首页 > 最新文献

Journal of Classification最新文献

英文 中文
Clustered Sparse Structural Equation Modeling for Heterogeneous Data 异构数据的聚类稀疏结构方程建模
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-11-30 DOI: 10.1007/s00357-023-09449-9
Ippei Takasawa, Kensuke Tanioka, Hiroshi Yadohisa

Joint analysis with clustering and structural equation modeling is one of the most popular approaches to analyzing heterogeneous data. The methods involved in this approach estimate a path diagram of the same shape for each cluster and interpret the clusters according to the magnitude of the coefficients. However, these methods have problems with difficulty in interpreting the coefficients when the number of clusters and/or paths increases and are unable to deal with any situation where the path diagram for each cluster is different. To tackle these problems, we propose two methods for simplifying the path structure and facilitating interpretation by estimating a different form of path diagram for each cluster using sparse estimation. The proposed methods and related methods are compared using numerical simulation and real data examples. The proposed methods are superior to the existing methods in terms of both fitting and interpretation.

结合聚类和结构方程建模的联合分析是分析异构数据最常用的方法之一。该方法所涉及的方法为每个簇估计相同形状的路径图,并根据系数的大小解释簇。然而,当簇和/或路径数量增加时,这些方法在解释系数时存在困难,并且无法处理每个簇的路径图不同的任何情况。为了解决这些问题,我们提出了两种方法来简化路径结构,并通过使用稀疏估计对每个聚类估计不同形式的路径图来促进解释。通过数值模拟和实际数据算例对所提方法和相关方法进行了比较。本文提出的方法在拟合和解释方面都优于现有方法。
{"title":"Clustered Sparse Structural Equation Modeling for Heterogeneous Data","authors":"Ippei Takasawa, Kensuke Tanioka, Hiroshi Yadohisa","doi":"10.1007/s00357-023-09449-9","DOIUrl":"https://doi.org/10.1007/s00357-023-09449-9","url":null,"abstract":"<p>Joint analysis with clustering and structural equation modeling is one of the most popular approaches to analyzing heterogeneous data. The methods involved in this approach estimate a path diagram of the same shape for each cluster and interpret the clusters according to the magnitude of the coefficients. However, these methods have problems with difficulty in interpreting the coefficients when the number of clusters and/or paths increases and are unable to deal with any situation where the path diagram for each cluster is different. To tackle these problems, we propose two methods for simplifying the path structure and facilitating interpretation by estimating a different form of path diagram for each cluster using sparse estimation. The proposed methods and related methods are compared using numerical simulation and real data examples. The proposed methods are superior to the existing methods in terms of both fitting and interpretation.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"199 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138535995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification Under Partial Reject Options 分类在部分拒绝选项下
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-11-25 DOI: 10.1007/s00357-023-09455-x
Måns Karlsson, Ola Hössjer

In many applications there is ambiguity about which (if any) of a finite number N of hypotheses that best fits an observation. It is of interest then to possibly output a whole set of categories, that is, a scenario where the size of the classified set of categories ranges from 0 to N. Empty sets correspond to an outlier, sets of size 1 represent a firm decision that singles out one hypothesis, sets of size N correspond to a rejection to classify, whereas sets of sizes (2,ldots ,N-1) represent a partial rejection to classify, where some hypotheses are excluded from further analysis. In this paper, we review and unify several proposed methods of Bayesian set-valued classification, where the objective is to find the optimal Bayesian classifier that maximizes the expected reward. We study a large class of reward functions with rewards for sets that include the true category, whereas additive or multiplicative penalties are incurred for sets depending on their size. For models with one homogeneous block of hypotheses, we provide general expressions for the accompanying Bayesian classifier, several of which extend previous results in the literature. Then, we derive novel results for the more general setting when hypotheses are partitioned into blocks, where ambiguity within and between blocks are of different severity. We also discuss how well-known methods of classification, such as conformal prediction, indifference zones, and hierarchical classification, fit into our framework. Finally, set-valued classification is illustrated using an ornithological data set, with taxa partitioned into blocks and parameters estimated using MCMC. The associated reward function’s tuning parameters are chosen through cross-validation.

在许多应用中,在有限的N个假设中,哪一个(如果有的话)最适合观察结果是不明确的。然后可能输出一个完整的类别集是有趣的,也就是说,一个场景中分类的类别集的大小范围从0到N。空集对应于一个异常值,大小为1的集合代表一个确定的决定,挑出一个假设,大小为N的集合对应于拒绝分类,而大小为(2,ldots ,N-1)的集合代表部分拒绝分类,其中一些假设被排除在进一步分析之外。在本文中,我们回顾并统一了几种贝叶斯集值分类方法,其目标是找到期望奖励最大化的最优贝叶斯分类器。我们研究了一大类奖励函数,这些奖励函数对包含真实类别的集合进行奖励,而对集合产生的加性或乘性惩罚取决于它们的大小。对于具有一个齐次假设块的模型,我们提供了伴随贝叶斯分类器的一般表达式,其中一些扩展了文献中的先前结果。然后,我们为更一般的设置导出新的结果,当假设被划分为块时,其中块内部和块之间的歧义程度不同。我们还讨论了众所周知的分类方法,如适形预测、无差异区和分层分类,如何适合我们的框架。最后,利用鸟类数据集进行集值分类,将分类群划分为块,并使用MCMC估计参数。通过交叉验证选择相关奖励函数的调优参数。
{"title":"Classification Under Partial Reject Options","authors":"Måns Karlsson, Ola Hössjer","doi":"10.1007/s00357-023-09455-x","DOIUrl":"https://doi.org/10.1007/s00357-023-09455-x","url":null,"abstract":"<p>In many applications there is ambiguity about which (if any) of a finite number <i>N</i> of hypotheses that best fits an observation. It is of interest then to possibly output a whole set of categories, that is, a scenario where the size of the classified set of categories ranges from 0 to <i>N</i>. Empty sets correspond to an outlier, sets of size 1 represent a firm decision that singles out one hypothesis, sets of size <i>N</i> correspond to a rejection to classify, whereas sets of sizes <span>(2,ldots ,N-1)</span> represent a partial rejection to classify, where some hypotheses are excluded from further analysis. In this paper, we review and unify several proposed methods of Bayesian set-valued classification, where the objective is to find the optimal Bayesian classifier that maximizes the expected reward. We study a large class of reward functions with rewards for sets that include the true category, whereas additive or multiplicative penalties are incurred for sets depending on their size. For models with one homogeneous block of hypotheses, we provide general expressions for the accompanying Bayesian classifier, several of which extend previous results in the literature. Then, we derive novel results for the more general setting when hypotheses are partitioned into blocks, where ambiguity within and between blocks are of different severity. We also discuss how well-known methods of classification, such as conformal prediction, indifference zones, and hierarchical classification, fit into our framework. Finally, set-valued classification is illustrated using an ornithological data set, with taxa partitioned into blocks and parameters estimated using MCMC. The associated reward function’s tuning parameters are chosen through cross-validation.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"29 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138536017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model-Based Clustering with Nested Gaussian Clusters 基于模型的嵌套高斯聚类
4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-11-13 DOI: 10.1007/s00357-023-09453-z
Jason Hou-Liu, Ryan P. Browne
{"title":"Model-Based Clustering with Nested Gaussian Clusters","authors":"Jason Hou-Liu, Ryan P. Browne","doi":"10.1007/s00357-023-09453-z","DOIUrl":"https://doi.org/10.1007/s00357-023-09453-z","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"75 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136346468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Logistic Normal Multinomial Factor Analyzers for Clustering Microbiome Data 聚类微生物组数据的Logistic正态多项式因子分析
4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-11-07 DOI: 10.1007/s00357-023-09452-0
Wangshu Tu, Sanjeena Subedi
The human microbiome plays an important role in human health and disease status. Next-generating sequencing technologies allow for quantifying the composition of the human microbiome. Clustering these microbiome data can provide valuable information by identifying underlying patterns across samples. Recently, Fang and Subedi (2023) proposed a logistic normal multinomial mixture model (LNM-MM) for clustering microbiome data. As microbiome data tends to be high dimensional, here, we develop a family of logistic normal multinomial factor analyzers (LNM-FA) by incorporating a factor analyzer structure in the LNM-MM. This family of models is more suitable for high-dimensional data as the number of free parameters in LNM-FA can be greatly reduced by assuming that the number of latent factors is small. Parameter estimation is done using a computationally efficient variant of the alternating expectation conditional maximization algorithm that utilizes variational Gaussian approximations. The proposed method is illustrated using simulated and real datasets.
人体微生物组在人类健康和疾病状态中起着重要作用。下一代测序技术允许量化人类微生物组的组成。聚类这些微生物组数据可以通过识别样本的潜在模式提供有价值的信息。最近,Fang和Subedi(2023)提出了一种用于微生物组数据聚类的logistic正态多项式混合模型(LNM-MM)。由于微生物组数据往往是高维的,在这里,我们开发了一系列的logistic正态多项式因子分析仪(LNM-FA),通过在LNM-MM中加入一个因子分析仪结构。这类模型更适合于高维数据,因为假设潜在因素的数量很小,可以大大减少LNM-FA中自由参数的数量。参数估计是使用交替期望条件最大化算法的计算效率变体,该算法利用变分高斯近似。用模拟数据集和真实数据集对该方法进行了说明。
{"title":"Logistic Normal Multinomial Factor Analyzers for Clustering Microbiome Data","authors":"Wangshu Tu, Sanjeena Subedi","doi":"10.1007/s00357-023-09452-0","DOIUrl":"https://doi.org/10.1007/s00357-023-09452-0","url":null,"abstract":"The human microbiome plays an important role in human health and disease status. Next-generating sequencing technologies allow for quantifying the composition of the human microbiome. Clustering these microbiome data can provide valuable information by identifying underlying patterns across samples. Recently, Fang and Subedi (2023) proposed a logistic normal multinomial mixture model (LNM-MM) for clustering microbiome data. As microbiome data tends to be high dimensional, here, we develop a family of logistic normal multinomial factor analyzers (LNM-FA) by incorporating a factor analyzer structure in the LNM-MM. This family of models is more suitable for high-dimensional data as the number of free parameters in LNM-FA can be greatly reduced by assuming that the number of latent factors is small. Parameter estimation is done using a computationally efficient variant of the alternating expectation conditional maximization algorithm that utilizes variational Gaussian approximations. The proposed method is illustrated using simulated and real datasets.","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135431080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Editorial: Journal of Classification Vol. 40-3 社论:分类学杂志》第 40-3 卷
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-11-01 DOI: 10.1007/s00357-023-09454-y
P. McNicholas
{"title":"Editorial: Journal of Classification Vol. 40-3","authors":"P. McNicholas","doi":"10.1007/s00357-023-09454-y","DOIUrl":"https://doi.org/10.1007/s00357-023-09454-y","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"42 1","pages":"467 - 467"},"PeriodicalIF":2.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139292880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Missing Values and Directional Outlier Detection in Model-Based Clustering 基于模型聚类的缺失值和定向离群点检测
4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-10-31 DOI: 10.1007/s00357-023-09450-2
Hung Tong, Cristina Tortora
{"title":"Missing Values and Directional Outlier Detection in Model-Based Clustering","authors":"Hung Tong, Cristina Tortora","doi":"10.1007/s00357-023-09450-2","DOIUrl":"https://doi.org/10.1007/s00357-023-09450-2","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"48 88","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135863281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiclass Sparse Discriminant Analysis Incorporating Graphical Structure Among Predictors 多类稀疏判别分析
4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-10-14 DOI: 10.1007/s00357-023-09451-1
Jingxuan Luo, Xuejiao Li, Chongxiu Yu, Gaorong Li
{"title":"Multiclass Sparse Discriminant Analysis Incorporating Graphical Structure Among Predictors","authors":"Jingxuan Luo, Xuejiao Li, Chongxiu Yu, Gaorong Li","doi":"10.1007/s00357-023-09451-1","DOIUrl":"https://doi.org/10.1007/s00357-023-09451-1","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135804178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal Band Selection Using Evolutionary Machine Learning to Improve the Accuracy of Hyper-spectral Images Classification: a Novel Migration-Based Particle Swarm Optimization 利用进化机器学习优化波段选择提高高光谱图像分类精度:一种新的基于迁移的粒子群优化方法
4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-09-16 DOI: 10.1007/s00357-023-09448-w
Milad Vahidi, Sina Aghakhani, Diego Martín, Hossein Aminzadeh, Mehrdad Kaveh
{"title":"Optimal Band Selection Using Evolutionary Machine Learning to Improve the Accuracy of Hyper-spectral Images Classification: a Novel Migration-Based Particle Swarm Optimization","authors":"Milad Vahidi, Sina Aghakhani, Diego Martín, Hossein Aminzadeh, Mehrdad Kaveh","doi":"10.1007/s00357-023-09448-w","DOIUrl":"https://doi.org/10.1007/s00357-023-09448-w","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135308373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Model-Based Clustering of Directional Data with Heavy Tails 基于模型的重尾定向数据聚类研究
4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-09-12 DOI: 10.1007/s00357-023-09445-z
Yingying Zhang, Volodymyr Melnykov, Igor Melnykov
{"title":"On Model-Based Clustering of Directional Data with Heavy Tails","authors":"Yingying Zhang, Volodymyr Melnykov, Igor Melnykov","doi":"10.1007/s00357-023-09445-z","DOIUrl":"https://doi.org/10.1007/s00357-023-09445-z","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"77 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135830983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding the Class of Global Objective Functions for Dissimilarity-Based Hierarchical Clustering 基于不相似度的层次聚类的全局目标函数类扩展
4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-09-04 DOI: 10.1007/s00357-023-09447-x
Sebastien Roch
{"title":"Expanding the Class of Global Objective Functions for Dissimilarity-Based Hierarchical Clustering","authors":"Sebastien Roch","doi":"10.1007/s00357-023-09447-x","DOIUrl":"https://doi.org/10.1007/s00357-023-09447-x","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135403856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Classification
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1