首页 > 最新文献

Journal of Computational and Applied Mathematics最新文献

英文 中文
Augmented Lagrangian method for linear inverse problems with repeated measurement data 具有重复测量数据的线性逆问题的增广拉格朗日方法
IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2026-01-06 DOI: 10.1016/j.cam.2026.117349
Qinian Jin , Wei Wang , Min Zhong
We consider the augmented Lagrangian method for solving linear ill-posed inverse problems in Banach spaces under the statistical framework that multiple unbiased independent identically distributed measurement data can be acquired. We use the average of these data in the method to reconstruct a solution whose feature is captured by a convex function. After analyzing the method under a priori stopping rules, which are of limited use in practice, we propose a statistical discrepancy principle, which is purely data driven, to terminate the method. We establish the convergence in expectation under general conditions and derive the convergence rates in probability when the sought solution satisfies variational source conditions. Numerical simulations are reported to test our method.
在可以获得多个无偏独立同分布测量数据的统计框架下,研究了求解Banach空间线性不适定反问题的增广拉格朗日方法。我们在该方法中使用这些数据的平均值来重建其特征被凸函数捕获的解。在分析了先验停止规则下的方法后,我们提出了纯粹数据驱动的统计差异原则来终止该方法。我们在一般条件下建立了期望收敛性,并推导了求解满足变分源条件时的概率收敛率。通过数值模拟对本文方法进行了验证。
{"title":"Augmented Lagrangian method for linear inverse problems with repeated measurement data","authors":"Qinian Jin ,&nbsp;Wei Wang ,&nbsp;Min Zhong","doi":"10.1016/j.cam.2026.117349","DOIUrl":"10.1016/j.cam.2026.117349","url":null,"abstract":"<div><div>We consider the augmented Lagrangian method for solving linear ill-posed inverse problems in Banach spaces under the statistical framework that multiple unbiased independent identically distributed measurement data can be acquired. We use the average of these data in the method to reconstruct a solution whose feature is captured by a convex function. After analyzing the method under <em>a priori</em> stopping rules, which are of limited use in practice, we propose a statistical discrepancy principle, which is purely data driven, to terminate the method. We establish the convergence in expectation under general conditions and derive the convergence rates in probability when the sought solution satisfies variational source conditions. Numerical simulations are reported to test our method.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"482 ","pages":"Article 117349"},"PeriodicalIF":2.6,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145979374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Error analysis of randomized quasi-Monte Carlo: Non-asymptotic error bound, importance sampling and application to linear elliptic PDEs with lognormal coefficients 随机拟蒙特卡罗误差分析:非渐近误差界、重要抽样及其在对数正态系数线性椭圆偏微分方程中的应用
IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2026-01-06 DOI: 10.1016/j.cam.2025.117310
Yang Liu , Raúl Tempone
This study analyzes the non-asymptotic convergence behavior of the randomized quasi-Monte Carlo (RQMC) method with applications to linear elliptic partial differential equations (PDEs) with lognormal coefficients. Building upon the error analysis presented in (Owen, 2006), we derive a non-asymptotic convergence estimate depending on the specific integrands, the input dimensionality, and the RQMC quadrature size. We discuss the effects of the variance and dimensionality of the input random variable. Then, we apply the RQMC method with importance sampling (IS) to approximate deterministic, real-valued, bounded linear functionals that depend on the solution of a linear elliptic PDE with a lognormal diffusivity coefficient in bounded domains of Rd, where the random coefficient is modeled as a stationary Gaussian random field parameterized by the trigonometric and wavelet-type basis. We propose two types of IS distributions, analyze their effects on the RQMC convergence rate, and observe the improvements.
研究了随机拟蒙特卡罗(RQMC)方法在求解对数正态系数线性椭圆型偏微分方程中的非渐近收敛性。在(Owen, 2006)中提出的误差分析的基础上,我们推导出一个非渐近收敛估计,这取决于特定的被积、输入维数和RQMC正交大小。我们讨论了输入随机变量的方差和维数的影响。然后,我们应用重要性抽样(IS)的RQMC方法来近似确定性的、实值的、有界的线性泛函,这些泛函依赖于一个具有对数正态扩散系数的线性椭圆PDE的解,其中随机系数被建模为一个平稳的高斯随机场,该随机场由三角和小波型基参数化。我们提出了两种类型的IS分布,分析了它们对RQMC收敛速度的影响,并观察了改进的结果。
{"title":"Error analysis of randomized quasi-Monte Carlo: Non-asymptotic error bound, importance sampling and application to linear elliptic PDEs with lognormal coefficients","authors":"Yang Liu ,&nbsp;Raúl Tempone","doi":"10.1016/j.cam.2025.117310","DOIUrl":"10.1016/j.cam.2025.117310","url":null,"abstract":"<div><div>This study analyzes the non-asymptotic convergence behavior of the randomized quasi-Monte Carlo (RQMC) method with applications to linear elliptic partial differential equations (PDEs) with lognormal coefficients. Building upon the error analysis presented in (Owen, 2006), we derive a non-asymptotic convergence estimate depending on the specific integrands, the input dimensionality, and the RQMC quadrature size. We discuss the effects of the variance and dimensionality of the input random variable. Then, we apply the RQMC method with importance sampling (IS) to approximate deterministic, real-valued, bounded linear functionals that depend on the solution of a linear elliptic PDE with a lognormal diffusivity coefficient in bounded domains of <span><math><msup><mi>R</mi><mi>d</mi></msup></math></span>, where the random coefficient is modeled as a stationary Gaussian random field parameterized by the trigonometric and wavelet-type basis. We propose two types of IS distributions, analyze their effects on the RQMC convergence rate, and observe the improvements.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"482 ","pages":"Article 117310"},"PeriodicalIF":2.6,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145928143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new variational approach for the numerical location of Hardy Z-function zeros on the real line Hardy z函数在实线上零点位置的一种新的变分方法
IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2026-01-06 DOI: 10.1016/j.cam.2025.117304
Yochay Jerby
<div><div>We introduce a novel variational numerical method for the theoretical investigation of the real zeros of the Hardy <em>Z</em>–function <em>Z</em>(<em>t</em>), designed to circumvent certain limitations of classical approaches. In particular, the traditional Riemann–Siegel formula, despite its widespread use, poses significant analytic challenges due to its complicated, non-closed-form error terms, which hinder its utility for theoretical analysis. Our approach builds on an accelerated asymptotic formula for <em>Z</em>(<em>t</em>) established in earlier work, simplifying the structure of the error term and producing a family of tractable approximants better suited to variational arguments. We construct a variational framework that connects the zeros of the core function <span><math><mrow><msub><mi>Z</mi><mn>0</mn></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>, whose real zeros are fully understood, to those of <em>Z</em>(<em>t</em>) in the range <span><math><mrow><mn>2</mn><mi>N</mi><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>2</mn><mi>N</mi><mo>+</mo><mn>2</mn></mrow></math></span>. This is achieved via continuous paths in a newly introduced high-dimensional parameter space <span><math><msub><mi>Z</mi><mi>N</mi></msub></math></span>, whose elements are generalized sections of the form<span><span><span><math><mrow><msub><mi>Z</mi><mi>N</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>;</mo><mover><mrow><mi>a</mi></mrow><mo>‾</mo></mover><mo>)</mo></mrow><mo>=</mo><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><mfrac><msub><mi>a</mi><mi>k</mi></msub><msqrt><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msqrt></mfrac><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>−</mo><mi>log</mi><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mspace></mspace><mi>t</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mover><mrow><mi>a</mi></mrow><mo>‾</mo></mover><mo>=</mo><mrow><mo>(</mo><msub><mi>a</mi><mn>1</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mi>a</mi><mi>N</mi></msub><mo>)</mo></mrow><mo>∈</mo><msup><mi>R</mi><mi>N</mi></msup></mrow></math></span>. This allows for a controlled deformation from <em>Z</em><sub>0</sub>(<em>t</em>) to <em>Z</em>(<em>t</em>) while preserving real zeros, drawing an analogy with spaces of real polynomials whose zeros remain real unless a collision (i.e., a double zero) occurs. We also present a detailed numerical analysis of Newton’s method applied to locating zeros <span><math><msub><mover><mrow><mi>t</mi></mrow><mo>˜</mo></mover><mi>n</mi></msub></math></span> of <em>Z</em>(<em>t</em>), using the zeros <em>t<sub>n</sub></em> of <em>Z</em><sub>0</sub>(<em>t</em>) as initial starting points.
我们介绍了一种新的变分数值方法,用于理论研究Hardy Z -函数Z(t)的实零点,旨在克服经典方法的某些局限性。特别是,传统的黎曼-西格尔公式尽管被广泛使用,但由于其复杂的、非封闭形式的误差项,阻碍了它在理论分析中的应用,给分析带来了重大挑战。我们的方法建立在早期工作中建立的Z(t)的加速渐近公式的基础上,简化了误差项的结构,并产生了一组更适合变分参数的易于处理的近似值。我们构造了一个变分框架,将核心函数Z0(t)=cos(θ(t))的零点与Z(t)在2N≤t≤2N+2范围内的零点联系起来,其中Z0(t)=cos(θ(t))的实数零点完全已知。这是通过在新引入的高维参数空间ZN中的连续路径实现的,其元素是形式ZN(t;a形式)=cos(θ(t))+∑k=1Nakk+1cos(θ(t)−log(k+1)t)的广义截面,其中a形式=(a1,…,aN)∈RN。这允许从Z0(t)到Z(t)的可控变形,同时保留实数零,与实数多项式的空间类比,其零保持实数,除非发生碰撞(即双零)。我们还提出了一个详细的数值分析,牛顿的方法应用于定位零点t ~ n的Z(t),使用零点tn的Z0(t)作为初始起点。我们证明,对于这些零的一个不可忽略的子集,牛顿方法可能失败或变得不稳定,而我们的变分方法在探索范围内显得足够敏感,可以从相应的tn连续跟踪t ~ n。我们进一步表明,在概念层面上,将每个tn连接到唯一的实零t ~ n的非碰撞路径的存在允许人们将黎曼假设重新表述为非线性优化问题,使人想起现代机器学习中遇到的基于梯度的方法。最后,我们解释了在Riemann-Siegel公式的经典框架内构造类似变分格式的结构障碍。
{"title":"A new variational approach for the numerical location of Hardy Z-function zeros on the real line","authors":"Yochay Jerby","doi":"10.1016/j.cam.2025.117304","DOIUrl":"10.1016/j.cam.2025.117304","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We introduce a novel variational numerical method for the theoretical investigation of the real zeros of the Hardy &lt;em&gt;Z&lt;/em&gt;–function &lt;em&gt;Z&lt;/em&gt;(&lt;em&gt;t&lt;/em&gt;), designed to circumvent certain limitations of classical approaches. In particular, the traditional Riemann–Siegel formula, despite its widespread use, poses significant analytic challenges due to its complicated, non-closed-form error terms, which hinder its utility for theoretical analysis. Our approach builds on an accelerated asymptotic formula for &lt;em&gt;Z&lt;/em&gt;(&lt;em&gt;t&lt;/em&gt;) established in earlier work, simplifying the structure of the error term and producing a family of tractable approximants better suited to variational arguments. We construct a variational framework that connects the zeros of the core function &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;cos&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, whose real zeros are fully understood, to those of &lt;em&gt;Z&lt;/em&gt;(&lt;em&gt;t&lt;/em&gt;) in the range &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. This is achieved via continuous paths in a newly introduced high-dimensional parameter space &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;, whose elements are generalized sections of the form&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;cos&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;munderover&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/munderover&gt;&lt;mfrac&gt;&lt;msub&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/msub&gt;&lt;msqrt&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msqrt&gt;&lt;/mfrac&gt;&lt;mi&gt;cos&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;log&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;‾&lt;/mo&gt;&lt;/mover&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. This allows for a controlled deformation from &lt;em&gt;Z&lt;/em&gt;&lt;sub&gt;0&lt;/sub&gt;(&lt;em&gt;t&lt;/em&gt;) to &lt;em&gt;Z&lt;/em&gt;(&lt;em&gt;t&lt;/em&gt;) while preserving real zeros, drawing an analogy with spaces of real polynomials whose zeros remain real unless a collision (i.e., a double zero) occurs. We also present a detailed numerical analysis of Newton’s method applied to locating zeros &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mover&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;˜&lt;/mo&gt;&lt;/mover&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; of &lt;em&gt;Z&lt;/em&gt;(&lt;em&gt;t&lt;/em&gt;), using the zeros &lt;em&gt;t&lt;sub&gt;n&lt;/sub&gt;&lt;/em&gt; of &lt;em&gt;Z&lt;/em&gt;&lt;sub&gt;0&lt;/sub&gt;(&lt;em&gt;t&lt;/em&gt;) as initial starting points.","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"482 ","pages":"Article 117304"},"PeriodicalIF":2.6,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145979452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the estimation of the q-numerical radius via Orlicz functions 用Orlicz函数估计q数值半径
IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2026-01-03 DOI: 10.1016/j.cam.2026.117340
Fuad Kittaneh , Arnab Patra , Jyoti Rani
This study utilizes Orlicz functions to provide refined lower and upper bounds on the q-numerical radius of an operator acting on a Hilbert space. Additionally, the concept of q-sectorial matrices is introduced and further bounds for the q-numerical radius are established. Our results unify several existing bounds for the q-numerical radius. Suitable examples are provided to supplement the estimations.
本文利用Orlicz函数给出了作用于Hilbert空间的算子的q数值半径的精细下界和上界。此外,引入q-扇形矩阵的概念,进一步建立了q-数值半径的界。我们的结果统一了q数值半径的几个已有界。提供了适当的例子来补充估计。
{"title":"On the estimation of the q-numerical radius via Orlicz functions","authors":"Fuad Kittaneh ,&nbsp;Arnab Patra ,&nbsp;Jyoti Rani","doi":"10.1016/j.cam.2026.117340","DOIUrl":"10.1016/j.cam.2026.117340","url":null,"abstract":"<div><div>This study utilizes Orlicz functions to provide refined lower and upper bounds on the <em>q</em>-numerical radius of an operator acting on a Hilbert space. Additionally, the concept of <em>q</em>-sectorial matrices is introduced and further bounds for the <em>q</em>-numerical radius are established. Our results unify several existing bounds for the <em>q</em>-numerical radius. Suitable examples are provided to supplement the estimations.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"482 ","pages":"Article 117340"},"PeriodicalIF":2.6,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145928325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted weak MPCEP and *CEPMP inverses 加权弱MPCEP和*CEPMP逆
IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2026-01-03 DOI: 10.1016/j.cam.2026.117336
Dijana Mosić , Bibekananda Sitha
The fact that weak MPCEP and *CEPMP inverses of square matrices are generalizations of several classes of generalized inverses, inspired us to extend these concepts for rectangular matrices. Precisely, solvability of novel systems of equations is verified based on minimal rank W-weighted (right) weak Drazin inverse. As solutions of new extended systems, definitions of weighted weak MPCEP and *CEPMP inverses are presented, and some known weighted generalized inverses are unified. Characterizations and expressions for weighted weak MPCEP and *CEPMP inverses are given. Dual types of weighted weak MPCEP and *CEPMP inverses are studied too. As consequences, we get definitions and properties of dual weak MPCEP and *CEPMP inverses. Certain systems of linear equations are solved by applying weighted systems of linear equations.
方阵的弱MPCEP和*CEPMP逆是几类广义逆的推广,启发我们将这些概念扩展到矩形矩阵。精确地说,基于最小秩w加权(右)弱Drazin逆,验证了新方程组的可解性。作为新扩展系统的解,给出了加权弱MPCEP和*CEPMP逆的定义,并统一了一些已知的加权广义逆。给出了加权弱MPCEP和*CEPMP逆的表征和表达式。研究了加权弱MPCEP和*CEPMP逆的对偶类型。由此,我们得到了对偶弱MPCEP和*CEPMP逆的定义和性质。某些线性方程组是用加权线性方程组来求解的。
{"title":"Weighted weak MPCEP and *CEPMP inverses","authors":"Dijana Mosić ,&nbsp;Bibekananda Sitha","doi":"10.1016/j.cam.2026.117336","DOIUrl":"10.1016/j.cam.2026.117336","url":null,"abstract":"<div><div>The fact that weak MPCEP and *CEPMP inverses of square matrices are generalizations of several classes of generalized inverses, inspired us to extend these concepts for rectangular matrices. Precisely, solvability of novel systems of equations is verified based on minimal rank <em>W</em>-weighted (right) weak Drazin inverse. As solutions of new extended systems, definitions of weighted weak MPCEP and *CEPMP inverses are presented, and some known weighted generalized inverses are unified. Characterizations and expressions for weighted weak MPCEP and *CEPMP inverses are given. Dual types of weighted weak MPCEP and *CEPMP inverses are studied too. As consequences, we get definitions and properties of dual weak MPCEP and *CEPMP inverses. Certain systems of linear equations are solved by applying weighted systems of linear equations.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"482 ","pages":"Article 117336"},"PeriodicalIF":2.6,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145979370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zeroing neural dynamics solving time-variant complex conjugate matrix equation X(τ)F(τ)−A(τ)X‾(τ)=C(τ) 归零神经动力学求解时变复共轭矩阵方程X(τ)F(τ)−A(τ)X形式(τ)=C(τ)
IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2026-01-03 DOI: 10.1016/j.cam.2026.117347
Jiakuang He , Dongqing Wu
Complex conjugate matrix equations (CCME) are important in computation and antilinear systems. Existing research mainly focuses on the time-invariant version, while studies on the time-variant version and its solution using artificial neural networks are still lacking. This paper introduces zeroing neural dynamics (ZND) to solve the earliest time-variant CCME. Firstly, the vectorization and Kronecker product in the complex field are defined uniformly. Secondly, Con-CZND1 and Con-CZND2 models are proposed, and their convergence and effectiveness are theoretically proved. Thirdly, numerical experiments confirm their effectiveness and highlight their differences. The results show the advantages of ZND in the complex field compared with that in the real field, and further refine the related theory.
复共轭矩阵方程(CCME)在计算和求解非线性系统中具有重要的意义。现有的研究主要集中在时不变版本,而对时变版本及其人工神经网络求解的研究仍然缺乏。本文引入归零神经动力学(ZND)来解决最早的时变CCME问题。首先,统一定义了复域中的矢量化和Kronecker积;其次,提出了Con-CZND1和Con-CZND2模型,并从理论上证明了它们的收敛性和有效性。第三,数值实验验证了它们的有效性,并突出了它们的差异。研究结果显示了ZND在复杂场中的优势,并进一步完善了相关理论。
{"title":"Zeroing neural dynamics solving time-variant complex conjugate matrix equation X(τ)F(τ)−A(τ)X‾(τ)=C(τ)","authors":"Jiakuang He ,&nbsp;Dongqing Wu","doi":"10.1016/j.cam.2026.117347","DOIUrl":"10.1016/j.cam.2026.117347","url":null,"abstract":"<div><div>Complex conjugate matrix equations (CCME) are important in computation and antilinear systems. Existing research mainly focuses on the time-invariant version, while studies on the time-variant version and its solution using artificial neural networks are still lacking. This paper introduces zeroing neural dynamics (ZND) to solve the earliest time-variant CCME. Firstly, the vectorization and Kronecker product in the complex field are defined uniformly. Secondly, Con-CZND1 and Con-CZND2 models are proposed, and their convergence and effectiveness are theoretically proved. Thirdly, numerical experiments confirm their effectiveness and highlight their differences. The results show the advantages of ZND in the complex field compared with that in the real field, and further refine the related theory.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"482 ","pages":"Article 117347"},"PeriodicalIF":2.6,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145979377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic modeling and analysis of coupled hydrogen-Gas-Electricity networks 氢-气-电耦合网络的动态建模与分析
IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2026-01-03 DOI: 10.1016/j.cam.2025.117333
Ioannis Dassios , Eoin Syron
In this paper, we develop a mathematical dynamic model for a coupled hydrogen-gas-electricity network, focusing on the dynamic interactions between these systems. The model incorporates hydrogen injection into the gas network and its impact on gas flow and pressure. Additionally, gas-fired power plants consume gas to generate electricity, linking the gas and electricity networks. The model includes partial differential equations (PDEs) for the gas network, differential-algebraic equations (DAEs) for the electricity network, and numerical techniques for handling slow-fast dynamics. A mathematical Theorem is introduced to describe the coupling between hydrogen injection, gas flow, and electricity generation, demonstrating how these systems interact in a stable and efficient manner. A numerical example illustrates the theory. The proposed model and Theorem provide a robust framework for understanding and optimizing the operation of coupled energy systems.
在本文中,我们建立了一个耦合的氢-气-电网络的数学动态模型,重点研究了这些系统之间的动态相互作用。该模型考虑了注氢对气体网络的影响及其对气体流量和压力的影响。此外,燃气发电厂消耗天然气来发电,将天然气和电力网络连接起来。该模型包括燃气网络的偏微分方程(PDEs),电网的微分代数方程(DAEs),以及处理慢速快速动力学的数值技术。引入了一个数学定理来描述氢气注入、气体流动和发电之间的耦合,展示了这些系统如何以稳定和有效的方式相互作用。数值算例说明了该理论。所提出的模型和定理为理解和优化耦合能源系统的运行提供了一个强大的框架。
{"title":"Dynamic modeling and analysis of coupled hydrogen-Gas-Electricity networks","authors":"Ioannis Dassios ,&nbsp;Eoin Syron","doi":"10.1016/j.cam.2025.117333","DOIUrl":"10.1016/j.cam.2025.117333","url":null,"abstract":"<div><div>In this paper, we develop a mathematical dynamic model for a coupled hydrogen-gas-electricity network, focusing on the dynamic interactions between these systems. The model incorporates hydrogen injection into the gas network and its impact on gas flow and pressure. Additionally, gas-fired power plants consume gas to generate electricity, linking the gas and electricity networks. The model includes partial differential equations (PDEs) for the gas network, differential-algebraic equations (DAEs) for the electricity network, and numerical techniques for handling slow-fast dynamics. A mathematical Theorem is introduced to describe the coupling between hydrogen injection, gas flow, and electricity generation, demonstrating how these systems interact in a stable and efficient manner. A numerical example illustrates the theory. The proposed model and Theorem provide a robust framework for understanding and optimizing the operation of coupled energy systems.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"482 ","pages":"Article 117333"},"PeriodicalIF":2.6,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145979451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closed-form solutions to a kind of matrix inequality and its applications in control systems 一类矩阵不等式的封闭解及其在控制系统中的应用
IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2026-01-03 DOI: 10.1016/j.cam.2026.117353
Huiting Zhang, Zhanshan Wang
In 2014, Tian [1] pointed out that: “A challenging task is to give the closed-form of the general common Hermitian solution of B2XB2*=A2 and B3XB3*=A3 that satisfy X > 0 ( ≥ 0,  < 0,  ≤ 0), which is equivalent to solving the Hermitian matrix inequality (HMI) A+BX+(BX)*+CYD+(CYD)*0(>0,<0,0).” Due to the discontinuity and nonconvexity of the rank and inertia of a matrix, the approach in [1] cannot provide the closed-form solutions to the HMI. To solve this problem, we adopt an auxiliary variable substitution method, to transform the matrix inequality problem into the task of finding a common Hermitian nonnegative definite solution (common Hermitian positive definite solution) K for a constructed matrix pair. A theorem is proposed, an algorithm is established, and a closed-form solution is obtained for the first time. Moreover, the proposed method not only overcomes the limitation in [1] where no explicit solution could be provided, but also facilitates the solution of a class of output feedback controllers design problems. Utilizing the obtained results, we discuss the applications of the kind of matrix inequality from the perspectives of applied mathematics and the control theory. Finally, two numerical examples are given to validate the correctness of the derived closed-form solutions.
2014年,Tian[1]指出:“一项具有挑战性的任务是给出满足X >; 0( ≥ 0, <; 0, ≤ 0)的B2XB2*=A2和B3XB3*=A3的一般公共厄米解的封闭形式,等价于求解厄米矩阵不等式(HMI) A+BX+(BX)*+CYD+(CYD)*≥0(>0,<0,≤0)。”由于矩阵的秩和惯性的不连续和非凸性,[1]中的方法不能提供HMI的封闭解。为了解决这一问题,我们采用辅助变量代换的方法,将矩阵不等式问题转化为求一个构造矩阵对的公赫米非负定解(公赫米正定解)K的任务。提出了一个定理,建立了一个算法,并首次得到了一个闭型解。此外,所提出的方法不仅克服了[1]中无法提供显式解的限制,而且有利于求解一类输出反馈控制器的设计问题。利用所得结果,从应用数学和控制论的角度讨论了这类矩阵不等式的应用。最后给出了两个数值算例,验证了所推导的闭型解的正确性。
{"title":"Closed-form solutions to a kind of matrix inequality and its applications in control systems","authors":"Huiting Zhang,&nbsp;Zhanshan Wang","doi":"10.1016/j.cam.2026.117353","DOIUrl":"10.1016/j.cam.2026.117353","url":null,"abstract":"<div><div>In 2014, Tian [1] pointed out that: “A challenging task is to give the closed-form of the general common Hermitian solution of <span><math><mrow><msub><mi>B</mi><mn>2</mn></msub><mi>X</mi><msubsup><mi>B</mi><mrow><mn>2</mn></mrow><mo>*</mo></msubsup><mo>=</mo><msub><mi>A</mi><mn>2</mn></msub></mrow></math></span> and <span><math><mrow><msub><mi>B</mi><mn>3</mn></msub><mi>X</mi><msubsup><mi>B</mi><mrow><mn>3</mn></mrow><mo>*</mo></msubsup><mo>=</mo><msub><mi>A</mi><mn>3</mn></msub></mrow></math></span> that satisfy <em>X</em> &gt; 0 ( ≥ 0,  &lt; 0,  ≤ 0), which is equivalent to solving the Hermitian matrix inequality (HMI) <span><math><mrow><mi>A</mi><mo>+</mo><mi>B</mi><mi>X</mi><mo>+</mo><msup><mrow><mo>(</mo><mi>B</mi><mi>X</mi><mo>)</mo></mrow><mo>*</mo></msup><mo>+</mo><mi>C</mi><mi>Y</mi><mi>D</mi><mo>+</mo><msup><mrow><mo>(</mo><mi>C</mi><mi>Y</mi><mi>D</mi><mo>)</mo></mrow><mo>*</mo></msup><mo>≥</mo><mn>0</mn><mspace></mspace><mrow><mo>(</mo><mo>&gt;</mo><mn>0</mn><mo>,</mo><mo>&lt;</mo><mn>0</mn><mo>,</mo><mo>≤</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span>.” Due to the discontinuity and nonconvexity of the rank and inertia of a matrix, the approach in <span><span>[1]</span></span> cannot provide the closed-form solutions to the HMI. To solve this problem, we adopt an auxiliary variable substitution method, to transform the matrix inequality problem into the task of finding a common Hermitian nonnegative definite solution (common Hermitian positive definite solution) <em>K</em> for a constructed matrix pair. A theorem is proposed, an algorithm is established, and a closed-form solution is obtained for the first time. Moreover, the proposed method not only overcomes the limitation in <span><span>[1]</span></span> where no explicit solution could be provided, but also facilitates the solution of a class of output feedback controllers design problems. Utilizing the obtained results, we discuss the applications of the kind of matrix inequality from the perspectives of applied mathematics and the control theory. Finally, two numerical examples are given to validate the correctness of the derived closed-form solutions.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"482 ","pages":"Article 117353"},"PeriodicalIF":2.6,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145928327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An accurate chase-like iterative algorithm for H-matrices h矩阵的精确类追逐迭代算法
IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2026-01-03 DOI: 10.1016/j.cam.2026.117343
Yebo Xiong , Jianzhou Liu
H-matrices are widely used in fields such as control theory, engineering computation, optimization theory, probability and statistics. Many important results rely on the assumption that a given matrix is an H-matrix, making accurate H-matrix identification algorithms essential. Although various methods for identifying H-matrices have been proposed, few consider the effects of round-off errors. In this paper, we present an efficient and necessary condition for H-matrices. Under the consideration of rounding errors, we propose a chase-like iterative algorithm for H-matrix identification. Additionally, the scaling factors in the positive diagonal matrices are computed to finite decimals, enabling the algorithms to produce accurate results unaffected by round-off errors in certain cases. Finally, numerical experiments demonstrate the efficiency and accuracy of our algorithms.
h矩阵广泛应用于控制理论、工程计算、优化理论、概率论和统计学等领域。许多重要的结果依赖于给定矩阵是h矩阵的假设,这使得精确的h矩阵识别算法至关重要。虽然已经提出了各种识别h矩阵的方法,但很少考虑舍入误差的影响。本文给出了h矩阵存在的一个有效必要条件。在考虑舍入误差的情况下,提出了一种求解h矩阵辨识的类追逐迭代算法。此外,正对角线矩阵中的比例因子被计算为有限小数,使算法能够在某些情况下产生不受舍入误差影响的准确结果。最后,通过数值实验验证了算法的有效性和准确性。
{"title":"An accurate chase-like iterative algorithm for H-matrices","authors":"Yebo Xiong ,&nbsp;Jianzhou Liu","doi":"10.1016/j.cam.2026.117343","DOIUrl":"10.1016/j.cam.2026.117343","url":null,"abstract":"<div><div>H-matrices are widely used in fields such as control theory, engineering computation, optimization theory, probability and statistics. Many important results rely on the assumption that a given matrix is an H-matrix, making accurate H-matrix identification algorithms essential. Although various methods for identifying H-matrices have been proposed, few consider the effects of round-off errors. In this paper, we present an efficient and necessary condition for H-matrices. Under the consideration of rounding errors, we propose a chase-like iterative algorithm for H-matrix identification. Additionally, the scaling factors in the positive diagonal matrices are computed to finite decimals, enabling the algorithms to produce accurate results unaffected by round-off errors in certain cases. Finally, numerical experiments demonstrate the efficiency and accuracy of our algorithms.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"482 ","pages":"Article 117343"},"PeriodicalIF":2.6,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145928326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An adaptive parameter iteration algorithm for a class of large and sparse linear systems 一类大型稀疏线性系统的自适应参数迭代算法
IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2026-01-03 DOI: 10.1016/j.cam.2026.117354
Yifen Ke , Changfeng Ma , Yajun Xie
For large and sparse linear systems,it is effective to reduce the original problem into a lower dimensional linear system and solve the derived equation instead. The main contribution of this paper is that a novel adaptive parameter iteration algorithm is constructed from the perspective of numerical optimization for a class of two-by-two linear systems. The new algorithm adopts a prediction-correction two-step iteration, which uses delayed information to define the iterations. Global convergence results are established, and the algorithm enjoys at least a Q-linear convergence rate under suitable conditions. Numerical experiments demonstrate the efficiency and effectiveness of the new algorithm in applications to elliptic PDE-constrained optimization problems,complex symmetric systems, and saddle point problems, in comparison with existing similar algorithms.
对于大型稀疏线性系统,将原问题简化为低维线性系统并求解导出方程是有效的。本文的主要贡献是从数值优化的角度构造了一类2 × 2线性系统的自适应参数迭代算法。新算法采用预测-校正两步迭代,利用延迟信息定义迭代。建立了全局收敛的结果,在适当的条件下,算法至少具有q -线性收敛速率。数值实验结果表明,该算法在求解椭圆型pde约束优化问题、复杂对称系统和鞍点问题时,与已有的同类算法相比,具有较高的效率和有效性。
{"title":"An adaptive parameter iteration algorithm for a class of large and sparse linear systems","authors":"Yifen Ke ,&nbsp;Changfeng Ma ,&nbsp;Yajun Xie","doi":"10.1016/j.cam.2026.117354","DOIUrl":"10.1016/j.cam.2026.117354","url":null,"abstract":"<div><div>For large and sparse linear systems,it is effective to reduce the original problem into a lower dimensional linear system and solve the derived equation instead. The main contribution of this paper is that a novel adaptive parameter iteration algorithm is constructed from the perspective of numerical optimization for a class of two-by-two linear systems. The new algorithm adopts a prediction-correction two-step iteration, which uses delayed information to define the iterations. Global convergence results are established, and the algorithm enjoys at least a <em>Q</em>-linear convergence rate under suitable conditions. Numerical experiments demonstrate the efficiency and effectiveness of the new algorithm in applications to elliptic PDE-constrained optimization problems,complex symmetric systems, and saddle point problems, in comparison with existing similar algorithms.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"482 ","pages":"Article 117354"},"PeriodicalIF":2.6,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145928205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Computational and Applied Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1