首页 > 最新文献

Journal of Combinatorial Optimization最新文献

英文 中文
Semistrong edge colorings of planar graphs 平面图形的半强边着色
IF 1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-08-30 DOI: 10.1007/s10878-025-01346-8
Yuquan Lin, Wensong Lin
<p>Strengthened notions of a matching <i>M</i> of a graph <i>G</i> have been considered, requiring that the matching <i>M</i> has some properties with respect to the subgraph <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>G</mi><mi>M</mi></msub></math>' role="presentation" style="font-size: 100%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="2.313ex" role="img" style="vertical-align: -0.505ex;" viewbox="0 -778.3 1630 995.9" width="3.786ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use x="0" xlink:href="#MJMATHI-47" y="0"></use><use transform="scale(0.707)" x="1112" xlink:href="#MJMATHI-4D" y="-213"></use></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>G</mi><mi>M</mi></msub></math></span></span><script type="math/tex">G_M</script></span> of <i>G</i> induced by the vertices covered by <i>M</i>: If <i>M</i> is the unique perfect matching of <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>G</mi><mi>M</mi></msub><mo>,</mo></math>' role="presentation" style="font-size: 100%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="2.409ex" role="img" style="vertical-align: -0.605ex;" viewbox="0 -777 1908.5 1037.3" width="4.433ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use x="0" xlink:href="#MJMATHI-47" y="0"></use><use transform="scale(0.707)" x="1112" xlink:href="#MJMATHI-4D" y="-213"></use><use x="1630" xlink:href="#MJMAIN-2C" y="0"></use></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>G</mi><mi>M</mi></msub><mo>,</mo></math></span></span><script type="math/tex">G_M,</script></span> then <i>M</i> is a <i>uniquely restricted matching</i> of <i>G</i>; if all the edges of <i>M</i> are pendant edges of <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>G</mi><mi>M</mi></msub><mo>,</mo></math>' role="presentation" style="font-size: 100%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="2.413ex" role="img" style="vertical-align: -0.606ex;" viewbox="0 -778.3 1908.5 1039.1" width="4.433ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use x="0" xlink:href="#MJMATHI-47" y="0"></use><use transform="scale(0.707)" x="1112" xlink:href="#MJMATHI-4D" y="-213"></use><use x="1630" xlink:hre
考虑了图G的匹配M的强化概念,要求匹配M对G的子图GMG_M具有一些性质,这些性质是由M所覆盖的顶点诱导的:如果M是GM,G_M的唯一完美匹配,则M是G的唯一限制匹配;若M的所有边都是GM,G_M的垂边,则M是G的半强匹配;如果GMG_M的所有顶点都是垂坠的,则M是g的诱导匹配。然后加强了边着色和色指数的概念。本文研究了最大度给定的平面图的最大半强色指数Δ。三角洲。我们证明了最大平均度小于14/5的图最多在2Δ+4,2Delta +4处具有半强色指数(即唯一受限色指数),并且当最大平均度小于8/3时,我们将界约为2Δ+22Delta +2。这些情况特别涵盖了周长至少为7的平面图的情况。至少是8)。我们的结果在Lužar等人的猜想(J图论106:612 - 632,2024)上取得了一些进展,该猜想断言对于某些普遍常数C,每个平面图G具有2Δ+C2Delta +C颜色的半强边着色(注意,这种猜想对于强边着色是失败的,因为存在具有任意大最大度的图,它们不是强(4Δ−5)(4Delta -5)-边可着色)。我们给出了一个平面图的例子,证明了最大度为ΔDelta的平面图的最大半强色指数至少为2Δ+4.2Delta +4。
{"title":"Semistrong edge colorings of planar graphs","authors":"Yuquan Lin, Wensong Lin","doi":"10.1007/s10878-025-01346-8","DOIUrl":"https://doi.org/10.1007/s10878-025-01346-8","url":null,"abstract":"&lt;p&gt;Strengthened notions of a matching &lt;i&gt;M&lt;/i&gt; of a graph &lt;i&gt;G&lt;/i&gt; have been considered, requiring that the matching &lt;i&gt;M&lt;/i&gt; has some properties with respect to the subgraph &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"2.313ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -778.3 1630 995.9\" width=\"3.786ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"&gt;&lt;/use&gt;&lt;use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMATHI-4D\" y=\"-213\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/tex\"&gt;G_M&lt;/script&gt;&lt;/span&gt; of &lt;i&gt;G&lt;/i&gt; induced by the vertices covered by &lt;i&gt;M&lt;/i&gt;: If &lt;i&gt;M&lt;/i&gt; is the unique perfect matching of &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"2.409ex\" role=\"img\" style=\"vertical-align: -0.605ex;\" viewbox=\"0 -777 1908.5 1037.3\" width=\"4.433ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"&gt;&lt;/use&gt;&lt;use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMATHI-4D\" y=\"-213\"&gt;&lt;/use&gt;&lt;use x=\"1630\" xlink:href=\"#MJMAIN-2C\" y=\"0\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/tex\"&gt;G_M,&lt;/script&gt;&lt;/span&gt; then &lt;i&gt;M&lt;/i&gt; is a &lt;i&gt;uniquely restricted matching&lt;/i&gt; of &lt;i&gt;G&lt;/i&gt;; if all the edges of &lt;i&gt;M&lt;/i&gt; are pendant edges of &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"2.413ex\" role=\"img\" style=\"vertical-align: -0.606ex;\" viewbox=\"0 -778.3 1908.5 1039.1\" width=\"4.433ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;use x=\"0\" xlink:href=\"#MJMATHI-47\" y=\"0\"&gt;&lt;/use&gt;&lt;use transform=\"scale(0.707)\" x=\"1112\" xlink:href=\"#MJMATHI-4D\" y=\"-213\"&gt;&lt;/use&gt;&lt;use x=\"1630\" xlink:hre","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"135 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145003460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximum expert consensus models with both type- $$alpha $$ and type- $$varepsilon $$ constraints 具有类型- $$alpha $$和类型- $$varepsilon $$约束的最大专家共识模型
IF 1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-08-30 DOI: 10.1007/s10878-025-01342-y
Dong Cheng, Huina Zhang, Yong Wu
<p>The maximum expert consensus model (MECM) aims to maximize the number of consensual decision-makers (DMs) within a limited budget. However, it may fail to achieve high group satisfaction or even cannot reach an acceptable consensus due to its neglect of the group consensus level, resulting in type-<span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#x03B1;</mi></math>' role="presentation" style="font-size: 100%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="1.412ex" role="img" style="vertical-align: -0.205ex;" viewbox="0 -519.5 640.5 607.8" width="1.488ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use x="0" xlink:href="#MJMATHI-3B1" y="0"></use></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi></math></span></span><script type="math/tex">alpha </script></span> constraints not being satisfied. To address this issue, we extend the existing MECM by considering both type-<span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#x03B1;</mi></math>' role="presentation" style="font-size: 100%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="1.412ex" role="img" style="vertical-align: -0.205ex;" viewbox="0 -519.5 640.5 607.8" width="1.488ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use x="0" xlink:href="#MJMATHI-3B1" y="0"></use></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi></math></span></span><script type="math/tex">alpha </script></span> and type-<span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtext>&#x03B5;</mtext></mrow></math>' role="presentation" style="font-size: 100%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="1.412ex" role="img" style="vertical-align: -0.205ex;" viewbox="0 -519.5 466.5 607.8" width="1.083ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use x="0" xlink:href="#MJMATHI-3B5" y="0"></use></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtext>ε</mtext></mrow></math></span></span><script type="math/tex">varepsilon </script></span> consensus constraints to enable the group consensus level and the number of consensual DMs as large as possible. Firstly, we construct a dual-MECM that considers the above two constraints. Secondly, we further develop a dual-MECM considering compromise limits (dual-MEC
最大专家共识模型(MECM)的目标是在有限的预算范围内实现共识决策者(dm)数量的最大化。然而,由于忽略了群体共识水平,它可能无法获得较高的群体满意度,甚至无法达成可接受的共识,从而导致-α alpha类型约束不被满足。为了解决这一问题,我们通过考虑-α alpha型和-ε varepsilon型共识约束来扩展现有的MECM,以使群体共识水平和共识dm的数量尽可能大。首先,我们构建了一个考虑上述两个约束的双mecm。其次,我们进一步开发了考虑折衷限制的双mecm (dual-MECM- cl)。为了给预算提供参考,建立了双最小成本共识模型(dual- mcm)来确定预算的上界和下界。随后,我们探讨了两个拟议的MECM和现有MECM之间的关系。最后,通过数值算例说明了所提模型的有效性。结果表明:(1)双mecm可以保证大多数dm达成共识,同时保持较高的群体共识水平。(2)在预算有限的情况下,总体共识水平的提高会导致共识dm数量的减少。(3)考虑个人妥协限度可能会减少同一预算内双方同意的决策决策的数量。因此,由于充分考虑了共识度量和决策主体的行为,所提出的模型可以得出更合理的共识结果。
{"title":"Maximum expert consensus models with both type- $$alpha $$ and type- $$varepsilon $$ constraints","authors":"Dong Cheng, Huina Zhang, Yong Wu","doi":"10.1007/s10878-025-01342-y","DOIUrl":"https://doi.org/10.1007/s10878-025-01342-y","url":null,"abstract":"&lt;p&gt;The maximum expert consensus model (MECM) aims to maximize the number of consensual decision-makers (DMs) within a limited budget. However, it may fail to achieve high group satisfaction or even cannot reach an acceptable consensus due to its neglect of the group consensus level, resulting in type-&lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"1.412ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -519.5 640.5 607.8\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;use x=\"0\" xlink:href=\"#MJMATHI-3B1\" y=\"0\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/tex\"&gt;alpha &lt;/script&gt;&lt;/span&gt; constraints not being satisfied. To address this issue, we extend the existing MECM by considering both type-&lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;&amp;#x03B1;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"1.412ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -519.5 640.5 607.8\" width=\"1.488ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;use x=\"0\" xlink:href=\"#MJMATHI-3B1\" y=\"0\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/tex\"&gt;alpha &lt;/script&gt;&lt;/span&gt; and type-&lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mtext&gt;&amp;#x03B5;&lt;/mtext&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"1.412ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -519.5 466.5 607.8\" width=\"1.083ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;use x=\"0\" xlink:href=\"#MJMATHI-3B5\" y=\"0\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mtext&gt;ε&lt;/mtext&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/tex\"&gt;varepsilon &lt;/script&gt;&lt;/span&gt; consensus constraints to enable the group consensus level and the number of consensual DMs as large as possible. Firstly, we construct a dual-MECM that considers the above two constraints. Secondly, we further develop a dual-MECM considering compromise limits (dual-MEC","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"46 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145003462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategy-proof mechanisms for maximizing social satisfaction in the facility location game 设施选址博弈中社会满意度最大化的无策略机制
IF 1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-08-19 DOI: 10.1007/s10878-025-01341-z
Xiaowei Li, Xiwen Lu
<p>The facility location game, where the agents’ locations are on a line, is considered in this paper. The input consists of the reported locations of agents, which are collected as part of the game setup. We introduce the concept of a fairness baseline and define a function to characterize each agent’s satisfaction with the facility location. Our objective is to establish a mechanism that obtains the true information of agents and outputs a single facility location so that the sum of all agents’ satisfaction with the location is maximized. For the game with two agents, we propose a <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>5</mn><mn>4</mn></mfrac></math>' role="presentation" style="font-size: 100%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="3.215ex" role="img" style="vertical-align: -1.006ex;" viewbox="0 -950.8 713.9 1384.1" width="1.658ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect height="60" stroke="none" width="473" x="0" y="220"></rect><use transform="scale(0.707)" x="84" xlink:href="#MJMAIN-35" y="575"></use><use transform="scale(0.707)" x="84" xlink:href="#MJMAIN-34" y="-524"></use></g></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>5</mn><mn>4</mn></mfrac></math></span></span><script type="math/tex">frac{5}{4}</script></span>-approximate strategy-proof mechanism, which is the best possible. In the general case, we demonstrate that the median mechanism achieves an approximation ratio of <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>2</mn></mfrac></math>' role="presentation" style="font-size: 100%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="3.215ex" role="img" style="vertical-align: -1.006ex;" viewbox="0 -950.8 713.9 1384.1" width="1.658ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g transform="translate(120,0)"><rect height="60" stroke="none" width="473" x="0" y="220"></rect><use transform="scale(0.707)" x="84" xlink:href="#MJMAIN-33" y="575"></use><use transform="scale(0.707)" x="84" xlink:href="#MJMAIN-32" y="-513"></use></g></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mn>3</mn><mn>2</mn></mfrac></math></span></span><script type="math/tex">frac{3}{2}</script></span>. In particular, the median mechanism is an optimal group strategy-proof mechanism for the game with three agents. Additionally, we devise a <span><span style=""></span><span data-mathml='<math xmlns
本文研究了agent位置在一条直线上的设施位置博弈问题。输入包括代理报告的位置,这是作为游戏设置的一部分收集的。我们引入了公平性基线的概念,并定义了一个函数来表征每个代理对设施位置的满意度。我们的目标是建立一种获取agent真实信息并输出单个设施位置的机制,使所有agent对该位置的满意度总和最大化。对于两个智能体的博弈,我们提出了一个54 frac{5}{4} -近似的防策略机制,这是最好的可能。在一般情况下,我们证明了中位数机制实现了32 frac{3}{2}的近似比率。其中,中值机制是三个agent博弈的最优群体防策略机制。此外,我们通过修改中位数机制,设计了1+32 frac{1+sqrt{3}}{2} -逼近群策略证明机制。我们还考虑了令人讨厌的设施位置游戏中的社会满意度,并设计了一种基于输入中位数的机制。
{"title":"Strategy-proof mechanisms for maximizing social satisfaction in the facility location game","authors":"Xiaowei Li, Xiwen Lu","doi":"10.1007/s10878-025-01341-z","DOIUrl":"https://doi.org/10.1007/s10878-025-01341-z","url":null,"abstract":"&lt;p&gt;The facility location game, where the agents’ locations are on a line, is considered in this paper. The input consists of the reported locations of agents, which are collected as part of the game setup. We introduce the concept of a fairness baseline and define a function to characterize each agent’s satisfaction with the facility location. Our objective is to establish a mechanism that obtains the true information of agents and outputs a single facility location so that the sum of all agents’ satisfaction with the location is maximized. For the game with two agents, we propose a &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mfrac&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mfrac&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"3.215ex\" role=\"img\" style=\"vertical-align: -1.006ex;\" viewbox=\"0 -950.8 713.9 1384.1\" width=\"1.658ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;g transform=\"translate(120,0)\"&gt;&lt;rect height=\"60\" stroke=\"none\" width=\"473\" x=\"0\" y=\"220\"&gt;&lt;/rect&gt;&lt;use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMAIN-35\" y=\"575\"&gt;&lt;/use&gt;&lt;use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMAIN-34\" y=\"-524\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mfrac&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mfrac&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/tex\"&gt;frac{5}{4}&lt;/script&gt;&lt;/span&gt;-approximate strategy-proof mechanism, which is the best possible. In the general case, we demonstrate that the median mechanism achieves an approximation ratio of &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mfrac&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mfrac&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"3.215ex\" role=\"img\" style=\"vertical-align: -1.006ex;\" viewbox=\"0 -950.8 713.9 1384.1\" width=\"1.658ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;g transform=\"translate(120,0)\"&gt;&lt;rect height=\"60\" stroke=\"none\" width=\"473\" x=\"0\" y=\"220\"&gt;&lt;/rect&gt;&lt;use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMAIN-33\" y=\"575\"&gt;&lt;/use&gt;&lt;use transform=\"scale(0.707)\" x=\"84\" xlink:href=\"#MJMAIN-32\" y=\"-513\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mfrac&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mfrac&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/tex\"&gt;frac{3}{2}&lt;/script&gt;&lt;/span&gt;. In particular, the median mechanism is an optimal group strategy-proof mechanism for the game with three agents. Additionally, we devise a &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"3 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145003446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An improvement on the Louvain algorithm using random walks 基于随机游走的Louvain算法的改进
IF 1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-08-19 DOI: 10.1007/s10878-025-01337-9
Duy Hieu Do, Thi Ha Duong Phan

We present improvements to famous algorithms for community detection, namely Newman’s spectral method algorithm and the Louvain algorithm. The Newman algorithm begins by treating the original graph as a single cluster, then repeats the process to split each cluster into two, based on the signs of the eigenvector corresponding to the second-largest eigenvalue. Our improvement involves replacing the time-consuming computation of eigenvalues with a random walk during the splitting process. The Louvain algorithm iteratively performs the following steps until no increase in modularity can be achieved anymore: each step consists of two phases–phase 1 for partitioning the graph into clusters, and phase 2 for constructing a new graph where each vertex represents one cluster obtained from phase 1. We propose an improvement to this algorithm by adding our random walk algorithm as an additional phase for refining clusters obtained from phase 1. It maintains a complexity comparable to the Louvain algorithm while exhibiting superior efficiency. To validate the robustness and effectiveness of our proposed algorithms, we conducted experiments using randomly generated graphs and real-world data.

我们提出了改进的著名算法的社区检测,即纽曼的光谱方法算法和Louvain算法。纽曼算法首先将原始图视为单个聚类,然后根据与第二大特征值对应的特征向量的符号重复该过程,将每个聚类分成两个。我们的改进包括在分裂过程中用随机漫步取代耗时的特征值计算。Louvain算法迭代执行以下步骤,直到模块化不再增加:每一步由两个阶段组成-阶段1将图划分为簇,阶段2构建一个新图,其中每个顶点代表从阶段1获得的一个簇。我们提出了一种改进算法,将我们的随机漫步算法作为一个额外的阶段来精炼从阶段1获得的聚类。它保持了与Louvain算法相当的复杂性,同时表现出优越的效率。为了验证我们提出的算法的鲁棒性和有效性,我们使用随机生成的图形和真实世界的数据进行了实验。
{"title":"An improvement on the Louvain algorithm using random walks","authors":"Duy Hieu Do, Thi Ha Duong Phan","doi":"10.1007/s10878-025-01337-9","DOIUrl":"https://doi.org/10.1007/s10878-025-01337-9","url":null,"abstract":"<p>We present improvements to famous algorithms for community detection, namely Newman’s spectral method algorithm and the Louvain algorithm. The Newman algorithm begins by treating the original graph as a single cluster, then repeats the process to split each cluster into two, based on the signs of the eigenvector corresponding to the second-largest eigenvalue. Our improvement involves replacing the time-consuming computation of eigenvalues with a random walk during the splitting process. The Louvain algorithm iteratively performs the following steps until no increase in modularity can be achieved anymore: each step consists of two phases–phase 1 for partitioning the graph into clusters, and phase 2 for constructing a new graph where each vertex represents one cluster obtained from phase 1. We propose an improvement to this algorithm by adding our random walk algorithm as an additional phase for refining clusters obtained from phase 1. It maintains a complexity comparable to the Louvain algorithm while exhibiting superior efficiency. To validate the robustness and effectiveness of our proposed algorithms, we conducted experiments using randomly generated graphs and real-world data.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"38 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145003447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bivalent quadratic optimization with sum-of-square of quadratic penalties 具有二次惩罚平方和的二价二次优化
IF 1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-08-08 DOI: 10.1007/s10878-025-01339-7
Tongli Zhang, Yong Xia
<p>The problem of maximizing the sum-of-square of quadratic functions with bivalent variables, denoted by (P), arises from bivalent quadratic optimization with <i>K</i> quadratic disjunctive penalties. Though NP-hard in general, (P) is polynomially solvable when the input matrices can concatenate to a fixed-rank matrix. We present a nonconvex quadratic semidefinite programming (SDP) relaxation, which provides a 0.4-approximate solution for (P). We show that the quadratic SDP relaxation can be approximately and globally solved to a precision <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>&#x03F5;</mi></math>' role="presentation" style="font-size: 100%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="1.412ex" role="img" style="vertical-align: -0.205ex;" viewbox="0 -519.5 406.5 607.8" width="0.944ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use x="0" xlink:href="#MJMATHI-3F5" y="0"></use></g></svg><span role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ϵ</mi></math></span></span><script type="math/tex">epsilon </script></span> via solving at most <span><span style=""></span><span data-mathml='<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mo stretchy="false">(</mo><mo stretchy="false">(</mo><mi>K</mi><msup><mi>n</mi><mn>3</mn></msup><mrow><mo>/</mo></mrow><mi>&#x03F5;</mi><msup><mo stretchy="false">)</mo><mrow><mi>K</mi><mrow><mo>/</mo></mrow><mn>2</mn></mrow></msup><mo stretchy="false">)</mo></math>' role="presentation" style="font-size: 100%; display: inline-block; position: relative;" tabindex="0"><svg aria-hidden="true" focusable="false" height="2.914ex" role="img" style="vertical-align: -0.706ex;" viewbox="0 -950.8 6609.2 1254.7" width="15.35ex" xmlns:xlink="http://www.w3.org/1999/xlink"><g fill="currentColor" stroke="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use x="0" xlink:href="#MJMATHI-4F" y="0"></use><use x="763" xlink:href="#MJMAIN-28" y="0"></use><use x="1153" xlink:href="#MJMAIN-28" y="0"></use><use x="1542" xlink:href="#MJMATHI-4B" y="0"></use><g transform="translate(2432,0)"><use x="0" xlink:href="#MJMATHI-6E" y="0"></use><use transform="scale(0.707)" x="849" xlink:href="#MJMAIN-33" y="513"></use></g><use x="3486" xlink:href="#MJMAIN-2F" y="0"></use><use x="3986" xlink:href="#MJMATHI-3F5" y="0"></use><g transform="translate(4393,0)"><use x="0" xlink:href="#MJMAIN-29" y="0"></use><g transform="translate(389,362)"><use transform="scale(0.707)" x="0" xlink:href="#MJMATHI-4B" y="0"></use><use transform="scale(0.707)" x=
带二价变量(P)的二次函数的平方和的最大化问题,是由带有K次二次析取惩罚的二价二次优化问题引起的。虽然一般来说np困难,但当输入矩阵可以连接到固定秩矩阵时,(P)是多项式可解的。我们提出了一个非凸二次半定规划(SDP)松弛,它提供了(P)的0.4近似解。我们证明,通过求解至多O((Kn3/ λ)K/2)O((Kn^3/epsilon)^{K/2})线性SDP子问题,二次SDP松弛可以近似且全局求解到精度为λ epsilon。
{"title":"Bivalent quadratic optimization with sum-of-square of quadratic penalties","authors":"Tongli Zhang, Yong Xia","doi":"10.1007/s10878-025-01339-7","DOIUrl":"https://doi.org/10.1007/s10878-025-01339-7","url":null,"abstract":"&lt;p&gt;The problem of maximizing the sum-of-square of quadratic functions with bivalent variables, denoted by (P), arises from bivalent quadratic optimization with &lt;i&gt;K&lt;/i&gt; quadratic disjunctive penalties. Though NP-hard in general, (P) is polynomially solvable when the input matrices can concatenate to a fixed-rank matrix. We present a nonconvex quadratic semidefinite programming (SDP) relaxation, which provides a 0.4-approximate solution for (P). We show that the quadratic SDP relaxation can be approximately and globally solved to a precision &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;&amp;#x03F5;&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"1.412ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -519.5 406.5 607.8\" width=\"0.944ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;use x=\"0\" xlink:href=\"#MJMATHI-3F5\" y=\"0\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;/svg&gt;&lt;span role=\"presentation\"&gt;&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;ϵ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;script type=\"math/tex\"&gt;epsilon &lt;/script&gt;&lt;/span&gt; via solving at most &lt;span&gt;&lt;span style=\"\"&gt;&lt;/span&gt;&lt;span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;msup&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;&amp;#x03F5;&lt;/mi&gt;&lt;msup&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 100%; display: inline-block; position: relative;\" tabindex=\"0\"&gt;&lt;svg aria-hidden=\"true\" focusable=\"false\" height=\"2.914ex\" role=\"img\" style=\"vertical-align: -0.706ex;\" viewbox=\"0 -950.8 6609.2 1254.7\" width=\"15.35ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"&gt;&lt;g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"&gt;&lt;use x=\"0\" xlink:href=\"#MJMATHI-4F\" y=\"0\"&gt;&lt;/use&gt;&lt;use x=\"763\" xlink:href=\"#MJMAIN-28\" y=\"0\"&gt;&lt;/use&gt;&lt;use x=\"1153\" xlink:href=\"#MJMAIN-28\" y=\"0\"&gt;&lt;/use&gt;&lt;use x=\"1542\" xlink:href=\"#MJMATHI-4B\" y=\"0\"&gt;&lt;/use&gt;&lt;g transform=\"translate(2432,0)\"&gt;&lt;use x=\"0\" xlink:href=\"#MJMATHI-6E\" y=\"0\"&gt;&lt;/use&gt;&lt;use transform=\"scale(0.707)\" x=\"849\" xlink:href=\"#MJMAIN-33\" y=\"513\"&gt;&lt;/use&gt;&lt;/g&gt;&lt;use x=\"3486\" xlink:href=\"#MJMAIN-2F\" y=\"0\"&gt;&lt;/use&gt;&lt;use x=\"3986\" xlink:href=\"#MJMATHI-3F5\" y=\"0\"&gt;&lt;/use&gt;&lt;g transform=\"translate(4393,0)\"&gt;&lt;use x=\"0\" xlink:href=\"#MJMAIN-29\" y=\"0\"&gt;&lt;/use&gt;&lt;g transform=\"translate(389,362)\"&gt;&lt;use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMATHI-4B\" y=\"0\"&gt;&lt;/use&gt;&lt;use transform=\"scale(0.707)\" x=","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"142 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145003469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid quantum-enhanced reinforcement learning for energy-efficient resource allocation in fog-edge computing 雾边缘计算中节能资源分配的混合量子增强强化学习
IF 1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-08-08 DOI: 10.1007/s10878-025-01336-w
S. Sureka Nithila Princy, Paulraj Ranjith kumar

The proliferation of Internet of Things (IoT) devices has intensified the need for intelligent, adaptive, and energy-efficient resource management across mobile edge–fog–cloud infrastructures. Conventional optimization approaches often fail to manage the dynamic interplay among fluctuating workloads, energy constraints, and real-time scheduling. To address this, a Hybrid Quantum-Enhanced Reinforcement Learning (HQERL) framework is introduced, unifying quantum-inspired heuristics, swarm intelligence, and reinforcement learning into a co-adaptive sched uling system. HQERL employs a feedback-driven architecture to synchronize exploration, optimization, and policy refinement for enhanced task scheduling and resource control. The Maximum Likelihood Swarm Whale Optimization (MLSWO) module encodes dynamic task and system states using swarm intelligence guided by statistical likelihood, generating information-rich inputs for the learning controller. To prevent premature convergence and expand the scheduling search space, the Quantum Brainstorm Optimization (QBO) component incorporates probabilistic memory and collective learning to diversify scheduling solutions. These enhanced representations and exploratory strategies feed into the Proximal Policy Optimization (PPO) controller, which dynamically adapts resource allocation policies in real time based on system feedback, ensuring resilience to workload shifts. Furthermore, Dynamic Voltage Scaling (DVS) is integrated to improve energy efficiency by adjusting processor voltages and frequencies according to workload demands. This seamless coordination enables HQERL to balance task latency, resource use, and power consumption. Evaluation on the LSApp dataset reveals HQERL yields a 15% energy efficiency gain, 12% makespan reduction, and a 23.3% boost in peak system utility, validating its effectiveness for sustainable IoT resource management.

物联网(IoT)设备的激增加剧了对跨移动边缘雾云基础设施的智能、自适应和节能资源管理的需求。传统的优化方法通常无法管理波动的工作负载、能量约束和实时调度之间的动态相互作用。为了解决这个问题,引入了混合量子增强强化学习(HQERL)框架,将量子启发的启发式,群体智能和强化学习统一到一个协同自适应调度系统中。HQERL采用反馈驱动的体系结构来同步探索、优化和策略改进,以增强任务调度和资源控制。最大似然群鲸优化(MLSWO)模块利用统计似然引导的群智能对动态任务和系统状态进行编码,为学习控制器生成信息丰富的输入。为了防止过早收敛和扩大调度搜索空间,量子头脑风暴优化(QBO)组件结合了概率记忆和集体学习,使调度解决方案多样化。这些增强的表示和探索性策略提供给邻域策略优化(PPO)控制器,该控制器根据系统反馈实时动态调整资源分配策略,确保对工作负载变化的弹性。此外,集成了动态电压缩放(DVS),根据工作负载需求调整处理器电压和频率,提高能源效率。这种无缝协调使HQERL能够平衡任务延迟、资源使用和功耗。对LSApp数据集的评估表明,HQERL可以提高15%的能源效率,减少12%的完工时间,并提高23.3%的峰值系统效用,验证了其在可持续物联网资源管理方面的有效性。
{"title":"Hybrid quantum-enhanced reinforcement learning for energy-efficient resource allocation in fog-edge computing","authors":"S. Sureka Nithila Princy, Paulraj Ranjith kumar","doi":"10.1007/s10878-025-01336-w","DOIUrl":"https://doi.org/10.1007/s10878-025-01336-w","url":null,"abstract":"<p>The proliferation of Internet of Things (IoT) devices has intensified the need for intelligent, adaptive, and energy-efficient resource management across mobile edge–fog–cloud infrastructures. Conventional optimization approaches often fail to manage the dynamic interplay among fluctuating workloads, energy constraints, and real-time scheduling. To address this, a Hybrid Quantum-Enhanced Reinforcement Learning (HQERL) framework is introduced, unifying quantum-inspired heuristics, swarm intelligence, and reinforcement learning into a co-adaptive sched uling system. HQERL employs a feedback-driven architecture to synchronize exploration, optimization, and policy refinement for enhanced task scheduling and resource control. The Maximum Likelihood Swarm Whale Optimization (MLSWO) module encodes dynamic task and system states using swarm intelligence guided by statistical likelihood, generating information-rich inputs for the learning controller. To prevent premature convergence and expand the scheduling search space, the Quantum Brainstorm Optimization (QBO) component incorporates probabilistic memory and collective learning to diversify scheduling solutions. These enhanced representations and exploratory strategies feed into the Proximal Policy Optimization (PPO) controller, which dynamically adapts resource allocation policies in real time based on system feedback, ensuring resilience to workload shifts. Furthermore, Dynamic Voltage Scaling (DVS) is integrated to improve energy efficiency by adjusting processor voltages and frequencies according to workload demands. This seamless coordination enables HQERL to balance task latency, resource use, and power consumption. Evaluation on the LSApp dataset reveals HQERL yields a 15% energy efficiency gain, 12% makespan reduction, and a 23.3% boost in peak system utility, validating its effectiveness for sustainable IoT resource management.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"13 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145003449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mutually dependent, balanced contributions, and the priority value 相互依赖、平衡的贡献和优先级值
IF 1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-07-31 DOI: 10.1007/s10878-025-01340-0
Songtao He, Erfang Shan, Yuxin Sun

The Priority value (Béal et al. in Int J Game Theory 51:431–450, 2022) is an allocation rule for TU-games with a priority structure, which distributes the Harsanyi dividend of each coalition among the set of its priority players. In this paper we propose two variants of the differential marginality of mutually dependent players axiom for TU-games with a priority structure, and extend the classical axiom of balanced contributions to TU-games with a priority structure. We provide several new characterizations of the Priority value which invoke these modified axioms and the standard axioms: efficiency, the null player property, the priority player out and the null player out.

优先级值(bsamal et al. in Int J Game Theory 51:43 31 - 450, 2022)是具有优先级结构的tu -博弈的分配规则,它将每个联盟的Harsanyi红利分配给其优先级参与者集合。本文提出了具有优先结构的tu -对策中相互依赖参与人微分边际性公理的两个变体,并将经典的平衡贡献公理推广到具有优先结构的tu -对策中。我们提出了几个新的优先级值的特征,这些特征调用了这些改进的公理和标准公理:效率、空玩家属性、优先玩家出局和空玩家出局。
{"title":"Mutually dependent, balanced contributions, and the priority value","authors":"Songtao He, Erfang Shan, Yuxin Sun","doi":"10.1007/s10878-025-01340-0","DOIUrl":"https://doi.org/10.1007/s10878-025-01340-0","url":null,"abstract":"<p>The Priority value (Béal et al. in Int J Game Theory 51:431–450, 2022) is an allocation rule for TU-games with a priority structure, which distributes the Harsanyi dividend of each coalition among the set of its priority players. In this paper we propose two variants of the differential marginality of mutually dependent players axiom for TU-games with a priority structure, and extend the classical axiom of balanced contributions to TU-games with a priority structure. We provide several new characterizations of the Priority value which invoke these modified axioms and the standard axioms: efficiency, the null player property, the priority player out and the null player out.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"123 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145003450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An integrated operating room and physician scheduling problem solved by a hybrid variable neighborhood search-based algorithm 基于混合变量邻域搜索算法的手术室和医生综合调度问题
IF 1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-07-29 DOI: 10.1007/s10878-025-01335-x
Yuli Wang, Wenjuan Fan, Shaowen Lan, Shuwan Zhu, Jianmei Du

This paper addresses an integrated operating room (OR) and physician scheduling problem driven by the real-world needs in the surgical department. The OR scheduling problem involves determining the number of ORs to be opened each day, the operation date of each surgery, and the schedule of surgeries in each OR. The physician scheduling problem considers two primary work for physicians: surgery service and consultation service, aiming to assign physicians to shifts and determine their responsibilities for either performing surgeries or providing consultation services in the outpatient department. The integration of these two scheduling problems improves coordination between OR availability and physician schedules, which can directly reduce operational costs and enhance resource utilization in the surgical department. The objective of the integrated problem is to minimize the total costs of the hospital and the patients, including the total waiting cost of patients, the total working cost of physicians, the total opening cost of ORs, and the total overtime cost of ORs. To solve the problem, a hybrid approach DP-H-VNS is proposed, which incorporates dynamic programming (DP), heuristics, and a variable neighborhood search (VNS) algorithm. The DP algorithm is used to assign surgeries to specific ORs, while the proposed heuristic rules are presented to determine the number of ORs to open each day and the scheduling of physicians. The presented VNS algorithm can search for high-quality solutions for the proposed problem and serves as a framework to integrate the DP, heuristics, local search, and shaking procedures. Experimental results demonstrate that the proposed DP-H-VNS is superior to the other compared algorithms on the quality of the found solutions and the performance. These results confirm the effectiveness of the proposed approach in optimizing the resource allocation in the surgical department and improving patient care.

本文解决了手术室(OR)和医生的综合调度问题驱动的现实世界的需求,在外科部门。手术室调度问题包括确定每天开放的手术室数量、每次手术的手术日期以及每个手术室的手术安排。医生调度问题考虑医生的两项主要工作:手术服务和会诊服务,旨在分配医生轮班,确定他们在门诊进行手术或提供会诊服务的责任。这两个调度问题的整合提高了手术室可用性和医生调度的协调性,可以直接降低手术成本,提高外科资源利用率。综合问题的目标是使医院和患者的总成本最小,包括患者的总等待成本、医生的总工作成本、手术室的总开业成本和手术室的总加班成本。为了解决这一问题,提出了一种结合动态规划(DP)、启发式算法和可变邻域搜索(VNS)算法的混合方法DP- h -VNS。采用DP算法将手术分配到特定的手术室,并提出启发式规则来确定每天开放的手术室数量和医生的调度。所提出的VNS算法可以为所提出的问题搜索高质量的解,并作为整合DP、启发式、局部搜索和抖动过程的框架。实验结果表明,所提出的DP-H-VNS算法在解的质量和性能上都优于其他比较算法。这些结果证实了所提出的方法在优化外科资源分配和改善患者护理方面的有效性。
{"title":"An integrated operating room and physician scheduling problem solved by a hybrid variable neighborhood search-based algorithm","authors":"Yuli Wang, Wenjuan Fan, Shaowen Lan, Shuwan Zhu, Jianmei Du","doi":"10.1007/s10878-025-01335-x","DOIUrl":"https://doi.org/10.1007/s10878-025-01335-x","url":null,"abstract":"<p>This paper addresses an integrated operating room (OR) and physician scheduling problem driven by the real-world needs in the surgical department. The OR scheduling problem involves determining the number of ORs to be opened each day, the operation date of each surgery, and the schedule of surgeries in each OR. The physician scheduling problem considers two primary work for physicians: surgery service and consultation service, aiming to assign physicians to shifts and determine their responsibilities for either performing surgeries or providing consultation services in the outpatient department. The integration of these two scheduling problems improves coordination between OR availability and physician schedules, which can directly reduce operational costs and enhance resource utilization in the surgical department. The objective of the integrated problem is to minimize the total costs of the hospital and the patients, including the total waiting cost of patients, the total working cost of physicians, the total opening cost of ORs, and the total overtime cost of ORs. To solve the problem, a hybrid approach DP-H-VNS is proposed, which incorporates dynamic programming (DP), heuristics, and a variable neighborhood search (VNS) algorithm. The DP algorithm is used to assign surgeries to specific ORs, while the proposed heuristic rules are presented to determine the number of ORs to open each day and the scheduling of physicians. The presented VNS algorithm can search for high-quality solutions for the proposed problem and serves as a framework to integrate the DP, heuristics, local search, and shaking procedures. Experimental results demonstrate that the proposed DP-H-VNS is superior to the other compared algorithms on the quality of the found solutions and the performance. These results confirm the effectiveness of the proposed approach in optimizing the resource allocation in the surgical department and improving patient care.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"12 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145003452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Branch–Reduction–Bound algorithm for linear fractional multi-product planning problems 线性分式多积规划问题的分支-约简界算法
IF 1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-07-28 DOI: 10.1007/s10878-025-01333-z
Xianfeng Ding, Meiling Hu

In this paper, we propose a Branch–Reduction–Bound (BRB) algorithm to solve fractional multiplicative product programming problems, with the aim of finding globally optimal solutions. The method introduces two innovative linear transformation techniques that simplify the solution process by converting the original problem into two equivalent linear relaxation problems. Building on this, a novel branch-and-delete rule is developed to efficiently manage sub-problem selection using a dynamic priority queue approach, and the computational process is further optimized through a region deletion rule. The synergy of these techniques significantly accelerates the algorithm's convergence rate, providing an efficient global optimization strategy. We compare the BRB algorithm with four other algorithms through numerical experiments, and the results confirm its feasibility, effectiveness, and superior computational efficiency, highlighting its advantages in solving complex optimization problems.

在本文中,我们提出了一种分支约简界(BRB)算法来求解分数乘积规划问题,目的是寻找全局最优解。该方法引入了两种创新的线性变换技术,通过将原问题转化为两个等效的线性松弛问题,简化了求解过程。在此基础上,提出了一种新的分支删除规则,采用动态优先队列方法有效地管理子问题的选择,并通过区域删除规则进一步优化计算过程。这些技术的协同作用显著加快了算法的收敛速度,提供了一种高效的全局优化策略。我们通过数值实验将BRB算法与其他四种算法进行了比较,结果证实了BRB算法的可行性、有效性和优越的计算效率,突出了其在解决复杂优化问题方面的优势。
{"title":"A Branch–Reduction–Bound algorithm for linear fractional multi-product planning problems","authors":"Xianfeng Ding, Meiling Hu","doi":"10.1007/s10878-025-01333-z","DOIUrl":"https://doi.org/10.1007/s10878-025-01333-z","url":null,"abstract":"<p>In this paper, we propose a Branch–Reduction–Bound (BRB) algorithm to solve fractional multiplicative product programming problems, with the aim of finding globally optimal solutions. The method introduces two innovative linear transformation techniques that simplify the solution process by converting the original problem into two equivalent linear relaxation problems. Building on this, a novel branch-and-delete rule is developed to efficiently manage sub-problem selection using a dynamic priority queue approach, and the computational process is further optimized through a region deletion rule. The synergy of these techniques significantly accelerates the algorithm's convergence rate, providing an efficient global optimization strategy. We compare the BRB algorithm with four other algorithms through numerical experiments, and the results confirm its feasibility, effectiveness, and superior computational efficiency, highlighting its advantages in solving complex optimization problems.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"33 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145003502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hardness and algorithms for several new optimization problems on the weighted massively parallel computation model 在加权大规模并行计算模型上若干新的优化问题的难度和算法
IF 1 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-07-14 DOI: 10.1007/s10878-025-01297-0
Hengzhao Ma, Jianzhong Li

The topology-aware Massively Parallel Computation (MPC) model is proposed and studied recently, which enhances the classical MPC model by the awareness of network topology. The work of Hu et. al. on topology-aware MPC model considers only the tree topology. In this paper a more general case is considered, where the underlying network is a weighted complete graph. We then call this model as Weighted Massively Parallel Computation (WMPC) model, and study the problem of minimizing communication cost under it. Three communication cost minimization problems are defined based on different patterns of communication, which are the Data Redistribution Problem, Data Allocation Problem on Continuous data, and Data Allocation Problem on Categorized data. We also define four kinds of objective functions for communication cost, which consider the total cost, bottleneck cost, maximum of send and receive cost, and summation of send and receive cost, respectively. Combining the three problems in different communication patterns with the four kinds of objective cost functions, 12 problems are obtained. The hardness results and algorithms of the 12 problems make up the content of this paper. With rigorous proof, we prove that some of the 12 problems are in P, some FPT, some NP-complete, and some W[1]-complete. Approximate algorithms are proposed for several selected problems.

近年来提出并研究了拓扑感知的大规模并行计算(MPC)模型,该模型通过网络拓扑感知对传统的MPC模型进行了改进。Hu等人在拓扑感知MPC模型上的工作只考虑树形拓扑。本文考虑了一种更一般的情况,其中底层网络是一个加权完全图。我们将该模型称为加权大规模并行计算(WMPC)模型,并研究了该模型下的通信成本最小化问题。基于不同的通信模式,定义了三个通信成本最小化问题,即数据重分配问题、连续数据上的数据分配问题和分类数据上的数据分配问题。定义了四种通信成本目标函数,分别考虑总成本、瓶颈成本、收发成本最大值和收发成本之和。将不同通信模式下的3个问题与4种目标成本函数相结合,得到12个问题。这12个问题的硬度结果和算法构成了本文的内容。通过严格的证明,我们证明了12个问题中的一些在P中,一些在FPT中,一些在np中完全,一些在w[1]中完全。针对几个选定的问题,提出了近似算法。
{"title":"Hardness and algorithms for several new optimization problems on the weighted massively parallel computation model","authors":"Hengzhao Ma, Jianzhong Li","doi":"10.1007/s10878-025-01297-0","DOIUrl":"https://doi.org/10.1007/s10878-025-01297-0","url":null,"abstract":"<p>The topology-aware Massively Parallel Computation (MPC) model is proposed and studied recently, which enhances the classical MPC model by the awareness of network topology. The work of Hu et. al. on topology-aware MPC model considers only the tree topology. In this paper a more general case is considered, where the underlying network is a weighted complete graph. We then call this model as Weighted Massively Parallel Computation (WMPC) model, and study the problem of minimizing communication cost under it. Three communication cost minimization problems are defined based on different patterns of communication, which are the Data Redistribution Problem, Data Allocation Problem on Continuous data, and Data Allocation Problem on Categorized data. We also define four kinds of objective functions for communication cost, which consider the total cost, bottleneck cost, maximum of send and receive cost, and summation of send and receive cost, respectively. Combining the three problems in different communication patterns with the four kinds of objective cost functions, 12 problems are obtained. The hardness results and algorithms of the 12 problems make up the content of this paper. With rigorous proof, we prove that some of the 12 problems are in P, some FPT, some NP-complete, and some W[1]-complete. Approximate algorithms are proposed for several selected problems.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"51 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145003451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Combinatorial Optimization
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1