 protein were concurrently repressed when VdPHB1 protein expressed during infection. In summary, these results revealed a novel molecular mechanism of virulence regulation that the secreted effector VdPHB1 represses the activity of cysteine protease for helping V. dahliae infection in cotton.
{"title":"The Verticillium dahliae effector VdPHB1 promotes pathogenicity in cotton and interacts with the immune protein GhMC4","authors":"Qingwei Song, Song Han, Shi Hu, Yiyang Xu, Kaijing Zuo","doi":"10.1093/pcp/pcae043","DOIUrl":"https://doi.org/10.1093/pcp/pcae043","url":null,"abstract":"Verticillium dahliae is a kind of pathogenic fungus that brings about wilt disease and great losses in cotton. The molecular mechanism of the effectors in V. dahliae regulating cotton immunity remains largely unknown. Here we identified an effector of V. dahliae, VdPHB1, whose gene expression is highly induced by infection. VdPHB1 protein is localized in the intercellular space of cotton plants. Knockout VdPHB1 gene in V. dahliae had no effect on pathogen growth, but decreased the virulence in cotton. VdPHB1 ectopically expressed Arabidopsis plants were growth-inhibited and significantly susceptible to V. dahliae. Further, VdPHB1 interacted with the type II metacaspase GhMC4. GhMC4 gene silenced cotton plants were more sensitive to V. dahliae with reduced expressions of pathogen defense-related and programmed cell death genes. The accumulation of GhMC4 protein were concurrently repressed when VdPHB1 protein expressed during infection. In summary, these results revealed a novel molecular mechanism of virulence regulation that the secreted effector VdPHB1 represses the activity of cysteine protease for helping V. dahliae infection in cotton.","PeriodicalId":502140,"journal":{"name":"Plant & Cell Physiology","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140588896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plant are sessile organisms that are often subjected to a multitude of environmental stresses, with the occurrence of these events being further intensified by global climate change. Crop species therefore require specific adaptations to tolerate climatic variability for sustainable food production. Plant stress results in excess accumulation of reactive oxygen species (ROS) leading to oxidative stress, and loss of cellular redox balance in the plant cells. Moreover, enhancement of cellular oxidation as well as oxidative signals have recently been recognized as crucial players in plant growth regulation under stress conditions. Multiple roles of redox regulation in crop production have been well documented, and major emphasis has focused on key redox-regulated proteins and non-protein molecules, such as NAD(P)H, thioredoxins, glutathione, glutaredoxins, peroxiredoxins, ascorbate, and reduced ferredoxin. These have been widely implicated in the regulation of (epi)genetic factors modulating growth and vigor of crop plants, particularly within an agricultural context. In this regard, priming with the employment of chemical and biological agents has emerged as a fascinating approach to improve plant tolerance against various abiotic and biotic stressors. Priming in plants is a physiological process, where prior exposure to specific stressors induces a state of heightened alertness, enabling a more rapid and effective defense response upon subsequent encounters with similar challenges. Priming is reported to play an important role in the regulation of cellular redox homeostasis, maximizing crop productivity under stress conditions and thus achieving yield security. By taking this into consideration, the present review is an up-to-date critical evaluation of promising plant priming technologies and their role in the regulation of redox components towards enhanced plant adaptations to extreme unfavorable environmental conditions. The challenges and opportunities of plant priming are addressed, with the aim to encourage future research in this field towards effective application in crop stress management including horticultural species.
{"title":"Redox regulation by priming agents towards a sustainable agriculture","authors":"Durgesh Kumar Tripathi, Javaid Akhtar Bhat, Chrystalla Antoniou, Nidhi Kandhol, Vijay Pratap Singh, Alisdair R Fernie, Vasileios Fotopoulos","doi":"10.1093/pcp/pcae031","DOIUrl":"https://doi.org/10.1093/pcp/pcae031","url":null,"abstract":"Plant are sessile organisms that are often subjected to a multitude of environmental stresses, with the occurrence of these events being further intensified by global climate change. Crop species therefore require specific adaptations to tolerate climatic variability for sustainable food production. Plant stress results in excess accumulation of reactive oxygen species (ROS) leading to oxidative stress, and loss of cellular redox balance in the plant cells. Moreover, enhancement of cellular oxidation as well as oxidative signals have recently been recognized as crucial players in plant growth regulation under stress conditions. Multiple roles of redox regulation in crop production have been well documented, and major emphasis has focused on key redox-regulated proteins and non-protein molecules, such as NAD(P)H, thioredoxins, glutathione, glutaredoxins, peroxiredoxins, ascorbate, and reduced ferredoxin. These have been widely implicated in the regulation of (epi)genetic factors modulating growth and vigor of crop plants, particularly within an agricultural context. In this regard, priming with the employment of chemical and biological agents has emerged as a fascinating approach to improve plant tolerance against various abiotic and biotic stressors. Priming in plants is a physiological process, where prior exposure to specific stressors induces a state of heightened alertness, enabling a more rapid and effective defense response upon subsequent encounters with similar challenges. Priming is reported to play an important role in the regulation of cellular redox homeostasis, maximizing crop productivity under stress conditions and thus achieving yield security. By taking this into consideration, the present review is an up-to-date critical evaluation of promising plant priming technologies and their role in the regulation of redox components towards enhanced plant adaptations to extreme unfavorable environmental conditions. The challenges and opportunities of plant priming are addressed, with the aim to encourage future research in this field towards effective application in crop stress management including horticultural species.","PeriodicalId":502140,"journal":{"name":"Plant & Cell Physiology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140589331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna Caccamo, Félix Vega de Luna, Agnieszka E Misztak, Sébastien Pyr dit Ruys, Didier Vertommen, Pierre Cardol, Joris Messens, Claire Remacle
The function of ascorbate peroxidase–related (APX-R) proteins, present in all green photosynthetic eukaryotes, remains unclear. This study focuses on APX-R from Chlamydomonas reinhardtii, namely, ascorbate peroxidase 2 (APX2). We showed that apx2 mutants exhibited a faster oxidation of the photosystem I primary electron donor, P700, upon sudden light increase and a slower re-reduction rate compared to the wild type, pointing to a limitation of plastocyanin. Spectroscopic, proteomic and immunoblot analyses confirmed that the phenotype was a result of lower levels of plastocyanin in the apx2 mutants. The redox state of P700 did not differ between wild type and apx2 mutants when the loss of function in plastocyanin was nutritionally complemented by growing apx2 mutants under copper deficiency. In this case, cytochrome c6 functionally replaces plastocyanin, confirming that lower levels of plastocyanin were the primary defect caused by the absence of APX2. Overall, the results presented here shed light on an unexpected regulation of plastocyanin level under copper-replete conditions, induced by APX2 in Chlamydomonas.
{"title":"APX2 Is an Ascorbate Peroxidase–Related Protein that Regulates the Levels of Plastocyanin in Chlamydomonas","authors":"Anna Caccamo, Félix Vega de Luna, Agnieszka E Misztak, Sébastien Pyr dit Ruys, Didier Vertommen, Pierre Cardol, Joris Messens, Claire Remacle","doi":"10.1093/pcp/pcae019","DOIUrl":"https://doi.org/10.1093/pcp/pcae019","url":null,"abstract":"The function of ascorbate peroxidase–related (APX-R) proteins, present in all green photosynthetic eukaryotes, remains unclear. This study focuses on APX-R from Chlamydomonas reinhardtii, namely, ascorbate peroxidase 2 (APX2). We showed that apx2 mutants exhibited a faster oxidation of the photosystem I primary electron donor, P700, upon sudden light increase and a slower re-reduction rate compared to the wild type, pointing to a limitation of plastocyanin. Spectroscopic, proteomic and immunoblot analyses confirmed that the phenotype was a result of lower levels of plastocyanin in the apx2 mutants. The redox state of P700 did not differ between wild type and apx2 mutants when the loss of function in plastocyanin was nutritionally complemented by growing apx2 mutants under copper deficiency. In this case, cytochrome c6 functionally replaces plastocyanin, confirming that lower levels of plastocyanin were the primary defect caused by the absence of APX2. Overall, the results presented here shed light on an unexpected regulation of plastocyanin level under copper-replete conditions, induced by APX2 in Chlamydomonas.","PeriodicalId":502140,"journal":{"name":"Plant & Cell Physiology","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140588888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isotope labeling coupled with mass spectrometry imaging (MSI) presents a potent strategy for elucidating the dynamics of metabolism in cellular resolution, yet its application to plant systems is scarce. It has the potential to reveal the spatiotemporal dynamics in lipid biosynthesis during plant development. In this study, we explore its application to galactolipid biosynthesis of an aquatic plant, Lemna minor, with D2O labeling. Specifically, matrix-assisted laser desorption/ionization (MALDI) MSI data of two major galactolipids in L. minor, monogalactosyldiacylglycerol and digalactosyldiacylglycerol, were studied after growing in 50% D2O media over fifteen-day time period. When they were partially labeled after five days, three distinct binomial isotopologue distributions were observed corresponding to the labeling of partial structural moieties: galactose only, galactose and a fatty acyl chain, and the entire molecule. The temporal change of the relative abundance of these distributions follows the expected linear pathway of galactolipid biosynthesis. Notably, their MS images revealed the localization of each isotopologue group to the old parent frond, the intermediate tissues, and the newly grown daughter fronds. Besides, two additional labeling experiments, 1) 13CO2 labeling and 2) backward labeling of completely 50% D2O labeled L. minor in H2O media, confirm the observations in forward labeling. Further, these experiments unveiled hidden isotopologue distributions indicative of membrane lipid restructuring. This study suggests the potential of isotope labeling with MSI to provide spatiotemporal details in lipid biosynthesis in plant development.
{"title":"Spatiotemporal Study of Galactolipid Biosynthesis in Duckweed with Mass Spectrometry Imaging and in vivo Isotope Labeling","authors":"Vy T Tat, Young Jin Lee","doi":"10.1093/pcp/pcae032","DOIUrl":"https://doi.org/10.1093/pcp/pcae032","url":null,"abstract":"Isotope labeling coupled with mass spectrometry imaging (MSI) presents a potent strategy for elucidating the dynamics of metabolism in cellular resolution, yet its application to plant systems is scarce. It has the potential to reveal the spatiotemporal dynamics in lipid biosynthesis during plant development. In this study, we explore its application to galactolipid biosynthesis of an aquatic plant, Lemna minor, with D2O labeling. Specifically, matrix-assisted laser desorption/ionization (MALDI) MSI data of two major galactolipids in L. minor, monogalactosyldiacylglycerol and digalactosyldiacylglycerol, were studied after growing in 50% D2O media over fifteen-day time period. When they were partially labeled after five days, three distinct binomial isotopologue distributions were observed corresponding to the labeling of partial structural moieties: galactose only, galactose and a fatty acyl chain, and the entire molecule. The temporal change of the relative abundance of these distributions follows the expected linear pathway of galactolipid biosynthesis. Notably, their MS images revealed the localization of each isotopologue group to the old parent frond, the intermediate tissues, and the newly grown daughter fronds. Besides, two additional labeling experiments, 1) 13CO2 labeling and 2) backward labeling of completely 50% D2O labeled L. minor in H2O media, confirm the observations in forward labeling. Further, these experiments unveiled hidden isotopologue distributions indicative of membrane lipid restructuring. This study suggests the potential of isotope labeling with MSI to provide spatiotemporal details in lipid biosynthesis in plant development.","PeriodicalId":502140,"journal":{"name":"Plant & Cell Physiology","volume":"69 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140588907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuri L Negroni, Irene Doro, Alberto Tamborrino, Irene Luzzi, Stefania Fortunato, Götz Hensel, Solmaz Khosravi, Laura Maretto, Piergiorgio Stevanato, Fiorella Lo Schiavo, Maria Concetta de Pinto, Karin Krupinska, Michela Zottini
In the last years, plant organelles have emerged as central coordinators of responses to internal and external stimuli, which can induce stress. Mitochondria play a fundamental role as stress sensors being part of a complex communication network between the organelles and the nucleus. Among the different environmental stresses, salt stress poses a significant challenge and requires efficient signaling and protective mechanisms. By using the why2 T-DNA insertion mutant and a novel knock-out mutant prepared by CRISPR/Cas9–mediated genome editing, this study revealed that WHIRLY2 is crucial for protecting mitochondrial DNA (mtDNA) integrity during salt stress. Loss-of-function mutants show an enhanced sensitivity to salt stress. The disruption of WHIRLY2 causes the impairment of mtDNA repair that results in the accumulation of aberrant recombination products, coinciding with severe alterations in nucleoid integrity and overall mitochondria morphology besides a compromised redox-dependent response and misregulation of antioxidant enzymes. The results of this study revealed that WHIRLY2-mediated structural features in mitochondria (nucleoid compactness and cristae) are important for an effective response to salt stress.
{"title":"The Arabidopsis Mitochondrial Nucleoid–Associated Protein WHIRLY2 Is Required for a Proper Response to Salt Stress","authors":"Yuri L Negroni, Irene Doro, Alberto Tamborrino, Irene Luzzi, Stefania Fortunato, Götz Hensel, Solmaz Khosravi, Laura Maretto, Piergiorgio Stevanato, Fiorella Lo Schiavo, Maria Concetta de Pinto, Karin Krupinska, Michela Zottini","doi":"10.1093/pcp/pcae025","DOIUrl":"https://doi.org/10.1093/pcp/pcae025","url":null,"abstract":"In the last years, plant organelles have emerged as central coordinators of responses to internal and external stimuli, which can induce stress. Mitochondria play a fundamental role as stress sensors being part of a complex communication network between the organelles and the nucleus. Among the different environmental stresses, salt stress poses a significant challenge and requires efficient signaling and protective mechanisms. By using the why2 T-DNA insertion mutant and a novel knock-out mutant prepared by CRISPR/Cas9–mediated genome editing, this study revealed that WHIRLY2 is crucial for protecting mitochondrial DNA (mtDNA) integrity during salt stress. Loss-of-function mutants show an enhanced sensitivity to salt stress. The disruption of WHIRLY2 causes the impairment of mtDNA repair that results in the accumulation of aberrant recombination products, coinciding with severe alterations in nucleoid integrity and overall mitochondria morphology besides a compromised redox-dependent response and misregulation of antioxidant enzymes. The results of this study revealed that WHIRLY2-mediated structural features in mitochondria (nucleoid compactness and cristae) are important for an effective response to salt stress.","PeriodicalId":502140,"journal":{"name":"Plant & Cell Physiology","volume":"57 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140588900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Boyu Guo, Eun-Ji Kim, Yuxian Zhu, Kun Wang, Eugenia Russinova
Cellular responses to internal and external stimuli are orchestrated by intricate intracellular signaling pathways. To ensure an efficient and specific information flow, cells employ scaffold proteins as critical signaling organizers. With the ability to bind multiple signaling molecules, scaffold proteins can sequester signaling components within specific subcellular domains or modulate the efficiency of signal transduction. Scaffolds can also tune the output of signaling pathways by serving as regulatory targets. This review focuses on scaffold proteins associated with the plant GLYCOGEN SYNTHASE KINASE3-like kinase, BRASSINOSTEROID-INSENSITIVE2 (BIN2) that serve as a key negative regulator of brassinosteroid (BR) signaling. Here we summarize the current understanding of how scaffold proteins actively shape BR signaling outputs and crosstalk in plant cells via interactions with BIN2.
{"title":"Shaping brassinosteroid signaling through scaffold proteins","authors":"Boyu Guo, Eun-Ji Kim, Yuxian Zhu, Kun Wang, Eugenia Russinova","doi":"10.1093/pcp/pcae040","DOIUrl":"https://doi.org/10.1093/pcp/pcae040","url":null,"abstract":"Cellular responses to internal and external stimuli are orchestrated by intricate intracellular signaling pathways. To ensure an efficient and specific information flow, cells employ scaffold proteins as critical signaling organizers. With the ability to bind multiple signaling molecules, scaffold proteins can sequester signaling components within specific subcellular domains or modulate the efficiency of signal transduction. Scaffolds can also tune the output of signaling pathways by serving as regulatory targets. This review focuses on scaffold proteins associated with the plant GLYCOGEN SYNTHASE KINASE3-like kinase, BRASSINOSTEROID-INSENSITIVE2 (BIN2) that serve as a key negative regulator of brassinosteroid (BR) signaling. Here we summarize the current understanding of how scaffold proteins actively shape BR signaling outputs and crosstalk in plant cells via interactions with BIN2.","PeriodicalId":502140,"journal":{"name":"Plant & Cell Physiology","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140588887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Arimura, I. Finkemeier, Kristina Kühn, M. Takenaka
{"title":"Multilayered Regulation of Plastids and Mitochondria.","authors":"S. Arimura, I. Finkemeier, Kristina Kühn, M. Takenaka","doi":"10.1093/pcp/pcae036","DOIUrl":"https://doi.org/10.1093/pcp/pcae036","url":null,"abstract":"","PeriodicalId":502140,"journal":{"name":"Plant & Cell Physiology","volume":"37 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140728885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brassinosteroids (BRs) are plant steroid hormones that control growth and stress responses. In the context of development, BRs play diverse roles in controlling cell differentiation and tissue patterning. The vascular system, which is essential for transporting water and nutrients throughout the plant body, initially establishes a tissue pattern during primary development and then dramatically increases the number of vascular cells during secondary development. This complex developmental process is properly regulated by a network consisting of various hormonal signalling pathways. Genetic studies have revealed that mutants defective in BR biosynthesis or the BR signalling cascade exhibit a multifaceted vascular development phenotype. Furthermore, BR crosstalk with other plant hormones, including peptide hormones, coordinately regulates vascular development. Recently, the involvement of BR in vascular development, especially in xylem differentiation, has also been suggested in plant species other than the model plant Arabidopsis thaliana. In this review, we briefly summarize the recent findings on the roles of BR in primary and secondary vascular development in Arabidopsis and other species.
{"title":"Multiple roles of brassinosteroid signaling in vascular development.","authors":"Tomoyuki Furuya, Kyoko Ohashi-Ito, Yuki Kondo","doi":"10.1093/pcp/pcae037","DOIUrl":"https://doi.org/10.1093/pcp/pcae037","url":null,"abstract":"Brassinosteroids (BRs) are plant steroid hormones that control growth and stress responses. In the context of development, BRs play diverse roles in controlling cell differentiation and tissue patterning. The vascular system, which is essential for transporting water and nutrients throughout the plant body, initially establishes a tissue pattern during primary development and then dramatically increases the number of vascular cells during secondary development. This complex developmental process is properly regulated by a network consisting of various hormonal signalling pathways. Genetic studies have revealed that mutants defective in BR biosynthesis or the BR signalling cascade exhibit a multifaceted vascular development phenotype. Furthermore, BR crosstalk with other plant hormones, including peptide hormones, coordinately regulates vascular development. Recently, the involvement of BR in vascular development, especially in xylem differentiation, has also been suggested in plant species other than the model plant Arabidopsis thaliana. In this review, we briefly summarize the recent findings on the roles of BR in primary and secondary vascular development in Arabidopsis and other species.","PeriodicalId":502140,"journal":{"name":"Plant & Cell Physiology","volume":"80 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140729019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Conservation of long-range signaling in land plants via glutamate receptor-like channels.","authors":"M. Toyota","doi":"10.1093/pcp/pcae034","DOIUrl":"https://doi.org/10.1093/pcp/pcae034","url":null,"abstract":"","PeriodicalId":502140,"journal":{"name":"Plant & Cell Physiology","volume":"4 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140734966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Ding, Tongming Wang, Virginie Gasciolli, Guilhem Reyt, Céline Remblière, Fabien Marcel, Tracy François, Abdelhafid Bendahmane, Guanghua He, Jean Jacques Bono, Benoit Lefebvre
Establishment of arbuscular mycorrhiza (AM) relies on a plant signaling pathway that can be activated by fungal chitinic signals such as short chain chitooligosaccharides (CO) and lipo-chitooligosaccharides (LCOs). The tomato LysM receptor-like kinase (LysM RLK) SlLYK10 has high affinity for LCOs and is involved in root colonization by arbuscular mycorrhizal fungi (AMF), however its role in LCO responses has not yet been studied. Here, we show that SlLYK10 proteins produced by the Sllyk10-1 and Sllyk10-2 mutant alleles, which both cause decreases in AMF colonization, and carry mutations in LysM1 and 2 respectively, have similar LCO binding affinities compared to the WT SlLYK10. However, the mutant forms were no longer able to induce cell death in Nicotiana benthamiana when co-expressed with MtLYK3, a Medicago truncatula LCO co-receptor, while they physically interacted with MtLYK3 in co-purification experiments. This suggests that the LysM mutations affect the ability of SlLYK10 to trigger signaling through a potential co-receptor rather than its ability to bind LCOs. Interestingly, tomato lines that contain a calcium (Ca2+) concentration reporter (Genetically Encoded Ca2+ indicators, GECO), showed Ca2+ spiking in response to LCO applications, but this occurred only in inner cell layers of the roots, while short chain COs also induced Ca2+ spiking in the epidermis. Moreover, LCO-induced Ca2+spiking was decreased in Sllyk10-1*GECO plants, suggesting that the decrease in AMF colonization in Sllyk10-1 is due to abnormal LCO signaling.
{"title":"The LysM receptor-like kinase SlLYK10 controls lipochitooligosaccharide signaling in inner cell layers of tomato roots","authors":"Yi Ding, Tongming Wang, Virginie Gasciolli, Guilhem Reyt, Céline Remblière, Fabien Marcel, Tracy François, Abdelhafid Bendahmane, Guanghua He, Jean Jacques Bono, Benoit Lefebvre","doi":"10.1093/pcp/pcae035","DOIUrl":"https://doi.org/10.1093/pcp/pcae035","url":null,"abstract":"Establishment of arbuscular mycorrhiza (AM) relies on a plant signaling pathway that can be activated by fungal chitinic signals such as short chain chitooligosaccharides (CO) and lipo-chitooligosaccharides (LCOs). The tomato LysM receptor-like kinase (LysM RLK) SlLYK10 has high affinity for LCOs and is involved in root colonization by arbuscular mycorrhizal fungi (AMF), however its role in LCO responses has not yet been studied. Here, we show that SlLYK10 proteins produced by the Sllyk10-1 and Sllyk10-2 mutant alleles, which both cause decreases in AMF colonization, and carry mutations in LysM1 and 2 respectively, have similar LCO binding affinities compared to the WT SlLYK10. However, the mutant forms were no longer able to induce cell death in Nicotiana benthamiana when co-expressed with MtLYK3, a Medicago truncatula LCO co-receptor, while they physically interacted with MtLYK3 in co-purification experiments. This suggests that the LysM mutations affect the ability of SlLYK10 to trigger signaling through a potential co-receptor rather than its ability to bind LCOs. Interestingly, tomato lines that contain a calcium (Ca2+) concentration reporter (Genetically Encoded Ca2+ indicators, GECO), showed Ca2+ spiking in response to LCO applications, but this occurred only in inner cell layers of the roots, while short chain COs also induced Ca2+ spiking in the epidermis. Moreover, LCO-induced Ca2+spiking was decreased in Sllyk10-1*GECO plants, suggesting that the decrease in AMF colonization in Sllyk10-1 is due to abnormal LCO signaling.","PeriodicalId":502140,"journal":{"name":"Plant & Cell Physiology","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140588899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}