Pub Date : 2024-07-11DOI: 10.3390/agrochemicals3030014
U. Sainju
Using predicted potential N mineralization (PNM) from its relationship with CO2 flush at 1 d incubation (CF) of soil samples in recommended N rates can reduce N fertilization rates for crops. This study used predicted PNM at the 0–15 cm depth to reduce N fertilization rates and examined spring wheat (Triticum aestivum L.) yields at two sites (Froid and Sidney) in Montana, USA. Cropping sequences at Froid were fall and spring till continuous spring wheat (FSTCW), no-till continuous spring wheat (NTCW1), no-till spring wheat–pea (Pisum sativum L.) (NTWP1), and spring till spring wheat–fallow (STWF). At Sidney, cropping sequences were conventional till spring wheat–fallow (CTWF), no-till spring wheat–fallow (NTWF), no-till continuous spring wheat (NTCW2), and no-till spring wheat–pea (NTWP2). Soil samples collected to a depth of 15 cm in September 2021 at both sites were analyzed for CF, PNM, and NO3-N contents, from which the reduction in N fertilization rate (RNFA) and the amount of N fertilizer applied (ANFA) to 2022 spring wheat were determined. In April 2022, spring wheat was grown with or without predicted PNM and annualized crop yields were compared. The CF and PNM were 114–137% greater for NTWP1 than STWF at Froid and 26–80% greater for NTCW2 than CTWF and NTWF at Sidney. The reduction in N fertilization rate was 26–102% greater for NTWP1 at Froid and 8–10% greater for NTCW2 and NTWF than other cropping sequences at Sidney. Annualized crop yield was 26–60% lower for crop–fallow than continuous cropping, but was not significantly different between with or without PNM at both sites. Using PNM can significantly reduce N fertilization rates for crops while sustaining dryland yields.
{"title":"Reduction in Nitrogen Fertilization Rate for Spring Wheat Due to Carbon Mineralization-Induced Nitrogen Mineralization","authors":"U. Sainju","doi":"10.3390/agrochemicals3030014","DOIUrl":"https://doi.org/10.3390/agrochemicals3030014","url":null,"abstract":"Using predicted potential N mineralization (PNM) from its relationship with CO2 flush at 1 d incubation (CF) of soil samples in recommended N rates can reduce N fertilization rates for crops. This study used predicted PNM at the 0–15 cm depth to reduce N fertilization rates and examined spring wheat (Triticum aestivum L.) yields at two sites (Froid and Sidney) in Montana, USA. Cropping sequences at Froid were fall and spring till continuous spring wheat (FSTCW), no-till continuous spring wheat (NTCW1), no-till spring wheat–pea (Pisum sativum L.) (NTWP1), and spring till spring wheat–fallow (STWF). At Sidney, cropping sequences were conventional till spring wheat–fallow (CTWF), no-till spring wheat–fallow (NTWF), no-till continuous spring wheat (NTCW2), and no-till spring wheat–pea (NTWP2). Soil samples collected to a depth of 15 cm in September 2021 at both sites were analyzed for CF, PNM, and NO3-N contents, from which the reduction in N fertilization rate (RNFA) and the amount of N fertilizer applied (ANFA) to 2022 spring wheat were determined. In April 2022, spring wheat was grown with or without predicted PNM and annualized crop yields were compared. The CF and PNM were 114–137% greater for NTWP1 than STWF at Froid and 26–80% greater for NTCW2 than CTWF and NTWF at Sidney. The reduction in N fertilization rate was 26–102% greater for NTWP1 at Froid and 8–10% greater for NTCW2 and NTWF than other cropping sequences at Sidney. Annualized crop yield was 26–60% lower for crop–fallow than continuous cropping, but was not significantly different between with or without PNM at both sites. Using PNM can significantly reduce N fertilization rates for crops while sustaining dryland yields.","PeriodicalId":502241,"journal":{"name":"Agrochemicals","volume":"49 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141658523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-22DOI: 10.3390/agrochemicals3020012
Simeng Li, Hailey Mcintyre
Aquatic ecosystems can suffer inadvertent contamination from widely used herbicides. This study delves into the relative toxicity of 36 herbicides on green algae, exploring 11 distinct modes of action and 25 chemical structure classes. Through a 72-h algal growth inhibition test, it was found that herbicides targeting acetolactate synthase (ALS), photosystem II (PSII inhibitors), microtubule assembly, very-long-chain fatty acid (VLCFA) synthesis, and lipid synthesis exhibited high toxicity, with 72-h EC50 (half-maximal effective concentration) values ranging from 0.003 mg/L to 24.6 mg/L. Other pesticide types showed moderate to low toxicity, with EC50 values ranging from 0.59 mg/L to 143 mg/L. Interestingly, herbicides sharing the same mode of action but differing in chemical composition displayed significantly varied toxicity. For instance, penoxsulam and pyribenzoxim, both ALS inhibitors, demonstrated distinct toxicity levels. Similarly, terbuthylazine and bentazone, both PSII inhibitors, also exhibited differing toxicities. Notably, herbicides approved for rice cultivation showed lower toxicity to green algae compared to those intended for terrestrial plants. These data offer valuable insights for assessing the potential risks posed by these chemicals to aquatic organisms. Additionally, to prevent or minimize herbicide residual effects, modern management practices were reviewed to offer practical guidance.
{"title":"Toxicity Assessment of 36 Herbicides to Green Algae: Effects of Mode of Action and Chemical Family","authors":"Simeng Li, Hailey Mcintyre","doi":"10.3390/agrochemicals3020012","DOIUrl":"https://doi.org/10.3390/agrochemicals3020012","url":null,"abstract":"Aquatic ecosystems can suffer inadvertent contamination from widely used herbicides. This study delves into the relative toxicity of 36 herbicides on green algae, exploring 11 distinct modes of action and 25 chemical structure classes. Through a 72-h algal growth inhibition test, it was found that herbicides targeting acetolactate synthase (ALS), photosystem II (PSII inhibitors), microtubule assembly, very-long-chain fatty acid (VLCFA) synthesis, and lipid synthesis exhibited high toxicity, with 72-h EC50 (half-maximal effective concentration) values ranging from 0.003 mg/L to 24.6 mg/L. Other pesticide types showed moderate to low toxicity, with EC50 values ranging from 0.59 mg/L to 143 mg/L. Interestingly, herbicides sharing the same mode of action but differing in chemical composition displayed significantly varied toxicity. For instance, penoxsulam and pyribenzoxim, both ALS inhibitors, demonstrated distinct toxicity levels. Similarly, terbuthylazine and bentazone, both PSII inhibitors, also exhibited differing toxicities. Notably, herbicides approved for rice cultivation showed lower toxicity to green algae compared to those intended for terrestrial plants. These data offer valuable insights for assessing the potential risks posed by these chemicals to aquatic organisms. Additionally, to prevent or minimize herbicide residual effects, modern management practices were reviewed to offer practical guidance.","PeriodicalId":502241,"journal":{"name":"Agrochemicals","volume":"52 14","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141110988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-25DOI: 10.3390/agrochemicals3020010
Chisom Augusta Okoro, A. El-Hasan, R. Voegele
Apple scab incited by the ascomycete Venturia inaequalis poses a significant threat to apple cultivation, necessitating a reassessment of existing disease management strategies. Attempts to manage apple scab include diverse approaches like developing disease forecasting models and the extensive application of synthetic chemical fungicides. However, the efficacy of these methods is compromised by inconsistencies, environmental concerns, and the pathogen’s resistance, necessitating the exploration of alternative sustainable strategies. Addressing the challenges associated with apple scab management, this review strongly supports a shift towards the integration of biological control agents (BCAs). Emphasising the transformative synergy between BCAs and their bioactive secondary metabolites, we highlight their efficacy in advancing precision disease control through innovative and sustainable solutions. The review effectively presents a strong justification for the integration of BCAs and their by-products into apple scab management, offering insights into associated benefits, risks, and challenges while outlining promising prospects. Ultimately, it is expected to drive the adoption of environmentally conscious practices for effective apple scab management.
{"title":"Integrating Biological Control Agents for Enhanced Management of Apple Scab (Venturia inaequalis): Insights, Risks, Challenges, and Prospects","authors":"Chisom Augusta Okoro, A. El-Hasan, R. Voegele","doi":"10.3390/agrochemicals3020010","DOIUrl":"https://doi.org/10.3390/agrochemicals3020010","url":null,"abstract":"Apple scab incited by the ascomycete Venturia inaequalis poses a significant threat to apple cultivation, necessitating a reassessment of existing disease management strategies. Attempts to manage apple scab include diverse approaches like developing disease forecasting models and the extensive application of synthetic chemical fungicides. However, the efficacy of these methods is compromised by inconsistencies, environmental concerns, and the pathogen’s resistance, necessitating the exploration of alternative sustainable strategies. Addressing the challenges associated with apple scab management, this review strongly supports a shift towards the integration of biological control agents (BCAs). Emphasising the transformative synergy between BCAs and their bioactive secondary metabolites, we highlight their efficacy in advancing precision disease control through innovative and sustainable solutions. The review effectively presents a strong justification for the integration of BCAs and their by-products into apple scab management, offering insights into associated benefits, risks, and challenges while outlining promising prospects. Ultimately, it is expected to drive the adoption of environmentally conscious practices for effective apple scab management.","PeriodicalId":502241,"journal":{"name":"Agrochemicals","volume":" January","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140383561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-24DOI: 10.3390/agrochemicals3020009
Mariana Rodrigues Bueno, Guilherme Sousa Alves, Sérgio Macedo Silva, Tiago Seiji S. Hachiya, Hasle Thiago S. Guimarães, Gustavo Araújo Costa, Felipe Soares Gonçalves, Mateus A. V. G. Oliveira
This study aimed to evaluate the efficiency of air assistance associated with electrostatic spraying in terms of spray deposition and yield (Experiment 1), and the coverage and droplet density on soybean crops at different working speeds (Experiment 2). The treatments in Experiment 1 corresponded to combinations of electrostatic systems associated with air assistance at three airspeeds (21, 25, and 30 m·s−1) plus a conventional treatment without electrostatic or air assistance. The treatments in Experiment 2 corresponded to three working speeds (3.3, 4.2, and 5.0 m·s−1) with or without the use of an electrostatic system. All applications were performed with a self-propelled sprayer, delivering 75 L·ha−1 with ATR 2.0 nozzles. A blue tracer, detectable as absorbance with a spectrophotometer, was added to the spray solution to evaluate deposition. The results indicate that an air assistance at 21 m·s−1 plus electrostatic system increased the amount of spray deposited on the middle and top leaves of the plants in relation to the conventional system, with yield increments of up to 621 kg·ha−1. The slowest working speed (3.3 m·s−1) combined with air assistance and an electrostatic system provided the greatest spray deposition, droplet coverage, and density on the bottom leaves of soybean crops.
{"title":"Air Assistance and Electrostatic Spraying in Soybean Crops","authors":"Mariana Rodrigues Bueno, Guilherme Sousa Alves, Sérgio Macedo Silva, Tiago Seiji S. Hachiya, Hasle Thiago S. Guimarães, Gustavo Araújo Costa, Felipe Soares Gonçalves, Mateus A. V. G. Oliveira","doi":"10.3390/agrochemicals3020009","DOIUrl":"https://doi.org/10.3390/agrochemicals3020009","url":null,"abstract":"This study aimed to evaluate the efficiency of air assistance associated with electrostatic spraying in terms of spray deposition and yield (Experiment 1), and the coverage and droplet density on soybean crops at different working speeds (Experiment 2). The treatments in Experiment 1 corresponded to combinations of electrostatic systems associated with air assistance at three airspeeds (21, 25, and 30 m·s−1) plus a conventional treatment without electrostatic or air assistance. The treatments in Experiment 2 corresponded to three working speeds (3.3, 4.2, and 5.0 m·s−1) with or without the use of an electrostatic system. All applications were performed with a self-propelled sprayer, delivering 75 L·ha−1 with ATR 2.0 nozzles. A blue tracer, detectable as absorbance with a spectrophotometer, was added to the spray solution to evaluate deposition. The results indicate that an air assistance at 21 m·s−1 plus electrostatic system increased the amount of spray deposited on the middle and top leaves of the plants in relation to the conventional system, with yield increments of up to 621 kg·ha−1. The slowest working speed (3.3 m·s−1) combined with air assistance and an electrostatic system provided the greatest spray deposition, droplet coverage, and density on the bottom leaves of soybean crops.","PeriodicalId":502241,"journal":{"name":"Agrochemicals","volume":" 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140386242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-14DOI: 10.3390/agrochemicals3010008
Q. O. Uthman, Miguel Vasconez, D. Kadyampakeni, Yu Wang, Demetris Athienitis, J. Qureshi
Imidacloprid (IDP) products are applied via soil drenching in the citrus critical root zone (CCRZ) at 0–60 cm soil depth. This study aimed to determine the uptake and leaching of IDP in the CCRZ of a Florida Entisol. The treatments include: (1) a control with no IDP applied, (2) 1.6 g of active ingredient (a.i.) per tree (×2), and (3) 3.2 g a.i. per tree of IDP (×4). The treatments were applied to two trees within each experiment unit, replicated five times, and completely randomized. The IDP concentration in the Entisol was affected by the amount of water received within the sampling intervals. IDP movement in the Entisol was evident for the field trials in Fall 2021 and 2022, irrespective of the treatment. A total of 10 mm of daily irrigation was the major driver of IDP movement in Fall 2021 (September–December 2021), while 11.7 cm of cumulative rainfall plus 10 mm of daily irrigation were the major drivers for IDP in Fall 2022 (November–December 2022). The IDP uptake level by leaves was relatively low probably because of the relatively low temperature and humidity. More applications of IDP did not result in its higher uptake by citrus leaves in the Entisol. Given the persistence of IDP, there is a possibility of leaching, which could potentially contaminate the groundwater, surface water, and non-target organisms. Therefore, it is crucial to carefully manage the use of IDP in citrus production systems to mitigate the unintended environmental impacts.
{"title":"Imidacloprid Uptake and Leaching in the Critical Root Zone of a Florida Entisol","authors":"Q. O. Uthman, Miguel Vasconez, D. Kadyampakeni, Yu Wang, Demetris Athienitis, J. Qureshi","doi":"10.3390/agrochemicals3010008","DOIUrl":"https://doi.org/10.3390/agrochemicals3010008","url":null,"abstract":"Imidacloprid (IDP) products are applied via soil drenching in the citrus critical root zone (CCRZ) at 0–60 cm soil depth. This study aimed to determine the uptake and leaching of IDP in the CCRZ of a Florida Entisol. The treatments include: (1) a control with no IDP applied, (2) 1.6 g of active ingredient (a.i.) per tree (×2), and (3) 3.2 g a.i. per tree of IDP (×4). The treatments were applied to two trees within each experiment unit, replicated five times, and completely randomized. The IDP concentration in the Entisol was affected by the amount of water received within the sampling intervals. IDP movement in the Entisol was evident for the field trials in Fall 2021 and 2022, irrespective of the treatment. A total of 10 mm of daily irrigation was the major driver of IDP movement in Fall 2021 (September–December 2021), while 11.7 cm of cumulative rainfall plus 10 mm of daily irrigation were the major drivers for IDP in Fall 2022 (November–December 2022). The IDP uptake level by leaves was relatively low probably because of the relatively low temperature and humidity. More applications of IDP did not result in its higher uptake by citrus leaves in the Entisol. Given the persistence of IDP, there is a possibility of leaching, which could potentially contaminate the groundwater, surface water, and non-target organisms. Therefore, it is crucial to carefully manage the use of IDP in citrus production systems to mitigate the unintended environmental impacts.","PeriodicalId":502241,"journal":{"name":"Agrochemicals","volume":"21 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140242655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-29DOI: 10.3390/agrochemicals3010007
Joshua Chavana, Neelendra K. Joshi
Pollinators play important roles in providing pollination services, maintaining biodiversity, and boosting crop production. Even though pollinators are essential to the environment and agriculture, their decline has been noted across multiple studies in the recent past. Both natural and anthropogenic factors have contributed to their decline. Much of the focus has been placed on climate change, habitat loss, pests and pathogens, and synthetic pesticides, but relatively little is known about the effects of biopesticides. Biopesticides are biological control agents derived from living organisms and are classified into three groups: microbial, biochemical, and plant-incorporated protectant-based products. Biopesticides are formulated similarly to their synthetic counterparts and are readily available and used within urban and agricultural settings by pest management experts and household residents. The general public and much scientific literature support the prevailing idea that biopesticides are environmentally safe and pollinator friendly in comparison with synthetic versions. However, such generalizations are based on studies with a few key pollinator species and may not be relevant to several other species that provide crop pollination services. Studies focused on native pollinators have shown that some biopesticides have lethal and sublethal effects. Because each biopesticide exhibits varying effects across pollinator species, it could be dangerous to generalize their non-toxicity across taxa and environmental settings. In this article, recent research in this direction is discussed.
{"title":"Toxicity and Risk of Biopesticides to Insect Pollinators in Urban and Agricultural Landscapes","authors":"Joshua Chavana, Neelendra K. Joshi","doi":"10.3390/agrochemicals3010007","DOIUrl":"https://doi.org/10.3390/agrochemicals3010007","url":null,"abstract":"Pollinators play important roles in providing pollination services, maintaining biodiversity, and boosting crop production. Even though pollinators are essential to the environment and agriculture, their decline has been noted across multiple studies in the recent past. Both natural and anthropogenic factors have contributed to their decline. Much of the focus has been placed on climate change, habitat loss, pests and pathogens, and synthetic pesticides, but relatively little is known about the effects of biopesticides. Biopesticides are biological control agents derived from living organisms and are classified into three groups: microbial, biochemical, and plant-incorporated protectant-based products. Biopesticides are formulated similarly to their synthetic counterparts and are readily available and used within urban and agricultural settings by pest management experts and household residents. The general public and much scientific literature support the prevailing idea that biopesticides are environmentally safe and pollinator friendly in comparison with synthetic versions. However, such generalizations are based on studies with a few key pollinator species and may not be relevant to several other species that provide crop pollination services. Studies focused on native pollinators have shown that some biopesticides have lethal and sublethal effects. Because each biopesticide exhibits varying effects across pollinator species, it could be dangerous to generalize their non-toxicity across taxa and environmental settings. In this article, recent research in this direction is discussed.","PeriodicalId":502241,"journal":{"name":"Agrochemicals","volume":"12 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140410075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-28DOI: 10.3390/agrochemicals3010006
Yasasvi Jayakodi, P. Thiviya, A. Gamage, P. Evon, Terrence Madhujith, O. Merah
The importance of antioxidants has gained much attention due to the increase in the prevalence of various non-communicable diseases such as cancer, diabetes mellitus, and cardiovascular diseases, which occur due to excess reactive species. The widespread use of synthetic antioxidants in the food industry has raised concerns about their potential harmful effects on health. As a result, the utilization of natural antioxidants to preserve food and as a source of dietary antioxidants has gained attention. Essential oils extracted from Apiaceae family plants are an excellent source of antioxidants. In this review, research findings regarding the antioxidant activity of selected Apiaceae family members and their applications are discussed.
{"title":"Antioxidant Activity of Essential Oils Extracted from Apiaceae Family Plants","authors":"Yasasvi Jayakodi, P. Thiviya, A. Gamage, P. Evon, Terrence Madhujith, O. Merah","doi":"10.3390/agrochemicals3010006","DOIUrl":"https://doi.org/10.3390/agrochemicals3010006","url":null,"abstract":"The importance of antioxidants has gained much attention due to the increase in the prevalence of various non-communicable diseases such as cancer, diabetes mellitus, and cardiovascular diseases, which occur due to excess reactive species. The widespread use of synthetic antioxidants in the food industry has raised concerns about their potential harmful effects on health. As a result, the utilization of natural antioxidants to preserve food and as a source of dietary antioxidants has gained attention. Essential oils extracted from Apiaceae family plants are an excellent source of antioxidants. In this review, research findings regarding the antioxidant activity of selected Apiaceae family members and their applications are discussed.","PeriodicalId":502241,"journal":{"name":"Agrochemicals","volume":"104 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140418204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-16DOI: 10.3390/agrochemicals3010005
Joanne K. Daggy, David M. Haas, Yunpeng Yu, Patrick O. Monahan, David M. Guise, É. Gaudreau, Jessica Larose, Charles M. Benbrook
Currently, there are no known human biomonitoring studies that concurrently examine biomarkers of dicamba and 2,4-D. We sought to compare biomarkers of exposure to herbicides in pregnant women residing in the US Midwest before and after the adoption of dicamba-tolerant soybean technology using urine specimens obtained in 2010–2012 from the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-be (N = 61) and in 2020–2022 from the Heartland Study (N = 91). Specific gravity-standardized concentration levels for each analyte were compared between the cohorts, assuming data are lognormal and specifying values below the LOD as left-censored. The proportion of pregnant individuals with dicamba detected above the LOD significantly increased from 28% (95% CI: 16%, 40%) in 2010–2012 to 70% (95% CI: 60%, 79%) in 2020–2022, and dicamba concentrations also significantly increased from 0.066 μg/L (95% CI: 0.042, 0.104) to 0.271 μg/L (95% CI: 0.205, 0.358). All pregnant individuals from both cohorts had 2,4-D detected. Though 2,4-D concentration levels increased, the difference was not significant (p-value = 0.226). Reliance on herbicides has drastically increased in the last ten years in the United States, and the results obtained in this study highlight the need to track exposure and impacts on adverse maternal and neonatal outcomes.
{"title":"Dicamba and 2,4-D in the Urine of Pregnant Women in the Midwest: Comparison of Two Cohorts (2010–2012 vs. 2020–2022)","authors":"Joanne K. Daggy, David M. Haas, Yunpeng Yu, Patrick O. Monahan, David M. Guise, É. Gaudreau, Jessica Larose, Charles M. Benbrook","doi":"10.3390/agrochemicals3010005","DOIUrl":"https://doi.org/10.3390/agrochemicals3010005","url":null,"abstract":"Currently, there are no known human biomonitoring studies that concurrently examine biomarkers of dicamba and 2,4-D. We sought to compare biomarkers of exposure to herbicides in pregnant women residing in the US Midwest before and after the adoption of dicamba-tolerant soybean technology using urine specimens obtained in 2010–2012 from the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-be (N = 61) and in 2020–2022 from the Heartland Study (N = 91). Specific gravity-standardized concentration levels for each analyte were compared between the cohorts, assuming data are lognormal and specifying values below the LOD as left-censored. The proportion of pregnant individuals with dicamba detected above the LOD significantly increased from 28% (95% CI: 16%, 40%) in 2010–2012 to 70% (95% CI: 60%, 79%) in 2020–2022, and dicamba concentrations also significantly increased from 0.066 μg/L (95% CI: 0.042, 0.104) to 0.271 μg/L (95% CI: 0.205, 0.358). All pregnant individuals from both cohorts had 2,4-D detected. Though 2,4-D concentration levels increased, the difference was not significant (p-value = 0.226). Reliance on herbicides has drastically increased in the last ten years in the United States, and the results obtained in this study highlight the need to track exposure and impacts on adverse maternal and neonatal outcomes.","PeriodicalId":502241,"journal":{"name":"Agrochemicals","volume":"44 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139961750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-19DOI: 10.3390/agrochemicals3010004
Yuechun Zeng, Shaolin Sun, Pengfei Li, Xian Zhou, Jian Wang
Recent advances in the microbial degradation of persistent organic pollutants have the potential to mitigate the damage caused by anthropogenic activities that are harmfully impacting agriculture soil ecosystems and human health. In this paper, we summarize the pollution characteristics of neonicotinoid insecticides (NNIs) in agricultural fields in China and other countries and then discuss the existing research on screening for NNI-degrading functional bacterial strains, their degradation processes, the construction of microbial consortia, and strategies for their application. We explore the current needs and solutions for improving the microbial remediation rate of NNI-contaminated soil and how these solutions are being developed and applied. We highlight several scientific and technological advances in soil microbiome engineering, including the construction of microbial consortia with a broad spectrum of NNI degradation and microbial immobilization to improve competition with indigenous microorganisms through the provision of a microenvironment and niche suitable for NNI-degrading bacteria. This paper highlights the need for an interdisciplinary approach to improving the degradation capacity and in situ survival of NNI-degrading strains/microbial consortia to facilitate the remediation of NNI-contaminated soil using strains with a broad spectrum and high efficiency in NNI degradation.
微生物降解持久性有机污染物的最新研究进展有望减轻人类活动对农业土壤生态系统和人类健康造成的危害。本文概述了新烟碱类杀虫剂在中国和其他国家农田中的污染特征,然后讨论了现有的新烟碱类杀虫剂降解功能菌株筛选、降解过程、微生物联合体构建及其应用策略等方面的研究。我们探讨了当前提高受 NNI 污染土壤微生物修复率的需求和解决方案,以及这些解决方案是如何开发和应用的。我们重点介绍了土壤微生物组工程中的几项科学和技术进展,包括构建具有广泛 NNI 降解能力的微生物联合体,以及通过提供适合 NNI 降解细菌生长的微环境和生态位来改善与本地微生物竞争的微生物固定化。本文强调有必要采用跨学科方法来提高 NNI 降解菌株/微生物联合体的降解能力和原位存活率,以便利用具有广谱和高效 NNI 降解能力的菌株修复受 NNI 污染的土壤。
{"title":"Neonicotinoid Insecticide-Degrading Bacteria and Their Application Potential in Contaminated Agricultural Soil Remediation","authors":"Yuechun Zeng, Shaolin Sun, Pengfei Li, Xian Zhou, Jian Wang","doi":"10.3390/agrochemicals3010004","DOIUrl":"https://doi.org/10.3390/agrochemicals3010004","url":null,"abstract":"Recent advances in the microbial degradation of persistent organic pollutants have the potential to mitigate the damage caused by anthropogenic activities that are harmfully impacting agriculture soil ecosystems and human health. In this paper, we summarize the pollution characteristics of neonicotinoid insecticides (NNIs) in agricultural fields in China and other countries and then discuss the existing research on screening for NNI-degrading functional bacterial strains, their degradation processes, the construction of microbial consortia, and strategies for their application. We explore the current needs and solutions for improving the microbial remediation rate of NNI-contaminated soil and how these solutions are being developed and applied. We highlight several scientific and technological advances in soil microbiome engineering, including the construction of microbial consortia with a broad spectrum of NNI degradation and microbial immobilization to improve competition with indigenous microorganisms through the provision of a microenvironment and niche suitable for NNI-degrading bacteria. This paper highlights the need for an interdisciplinary approach to improving the degradation capacity and in situ survival of NNI-degrading strains/microbial consortia to facilitate the remediation of NNI-contaminated soil using strains with a broad spectrum and high efficiency in NNI degradation.","PeriodicalId":502241,"journal":{"name":"Agrochemicals","volume":"94 23","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139612560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-19DOI: 10.3390/agrochemicals3010003
Eleftheria Travlou, N. Antonopoulos, I. Gazoulis, P. Kanatas
Herbicide volatility and drift are serious problems for chemical weed control. The extended use of dicamba, especially due to the commercial release of dicamba-resistant crops, revealed many off-target dicamba injury issues for sensitive crops. The objective of the present study is to give information on the chemical properties and volatility of dicamba and highlight some key issues, while a systematic review of the recently reported cases is attempted. Unfortunately, the problem is increasing, with a huge majority of the injuries reported in the USA, but it is also present in many other countries. Several arable, horticultural, and perennial crops suffer from such damage. Specific measures and approaches are suggested in order to quantify, reduce, and prevent such problems, while the training of farmers and stakeholders and further research are certainly required for the optimization of the several alternative options.
{"title":"Chemical Weed Control and Crop Injuries Due to Spray Drift: The Case of Dicamba","authors":"Eleftheria Travlou, N. Antonopoulos, I. Gazoulis, P. Kanatas","doi":"10.3390/agrochemicals3010003","DOIUrl":"https://doi.org/10.3390/agrochemicals3010003","url":null,"abstract":"Herbicide volatility and drift are serious problems for chemical weed control. The extended use of dicamba, especially due to the commercial release of dicamba-resistant crops, revealed many off-target dicamba injury issues for sensitive crops. The objective of the present study is to give information on the chemical properties and volatility of dicamba and highlight some key issues, while a systematic review of the recently reported cases is attempted. Unfortunately, the problem is increasing, with a huge majority of the injuries reported in the USA, but it is also present in many other countries. Several arable, horticultural, and perennial crops suffer from such damage. Specific measures and approaches are suggested in order to quantify, reduce, and prevent such problems, while the training of farmers and stakeholders and further research are certainly required for the optimization of the several alternative options.","PeriodicalId":502241,"journal":{"name":"Agrochemicals","volume":"5 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139525179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}