首页 > 最新文献

Journal of Combinatorial Optimization最新文献

英文 中文
Hot potato or valuable opportunity: e-tailer’s support for competitor logistics service 烫手山芋还是宝贵机会:电子零售商对竞争对手物流服务的支持
IF 1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-10-25 DOI: 10.1007/s10878-025-01358-4
Zeling Xu, Li Liu, Feiyu Guo
{"title":"Hot potato or valuable opportunity: e-tailer’s support for competitor logistics service","authors":"Zeling Xu, Li Liu, Feiyu Guo","doi":"10.1007/s10878-025-01358-4","DOIUrl":"https://doi.org/10.1007/s10878-025-01358-4","url":null,"abstract":"","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"3 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145382461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distributionally robust joint chance-constrained approach for the stochastic survivable capacitated network design problem 随机生存能力网络设计问题的分布鲁棒联合机会约束方法
IF 1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-10-25 DOI: 10.1007/s10878-025-01370-8
Salman Khodayifar, Mohammadreza Farjaie
{"title":"Distributionally robust joint chance-constrained approach for the stochastic survivable capacitated network design problem","authors":"Salman Khodayifar, Mohammadreza Farjaie","doi":"10.1007/s10878-025-01370-8","DOIUrl":"https://doi.org/10.1007/s10878-025-01370-8","url":null,"abstract":"","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145382462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reinforcement learning-guided adaptive large neighborhood search for vehicle routing problem with time windows 带时间窗车辆路径问题的强化学习引导自适应大邻域搜索
IF 1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-10-25 DOI: 10.1007/s10878-025-01364-6
Zhaohui Wang, Qiao Cui, Bin Tan, Xiao Yang, Weibang Zhou, Xiangsheng Huang
{"title":"Reinforcement learning-guided adaptive large neighborhood search for vehicle routing problem with time windows","authors":"Zhaohui Wang, Qiao Cui, Bin Tan, Xiao Yang, Weibang Zhou, Xiangsheng Huang","doi":"10.1007/s10878-025-01364-6","DOIUrl":"https://doi.org/10.1007/s10878-025-01364-6","url":null,"abstract":"","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"53 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145382463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A divide-and-conquer based preprocessing for routing in a simple polygon 基于分治法的简单多边形路由预处理
IF 1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-09-04 DOI: 10.1007/s10878-025-01345-9
Siddharth Gaur, R. Inkulu

Given a simple polygon P defined with n vertices in the plane, we preprocess P and compute routing tables at every vertex of P. In the routing phase, a packet originating at any source vertex of P is routed to its destination vertex belonging to P. At every vertex v of P along the routing path, until the packet reaches its destination, the next hop is determined using the routing tables at v and the additional information (including the packet’s destination vertex label) in the packet. We show our routing scheme constructs routing tables in

给定一个平面上定义有n个顶点的简单多边形P,我们对P进行预处理,并在P的每个顶点计算路由表。在路由阶段,从P的任何源顶点发出的数据包沿着路由路径被路由到属于P的目标顶点。在P的每个顶点v,直到数据包到达目的地,使用路由表和数据包中的附加信息(包括数据包的目的地顶点标签)来确定下一跳。我们证明了我们的路由方案在O(n(1+ 1λ)(lg∑n)3)O big (n big (1+ frac{1}{epsilon }big) big (lg n{}big)^3 big)时间内构建路由表,并且P所有顶点的路由表一起使用O(n+ nλ (lg∑n)3)O big (n+ frac{n}{epsilon }big (lg n{}big)^3 big)空间。我们的算法计算的路由路径的乘法拉伸因子的上限是(2+ λ)lg (2+ epsilon) lg n。这里,ϵ>0 {}epsilon >是一个输入参数。
{"title":"A divide-and-conquer based preprocessing for routing in a simple polygon","authors":"Siddharth Gaur, R. Inkulu","doi":"10.1007/s10878-025-01345-9","DOIUrl":"https://doi.org/10.1007/s10878-025-01345-9","url":null,"abstract":"<p>Given a simple polygon <i>P</i> defined with <i>n</i> vertices in the plane, we preprocess <i>P</i> and compute routing tables at every vertex of <i>P</i>. In the routing phase, a packet originating at any source vertex of <i>P</i> is routed to its destination vertex belonging to <i>P</i>. At every vertex <i>v</i> of <i>P</i> along the routing path, until the packet reaches its destination, the next hop is determined using the routing tables at <i>v</i> and the additional information (including the packet’s destination vertex label) in the packet. We show our routing scheme constructs routing tables in <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mstyle scriptlevel=\"0\"&gt;&lt;mrow&gt;&lt;mo maxsize=\"1.2em\" minsize=\"1.2em\"&gt;(&lt;/mo&gt;&lt;/mrow&gt;&lt;/mstyle&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mstyle scriptlevel=\"0\"&gt;&lt;mrow&gt;&lt;mo maxsize=\"1.2em\" minsize=\"1.2em\"&gt;(&lt;/mo&gt;&lt;/mrow&gt;&lt;/mstyle&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mfrac&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mi&gt;&amp;#x03F5;&lt;/mi&gt;&lt;/mfrac&gt;&lt;mstyle scriptlevel=\"0\"&gt;&lt;mrow&gt;&lt;mo maxsize=\"1.2em\" minsize=\"1.2em\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mstyle&gt;&lt;mstyle scriptlevel=\"0\"&gt;&lt;mrow&gt;&lt;mo maxsize=\"1.2em\" minsize=\"1.2em\"&gt;(&lt;/mo&gt;&lt;/mrow&gt;&lt;/mstyle&gt;&lt;mi&gt;lg&lt;/mi&gt;&lt;mo&gt;&amp;#x2061;&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;msup&gt;&lt;mstyle scriptlevel=\"0\"&gt;&lt;mrow&gt;&lt;mo maxsize=\"1.2em\" minsize=\"1.2em\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mstyle&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msup&gt;&lt;mstyle scriptlevel=\"0\"&gt;&lt;mrow&gt;&lt;mo maxsize=\"1.2em\" minsize=\"1.2em\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mstyle&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.615ex\" role=\"img\" style=\"vertical-align: -1.006ex;\" viewbox=\"0 -1123.3 8719.1 1556.6\" width=\"20.251ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-4F\" y=\"0\"></use><use x=\"763\" xlink:href=\"#MJSZ1-28\" y=\"-1\"></use><use x=\"1222\" xlink:href=\"#MJMATHI-6E\" y=\"0\"></use><use x=\"1822\" xlink:href=\"#MJSZ1-28\" y=\"-1\"></use><use x=\"2281\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use x=\"3003\" xlink:href=\"#MJMAIN-2B\" y=\"0\"></use><g transform=\"translate(3782,0)\"><g transform=\"translate(342,0)\"><rect height=\"60\" stroke=\"none\" width=\"473\" x=\"0\" y=\"220\"></rect><use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMAIN-31\" y=\"556\"></use><use transform=\"scale(0.707)\" x=\"131\" xlink:href=\"#MJMATHI-3F5\" y=\"-488\"></use></g></g><use x=\"4718\" xlink:href=\"#MJSZ1-29\" y=\"-1\"></use><use x=\"5176\" xlink:href=\"#MJSZ1-28\" y=\"-1\"></use><g transform=\"translate(5802,0)\"><use xlink:href=\"#MJMAIN-6C\"></use><use x=\"278\" xlink:href=\"#MJMAIN-67\" y=\"0\"></use></g><","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"128 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145003501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moving horizon capacitated arc routing problem 移动视界容弧布线问题
IF 1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-08-30 DOI: 10.1007/s10878-025-01344-w
Somnath Buriuly, Leena Vachhani, Arpita Sinha, Sivapragasam Ravitharan, Sunita Chauhan

In transportation networks, routing problems are cursed with arbitrary changes occurring in the dataset due to unpredictable events like agent breakdown (sensor or vehicle failure), network connectivity changes, resource/demand fluctuations, etc. Moreover, capacity restriction on the agents may require multi-trip solutions for meeting large demands over networks. For example, a battery-powered inspection wagon can only service a limited number of track sections in a single trip. We investigate a moving horizon approach for the multi-trip dynamic capacitated arc routing problem with limited duration to mitigate the limitations of CARP variants in the literature. The proposed approach addresses arbitrary changes in the underlying network, agent unavailability scenarios, and simultaneously satisfies the time limit on meeting all demands. The moving horizon approach subdivides the planning horizon to determine the current trip (single-trip) for all agents, hence coined as Moving Horizon Capacitated Arc Routing Problem (MH-CARP). The proposed MH-CARP is formulated as a set covering problem that considers both partial and full trips (trips may not start at the depot), making it suitable for tackling arbitrary events by re-planning. Theoretical results for the computation of dual variables are derived and then implemented in the column generation algorithm to obtain lower bounds. The algorithm is validated on a widely available dataset for CARP, having instances of up to 147 tasks that require servicing by up to 20 agents. Using this benchmark data, the partial-trip based re-planning strategy is also validated. Lastly, a simulation study is presented to demonstrate the re-planning strategy and compare an MH-CARP solution to two CARP based solutions - one with no arbitrary events and the other with known arbitrary events. The results also convey that greedy solutions are avoided to satisfy the limited duration restriction, and automatic re-ordering of the trips is achieved to compensate for arbitrary events.

在交通网络中,由于不可预测的事件(如代理故障(传感器或车辆故障)、网络连接变化、资源/需求波动等),数据集中发生任意变化,路由问题受到了困扰。此外,代理的容量限制可能需要多行程解决方案来满足网络上的大需求。例如,一辆电池供电的检查车在一次旅行中只能服务有限的轨道部分。我们研究了一种移动视界方法来解决持续时间有限的多行程动态电容电弧布线问题,以减轻文献中CARP变量的局限性。该方法解决了底层网络的任意变化、代理不可用等情况,同时满足了满足所有需求的时间限制。移动视界方法将规划视界细分,以确定所有智能体的当前行程(单行程),因此称为移动视界容能弧路由问题(MH-CARP)。所建议的MH-CARP被表述为一个集覆盖问题,它考虑了部分和全部行程(行程可能不在仓库开始),使其适合通过重新规划来处理任意事件。推导了对偶变量计算的理论结果,并在列生成算法中实现了下界的求解。该算法在一个广泛可用的CARP数据集上得到验证,该数据集有多达147个任务的实例,这些任务需要多达20个代理提供服务。使用这些基准数据,还验证了基于部分行程的重新规划策略。最后,通过仿真研究展示了重新规划策略,并将MH-CARP解决方案与两种基于CARP的解决方案进行了比较——一种没有任意事件,另一种有已知的任意事件。结果还表明,避免了贪心解,以满足有限时间限制,并实现了行程的自动重新排序,以补偿任意事件。
{"title":"Moving horizon capacitated arc routing problem","authors":"Somnath Buriuly, Leena Vachhani, Arpita Sinha, Sivapragasam Ravitharan, Sunita Chauhan","doi":"10.1007/s10878-025-01344-w","DOIUrl":"https://doi.org/10.1007/s10878-025-01344-w","url":null,"abstract":"<p>In transportation networks, routing problems are cursed with arbitrary changes occurring in the dataset due to unpredictable events like agent breakdown (sensor or vehicle failure), network connectivity changes, resource/demand fluctuations, etc. Moreover, capacity restriction on the agents may require multi-trip solutions for meeting large demands over networks. For example, a battery-powered inspection wagon can only service a limited number of track sections in a single trip. We investigate a moving horizon approach for the multi-trip dynamic capacitated arc routing problem with limited duration to mitigate the limitations of CARP variants in the literature. The proposed approach addresses arbitrary changes in the underlying network, agent unavailability scenarios, and simultaneously satisfies the time limit on meeting all demands. The moving horizon approach subdivides the planning horizon to determine the current trip (single-trip) for all agents, hence coined as Moving Horizon Capacitated Arc Routing Problem (MH-CARP). The proposed MH-CARP is formulated as a set covering problem that considers both partial and full trips (trips may not start at the depot), making it suitable for tackling arbitrary events by re-planning. Theoretical results for the computation of dual variables are derived and then implemented in the column generation algorithm to obtain lower bounds. The algorithm is validated on a widely available dataset for CARP, having instances of up to 147 tasks that require servicing by up to 20 agents. Using this benchmark data, the partial-trip based re-planning strategy is also validated. Lastly, a simulation study is presented to demonstrate the re-planning strategy and compare an MH-CARP solution to two CARP based solutions - one with no arbitrary events and the other with known arbitrary events. The results also convey that greedy solutions are avoided to satisfy the limited duration restriction, and automatic re-ordering of the trips is achieved to compensate for arbitrary events.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"84 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145003503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semistrong edge colorings of planar graphs 平面图形的半强边着色
IF 1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-08-30 DOI: 10.1007/s10878-025-01346-8
Yuquan Lin, Wensong Lin
<p>Strengthened notions of a matching <i>M</i> of a graph <i>G</i> have been considered, requiring that the matching <i>M</i> has some properties with respect to the subgraph <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>G</mi><mi>M</mi></msub></math>' role="presentation" style="font-size: 100%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="2.313ex" role="img" style="vertical-align: -0.505ex;" viewbox="0 -778.3 1630 995.9" width="3.786ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use x="0" xlink:href="#MJMATHI-47" y="0"></use><use transform="scale(0.707)" x="1112" xlink:href="#MJMATHI-4D" y="-213"></use></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>G</mi><mi>M</mi></msub></math></span></span><script type="math/tex">G_M</script></span> of <i>G</i> induced by the vertices covered by <i>M</i>: If <i>M</i> is the unique perfect matching of <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>G</mi><mi>M</mi></msub><mo>,</mo></math>' role="presentation" style="font-size: 100%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="2.409ex" role="img" style="vertical-align: -0.605ex;" viewbox="0 -777 1908.5 1037.3" width="4.433ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use x="0" xlink:href="#MJMATHI-47" y="0"></use><use transform="scale(0.707)" x="1112" xlink:href="#MJMATHI-4D" y="-213"></use><use x="1630" xlink:href="#MJMAIN-2C" y="0"></use></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>G</mi><mi>M</mi></msub><mo>,</mo></math></span></span><script type="math/tex">G_M,</script></span> then <i>M</i> is a <i>uniquely restricted matching</i> of <i>G</i>; if all the edges of <i>M</i> are pendant edges of <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>G</mi><mi>M</mi></msub><mo>,</mo></math>' role="presentation" style="font-size: 100%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="2.413ex" role="img" style="vertical-align: -0.606ex;" viewbox="0 -778.3 1908.5 1039.1" width="4.433ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use x="0" xlink:href="#MJMATHI-47" y="0"></use><use transform="scale(0.707)" x="1112" xlink:href="#MJMATHI-4D" y="-213"></use><use x="1630" xlink:hre
考虑了图G的匹配M的强化概念,要求匹配M对G的子图GMG_M具有一些性质,这些性质是由M所覆盖的顶点诱导的:如果M是GM,G_M的唯一完美匹配,则M是G的唯一限制匹配;若M的所有边都是GM,G_M的垂边,则M是G的半强匹配;如果GMG_M的所有顶点都是垂坠的,则M是g的诱导匹配。然后加强了边着色和色指数的概念。本文研究了最大度给定的平面图的最大半强色指数Δ。三角洲。我们证明了最大平均度小于14/5的图最多在2Δ+4,2Delta +4处具有半强色指数(即唯一受限色指数),并且当最大平均度小于8/3时,我们将界约为2Δ+22Delta +2。这些情况特别涵盖了周长至少为7的平面图的情况。至少是8)。我们的结果在Lužar等人的猜想(J图论106:612 - 632,2024)上取得了一些进展,该猜想断言对于某些普遍常数C,每个平面图G具有2Δ+C2Delta +C颜色的半强边着色(注意,这种猜想对于强边着色是失败的,因为存在具有任意大最大度的图,它们不是强(4Δ−5)(4Delta -5)-边可着色)。我们给出了一个平面图的例子,证明了最大度为ΔDelta的平面图的最大半强色指数至少为2Δ+4.2Delta +4。
{"title":"Semistrong edge colorings of planar graphs","authors":"Yuquan Lin, Wensong Lin","doi":"10.1007/s10878-025-01346-8","DOIUrl":"https://doi.org/10.1007/s10878-025-01346-8","url":null,"abstract":"&lt;p&gt;Strengthened notions of a matching &lt;i&gt;M&lt;/i&gt; of a graph &lt;i&gt;G&lt;/i&gt; have been considered, requiring that the matching &lt;i&gt;M&lt;/i&gt; has some properties with respect to the subgraph &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"2.313ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -778.3 1630 995.9\" width=\"3.786ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"&gt;&lt;/use&gt;&lt;use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMATHI-4D\" y=\"-213\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/tex\"&gt;G_M&lt;/script&gt;&lt;/span&gt; of &lt;i&gt;G&lt;/i&gt; induced by the vertices covered by &lt;i&gt;M&lt;/i&gt;: If &lt;i&gt;M&lt;/i&gt; is the unique perfect matching of &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"2.409ex\" role=\"img\" style=\"vertical-align: -0.605ex;\" viewbox=\"0 -777 1908.5 1037.3\" width=\"4.433ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"&gt;&lt;/use&gt;&lt;use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMATHI-4D\" y=\"-213\"&gt;&lt;/use&gt;&lt;use x=\"1630\" xlink:href=\"#MJMAIN-2C\" y=\"0\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/tex\"&gt;G_M,&lt;/script&gt;&lt;/span&gt; then &lt;i&gt;M&lt;/i&gt; is a &lt;i&gt;uniquely restricted matching&lt;/i&gt; of &lt;i&gt;G&lt;/i&gt;; if all the edges of &lt;i&gt;M&lt;/i&gt; are pendant edges of &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"2.413ex\" role=\"img\" style=\"vertical-align: -0.606ex;\" viewbox=\"0 -778.3 1908.5 1039.1\" width=\"4.433ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"&gt;&lt;/use&gt;&lt;use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMATHI-4D\" y=\"-213\"&gt;&lt;/use&gt;&lt;use x=\"1630\" xlink:hre","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"135 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145003460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximum expert consensus models with both type- $$alpha $$ and type- $$varepsilon $$ constraints 具有类型- $$alpha $$和类型- $$varepsilon $$约束的最大专家共识模型
IF 1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-08-30 DOI: 10.1007/s10878-025-01342-y
Dong Cheng, Huina Zhang, Yong Wu
<p>The maximum expert consensus model (MECM) aims to maximize the number of consensual decision-makers (DMs) within a limited budget. However, it may fail to achieve high group satisfaction or even cannot reach an acceptable consensus due to its neglect of the group consensus level, resulting in type-<span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#x03B1;</mi></math>' role="presentation" style="font-size: 100%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="1.412ex" role="img" style="vertical-align: -0.205ex;" viewbox="0 -519.5 640.5 607.8" width="1.488ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use x="0" xlink:href="#MJMATHI-3B1" y="0"></use></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi></math></span></span><script type="math/tex">alpha </script></span> constraints not being satisfied. To address this issue, we extend the existing MECM by considering both type-<span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#x03B1;</mi></math>' role="presentation" style="font-size: 100%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="1.412ex" role="img" style="vertical-align: -0.205ex;" viewbox="0 -519.5 640.5 607.8" width="1.488ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use x="0" xlink:href="#MJMATHI-3B1" y="0"></use></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi></math></span></span><script type="math/tex">alpha </script></span> and type-<span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtext>&#x03B5;</mtext></mrow></math>' role="presentation" style="font-size: 100%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="1.412ex" role="img" style="vertical-align: -0.205ex;" viewbox="0 -519.5 466.5 607.8" width="1.083ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use x="0" xlink:href="#MJMATHI-3B5" y="0"></use></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtext>ε</mtext></mrow></math></span></span><script type="math/tex">varepsilon </script></span> consensus constraints to enable the group consensus level and the number of consensual DMs as large as possible. Firstly, we construct a dual-MECM that considers the above two constraints. Secondly, we further develop a dual-MECM considering compromise limits (dual-MEC
最大专家共识模型(MECM)的目标是在有限的预算范围内实现共识决策者(dm)数量的最大化。然而,由于忽略了群体共识水平,它可能无法获得较高的群体满意度,甚至无法达成可接受的共识,从而导致-α alpha类型约束不被满足。为了解决这一问题,我们通过考虑-α alpha型和-ε varepsilon型共识约束来扩展现有的MECM,以使群体共识水平和共识dm的数量尽可能大。首先,我们构建了一个考虑上述两个约束的双mecm。其次,我们进一步开发了考虑折衷限制的双mecm (dual-MECM- cl)。为了给预算提供参考,建立了双最小成本共识模型(dual- mcm)来确定预算的上界和下界。随后,我们探讨了两个拟议的MECM和现有MECM之间的关系。最后,通过数值算例说明了所提模型的有效性。结果表明:(1)双mecm可以保证大多数dm达成共识,同时保持较高的群体共识水平。(2)在预算有限的情况下,总体共识水平的提高会导致共识dm数量的减少。(3)考虑个人妥协限度可能会减少同一预算内双方同意的决策决策的数量。因此,由于充分考虑了共识度量和决策主体的行为,所提出的模型可以得出更合理的共识结果。
{"title":"Maximum expert consensus models with both type- $$alpha $$ and type- $$varepsilon $$ constraints","authors":"Dong Cheng, Huina Zhang, Yong Wu","doi":"10.1007/s10878-025-01342-y","DOIUrl":"https://doi.org/10.1007/s10878-025-01342-y","url":null,"abstract":"&lt;p&gt;The maximum expert consensus model (MECM) aims to maximize the number of consensual decision-makers (DMs) within a limited budget. However, it may fail to achieve high group satisfaction or even cannot reach an acceptable consensus due to its neglect of the group consensus level, resulting in type-&lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"1.412ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -519.5 640.5 607.8\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;use x=\"0\" xlink:href=\"#MJMATHI-3B1\" y=\"0\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/tex\"&gt;alpha &lt;/script&gt;&lt;/span&gt; constraints not being satisfied. To address this issue, we extend the existing MECM by considering both type-&lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"1.412ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -519.5 640.5 607.8\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;use x=\"0\" xlink:href=\"#MJMATHI-3B1\" y=\"0\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/tex\"&gt;alpha &lt;/script&gt;&lt;/span&gt; and type-&lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mtext&gt;&amp;#x03B5;&lt;/mtext&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"1.412ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -519.5 466.5 607.8\" width=\"1.083ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;use x=\"0\" xlink:href=\"#MJMATHI-3B5\" y=\"0\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mtext&gt;ε&lt;/mtext&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/tex\"&gt;varepsilon &lt;/script&gt;&lt;/span&gt; consensus constraints to enable the group consensus level and the number of consensual DMs as large as possible. Firstly, we construct a dual-MECM that considers the above two constraints. Secondly, we further develop a dual-MECM considering compromise limits (dual-MEC","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"46 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145003462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategy-proof mechanisms for maximizing social satisfaction in the facility location game 设施选址博弈中社会满意度最大化的无策略机制
IF 1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-08-19 DOI: 10.1007/s10878-025-01341-z
Xiaowei Li, Xiwen Lu
<p>The facility location game, where the agents’ locations are on a line, is considered in this paper. The input consists of the reported locations of agents, which are collected as part of the game setup. We introduce the concept of a fairness baseline and define a function to characterize each agent’s satisfaction with the facility location. Our objective is to establish a mechanism that obtains the true information of agents and outputs a single facility location so that the sum of all agents’ satisfaction with the location is maximized. For the game with two agents, we propose a <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>5</mn><mn>4</mn></mfrac></math>' role="presentation" style="font-size: 100%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="3.215ex" role="img" style="vertical-align: -1.006ex;" viewbox="0 -950.8 713.9 1384.1" width="1.658ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect height="60" stroke="none" width="473" x="0" y="220"></rect><use transform="scale(0.707)" x="84" xlink:href="#MJMAIN-35" y="575"></use><use transform="scale(0.707)" x="84" xlink:href="#MJMAIN-34" y="-524"></use></g></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>5</mn><mn>4</mn></mfrac></math></span></span><script type="math/tex">frac{5}{4}</script></span>-approximate strategy-proof mechanism, which is the best possible. In the general case, we demonstrate that the median mechanism achieves an approximation ratio of <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>2</mn></mfrac></math>' role="presentation" style="font-size: 100%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="3.215ex" role="img" style="vertical-align: -1.006ex;" viewbox="0 -950.8 713.9 1384.1" width="1.658ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect height="60" stroke="none" width="473" x="0" y="220"></rect><use transform="scale(0.707)" x="84" xlink:href="#MJMAIN-33" y="575"></use><use transform="scale(0.707)" x="84" xlink:href="#MJMAIN-32" y="-513"></use></g></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>2</mn></mfrac></math></span></span><script type="math/tex">frac{3}{2}</script></span>. In particular, the median mechanism is an optimal group strategy-proof mechanism for the game with three agents. Additionally, we devise a <span><span style=""></span><span data-mathml='<math xmlns
本文研究了agent位置在一条直线上的设施位置博弈问题。输入包括代理报告的位置,这是作为游戏设置的一部分收集的。我们引入了公平性基线的概念,并定义了一个函数来表征每个代理对设施位置的满意度。我们的目标是建立一种获取agent真实信息并输出单个设施位置的机制,使所有agent对该位置的满意度总和最大化。对于两个智能体的博弈,我们提出了一个54 frac{5}{4} -近似的防策略机制,这是最好的可能。在一般情况下,我们证明了中位数机制实现了32 frac{3}{2}的近似比率。其中,中值机制是三个agent博弈的最优群体防策略机制。此外,我们通过修改中位数机制,设计了1+32 frac{1+sqrt{3}}{2} -逼近群策略证明机制。我们还考虑了令人讨厌的设施位置游戏中的社会满意度,并设计了一种基于输入中位数的机制。
{"title":"Strategy-proof mechanisms for maximizing social satisfaction in the facility location game","authors":"Xiaowei Li, Xiwen Lu","doi":"10.1007/s10878-025-01341-z","DOIUrl":"https://doi.org/10.1007/s10878-025-01341-z","url":null,"abstract":"&lt;p&gt;The facility location game, where the agents’ locations are on a line, is considered in this paper. The input consists of the reported locations of agents, which are collected as part of the game setup. We introduce the concept of a fairness baseline and define a function to characterize each agent’s satisfaction with the facility location. Our objective is to establish a mechanism that obtains the true information of agents and outputs a single facility location so that the sum of all agents’ satisfaction with the location is maximized. For the game with two agents, we propose a &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mfrac&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mfrac&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"3.215ex\" role=\"img\" style=\"vertical-align: -1.006ex;\" viewbox=\"0 -950.8 713.9 1384.1\" width=\"1.658ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;g transform=\"translate(120,0)\"&gt;&lt;rect height=\"60\" stroke=\"none\" width=\"473\" x=\"0\" y=\"220\"&gt;&lt;/rect&gt;&lt;use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMAIN-35\" y=\"575\"&gt;&lt;/use&gt;&lt;use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMAIN-34\" y=\"-524\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mfrac&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mfrac&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/tex\"&gt;frac{5}{4}&lt;/script&gt;&lt;/span&gt;-approximate strategy-proof mechanism, which is the best possible. In the general case, we demonstrate that the median mechanism achieves an approximation ratio of &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mfrac&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mfrac&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"3.215ex\" role=\"img\" style=\"vertical-align: -1.006ex;\" viewbox=\"0 -950.8 713.9 1384.1\" width=\"1.658ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;g transform=\"translate(120,0)\"&gt;&lt;rect height=\"60\" stroke=\"none\" width=\"473\" x=\"0\" y=\"220\"&gt;&lt;/rect&gt;&lt;use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMAIN-33\" y=\"575\"&gt;&lt;/use&gt;&lt;use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMAIN-32\" y=\"-513\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mfrac&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mfrac&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/tex\"&gt;frac{3}{2}&lt;/script&gt;&lt;/span&gt;. In particular, the median mechanism is an optimal group strategy-proof mechanism for the game with three agents. Additionally, we devise a &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"3 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145003446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An improvement on the Louvain algorithm using random walks 基于随机游走的Louvain算法的改进
IF 1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-08-19 DOI: 10.1007/s10878-025-01337-9
Duy Hieu Do, Thi Ha Duong Phan

We present improvements to famous algorithms for community detection, namely Newman’s spectral method algorithm and the Louvain algorithm. The Newman algorithm begins by treating the original graph as a single cluster, then repeats the process to split each cluster into two, based on the signs of the eigenvector corresponding to the second-largest eigenvalue. Our improvement involves replacing the time-consuming computation of eigenvalues with a random walk during the splitting process. The Louvain algorithm iteratively performs the following steps until no increase in modularity can be achieved anymore: each step consists of two phases–phase 1 for partitioning the graph into clusters, and phase 2 for constructing a new graph where each vertex represents one cluster obtained from phase 1. We propose an improvement to this algorithm by adding our random walk algorithm as an additional phase for refining clusters obtained from phase 1. It maintains a complexity comparable to the Louvain algorithm while exhibiting superior efficiency. To validate the robustness and effectiveness of our proposed algorithms, we conducted experiments using randomly generated graphs and real-world data.

我们提出了改进的著名算法的社区检测,即纽曼的光谱方法算法和Louvain算法。纽曼算法首先将原始图视为单个聚类,然后根据与第二大特征值对应的特征向量的符号重复该过程,将每个聚类分成两个。我们的改进包括在分裂过程中用随机漫步取代耗时的特征值计算。Louvain算法迭代执行以下步骤,直到模块化不再增加:每一步由两个阶段组成-阶段1将图划分为簇,阶段2构建一个新图,其中每个顶点代表从阶段1获得的一个簇。我们提出了一种改进算法,将我们的随机漫步算法作为一个额外的阶段来精炼从阶段1获得的聚类。它保持了与Louvain算法相当的复杂性,同时表现出优越的效率。为了验证我们提出的算法的鲁棒性和有效性,我们使用随机生成的图形和真实世界的数据进行了实验。
{"title":"An improvement on the Louvain algorithm using random walks","authors":"Duy Hieu Do, Thi Ha Duong Phan","doi":"10.1007/s10878-025-01337-9","DOIUrl":"https://doi.org/10.1007/s10878-025-01337-9","url":null,"abstract":"<p>We present improvements to famous algorithms for community detection, namely Newman’s spectral method algorithm and the Louvain algorithm. The Newman algorithm begins by treating the original graph as a single cluster, then repeats the process to split each cluster into two, based on the signs of the eigenvector corresponding to the second-largest eigenvalue. Our improvement involves replacing the time-consuming computation of eigenvalues with a random walk during the splitting process. The Louvain algorithm iteratively performs the following steps until no increase in modularity can be achieved anymore: each step consists of two phases–phase 1 for partitioning the graph into clusters, and phase 2 for constructing a new graph where each vertex represents one cluster obtained from phase 1. We propose an improvement to this algorithm by adding our random walk algorithm as an additional phase for refining clusters obtained from phase 1. It maintains a complexity comparable to the Louvain algorithm while exhibiting superior efficiency. To validate the robustness and effectiveness of our proposed algorithms, we conducted experiments using randomly generated graphs and real-world data.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"38 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145003447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bivalent quadratic optimization with sum-of-square of quadratic penalties 具有二次惩罚平方和的二价二次优化
IF 1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-08-08 DOI: 10.1007/s10878-025-01339-7
Tongli Zhang, Yong Xia
<p>The problem of maximizing the sum-of-square of quadratic functions with bivalent variables, denoted by (P), arises from bivalent quadratic optimization with <i>K</i> quadratic disjunctive penalties. Though NP-hard in general, (P) is polynomially solvable when the input matrices can concatenate to a fixed-rank matrix. We present a nonconvex quadratic semidefinite programming (SDP) relaxation, which provides a 0.4-approximate solution for (P). We show that the quadratic SDP relaxation can be approximately and globally solved to a precision <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#x03F5;</mi></math>' role="presentation" style="font-size: 100%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="1.412ex" role="img" style="vertical-align: -0.205ex;" viewbox="0 -519.5 406.5 607.8" width="0.944ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use x="0" xlink:href="#MJMATHI-3F5" y="0"></use></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ϵ</mi></math></span></span><script type="math/tex">epsilon </script></span> via solving at most <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mo stretchy="false">(</mo><mo stretchy="false">(</mo><mi>K</mi><msup><mi>n</mi><mn>3</mn></msup><mrow><mo>/</mo></mrow><mi>&#x03F5;</mi><msup><mo stretchy="false">)</mo><mrow><mi>K</mi><mrow><mo>/</mo></mrow><mn>2</mn></mrow></msup><mo stretchy="false">)</mo></math>' role="presentation" style="font-size: 100%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="2.914ex" role="img" style="vertical-align: -0.706ex;" viewbox="0 -950.8 6609.2 1254.7" width="15.35ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use x="0" xlink:href="#MJMATHI-4F" y="0"></use><use x="763" xlink:href="#MJMAIN-28" y="0"></use><use x="1153" xlink:href="#MJMAIN-28" y="0"></use><use x="1542" xlink:href="#MJMATHI-4B" y="0"></use><g transform="translate(2432,0)"><use x="0" xlink:href="#MJMATHI-6E" y="0"></use><use transform="scale(0.707)" x="849" xlink:href="#MJMAIN-33" y="513"></use></g><use x="3486" xlink:href="#MJMAIN-2F" y="0"></use><use x="3986" xlink:href="#MJMATHI-3F5" y="0"></use><g transform="translate(4393,0)"><use x="0" xlink:href="#MJMAIN-29" y="0"></use><g transform="translate(389,362)"><use transform="scale(0.707)" x="0" xlink:href="#MJMATHI-4B" y="0"></use><use transform="scale(0.707)" x=
带二价变量(P)的二次函数的平方和的最大化问题,是由带有K次二次析取惩罚的二价二次优化问题引起的。虽然一般来说np困难,但当输入矩阵可以连接到固定秩矩阵时,(P)是多项式可解的。我们提出了一个非凸二次半定规划(SDP)松弛,它提供了(P)的0.4近似解。我们证明,通过求解至多O((Kn3/ λ)K/2)O((Kn^3/epsilon)^{K/2})线性SDP子问题,二次SDP松弛可以近似且全局求解到精度为λ epsilon。
{"title":"Bivalent quadratic optimization with sum-of-square of quadratic penalties","authors":"Tongli Zhang, Yong Xia","doi":"10.1007/s10878-025-01339-7","DOIUrl":"https://doi.org/10.1007/s10878-025-01339-7","url":null,"abstract":"&lt;p&gt;The problem of maximizing the sum-of-square of quadratic functions with bivalent variables, denoted by (P), arises from bivalent quadratic optimization with &lt;i&gt;K&lt;/i&gt; quadratic disjunctive penalties. Though NP-hard in general, (P) is polynomially solvable when the input matrices can concatenate to a fixed-rank matrix. We present a nonconvex quadratic semidefinite programming (SDP) relaxation, which provides a 0.4-approximate solution for (P). We show that the quadratic SDP relaxation can be approximately and globally solved to a precision &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;&amp;#x03F5;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"1.412ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -519.5 406.5 607.8\" width=\"0.944ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;use x=\"0\" xlink:href=\"#MJMATHI-3F5\" y=\"0\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;ϵ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/tex\"&gt;epsilon &lt;/script&gt;&lt;/span&gt; via solving at most &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;msup&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;&amp;#x03F5;&lt;/mi&gt;&lt;msup&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"2.914ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -950.8 6609.2 1254.7\" width=\"15.35ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;use x=\"0\" xlink:href=\"#MJMATHI-4F\" y=\"0\"&gt;&lt;/use&gt;&lt;use x=\"763\" xlink:href=\"#MJMAIN-28\" y=\"0\"&gt;&lt;/use&gt;&lt;use x=\"1153\" xlink:href=\"#MJMAIN-28\" y=\"0\"&gt;&lt;/use&gt;&lt;use x=\"1542\" xlink:href=\"#MJMATHI-4B\" y=\"0\"&gt;&lt;/use&gt;&lt;g transform=\"translate(2432,0)\"&gt;&lt;use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"&gt;&lt;/use&gt;&lt;use transform=\"scale(0.707)\" x=\"849\" xlink:href=\"#MJMAIN-33\" y=\"513\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;use x=\"3486\" xlink:href=\"#MJMAIN-2F\" y=\"0\"&gt;&lt;/use&gt;&lt;use x=\"3986\" xlink:href=\"#MJMATHI-3F5\" y=\"0\"&gt;&lt;/use&gt;&lt;g transform=\"translate(4393,0)\"&gt;&lt;use x=\"0\" xlink:href=\"#MJMAIN-29\" y=\"0\"&gt;&lt;/use&gt;&lt;g transform=\"translate(389,362)\"&gt;&lt;use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-4B\" y=\"0\"&gt;&lt;/use&gt;&lt;use transform=\"scale(0.707)\" x=","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"142 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145003469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Combinatorial Optimization
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1