首页 > 最新文献

Journal of Classification最新文献

英文 中文
On Finite Mixture Modeling of Change-point Processes 变点过程的有限混合建模
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-05-10 DOI: 10.1007/s00357-021-09385-6
Xuwen Zhu, Yana Melnykov
{"title":"On Finite Mixture Modeling of Change-point Processes","authors":"Xuwen Zhu, Yana Melnykov","doi":"10.1007/s00357-021-09385-6","DOIUrl":"https://doi.org/10.1007/s00357-021-09385-6","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"39 1","pages":"3 - 22"},"PeriodicalIF":2.0,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00357-021-09385-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51951327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Matrix Normal Cluster-Weighted Models 矩阵正规聚类加权模型
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-04-24 DOI: 10.1007/s00357-021-09389-2
S. Tomarchio, P. McNicholas, A. Punzo
{"title":"Matrix Normal Cluster-Weighted Models","authors":"S. Tomarchio, P. McNicholas, A. Punzo","doi":"10.1007/s00357-021-09389-2","DOIUrl":"https://doi.org/10.1007/s00357-021-09389-2","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"38 1","pages":"556 - 575"},"PeriodicalIF":2.0,"publicationDate":"2021-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00357-021-09389-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47742217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
A Comparison of Reliability Coefficients for Ordinal Rating Scales 普通评定量表可靠性系数的比较
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-04-22 DOI: 10.1007/s00357-021-09386-5
Alexandra de Raadt, M. Warrens, R. Bosker, H. Kiers
{"title":"A Comparison of Reliability Coefficients for Ordinal Rating Scales","authors":"Alexandra de Raadt, M. Warrens, R. Bosker, H. Kiers","doi":"10.1007/s00357-021-09386-5","DOIUrl":"https://doi.org/10.1007/s00357-021-09386-5","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"38 1","pages":"519 - 543"},"PeriodicalIF":2.0,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00357-021-09386-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44229599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
A Unified Theory of the Completeness of Q-Matrices for the DINA Model DINA模型Q矩阵完备性的统一理论
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-04-01 DOI: 10.1007/s00357-021-09384-7
Hans-Friedrich Köhn, Chia-Yi Chiu
{"title":"A Unified Theory of the Completeness of Q-Matrices for the DINA Model","authors":"Hans-Friedrich Köhn, Chia-Yi Chiu","doi":"10.1007/s00357-021-09384-7","DOIUrl":"https://doi.org/10.1007/s00357-021-09384-7","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"38 1","pages":"500 - 518"},"PeriodicalIF":2.0,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00357-021-09384-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48956298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Ordinal Trees and Random Forests: Score-Free Recursive Partitioning and Improved Ensembles 有序树和随机森林:无分数递归划分和改进集成
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-01-31 DOI: 10.1007/s00357-021-09406-4
G. Tutz
{"title":"Ordinal Trees and Random Forests: Score-Free Recursive Partitioning and Improved Ensembles","authors":"G. Tutz","doi":"10.1007/s00357-021-09406-4","DOIUrl":"https://doi.org/10.1007/s00357-021-09406-4","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"39 1","pages":"241 - 263"},"PeriodicalIF":2.0,"publicationDate":"2021-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44515903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Editorial: Journal of Classification Vol. 38-3. 社论:分类杂志Vol. 38-3。
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-01-01 Epub Date: 2021-12-11 DOI: 10.1007/s00357-021-09404-6
Paul D McNicholas
{"title":"Editorial: Journal of Classification Vol. 38-3.","authors":"Paul D McNicholas","doi":"10.1007/s00357-021-09404-6","DOIUrl":"https://doi.org/10.1007/s00357-021-09404-6","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"38 3","pages":"423-424"},"PeriodicalIF":2.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8665698/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39738206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals 具有给定边际的2 × 2表的显合极值
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-01-01 DOI: 10.1007/s00357-020-09375-0
José Enrique Chacón Durán
{"title":"Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals","authors":"José Enrique Chacón Durán","doi":"10.1007/s00357-020-09375-0","DOIUrl":"https://doi.org/10.1007/s00357-020-09375-0","url":null,"abstract":"","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"38 1","pages":"257-263"},"PeriodicalIF":2.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00357-020-09375-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51951301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-clustering of Time-Dependent Data via the Shape Invariant Model. 基于形状不变模型的时变数据共聚类。
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2021-01-01 Epub Date: 2021-10-06 DOI: 10.1007/s00357-021-09402-8
Alessandro Casa, Charles Bouveyron, Elena Erosheva, Giovanna Menardi

Multivariate time-dependent data, where multiple features are observed over time for a set of individuals, are increasingly widespread in many application domains. To model these data, we need to account for relations among both time instants and variables and, at the same time, for subject heterogeneity. We propose a new co-clustering methodology for grouping individuals and variables simultaneously, designed to handle both functional and longitudinal data. Our approach borrows some concepts from the curve registration framework by embedding the shape invariant model in the latent block model, estimated via a suitable modification of the SEM-Gibbs algorithm. The resulting procedure allows for several user-defined specifications of the notion of cluster that can be chosen on substantive grounds and provides parsimonious summaries of complex time-dependent data by partitioning data matrices into homogeneous blocks. Along with the explicit modelling of time evolution, these aspects allow for an easy interpretation of the clusters, from which also low-dimensional settings may benefit.

多变量时间相关数据,即一组个体随时间推移观察到的多个特征,在许多应用领域中越来越普遍。为了对这些数据进行建模,我们需要考虑时间瞬间和变量之间的关系,同时还要考虑受试者的异质性。我们提出了一种新的共聚类方法,用于同时分组个体和变量,旨在处理功能和纵向数据。我们的方法借鉴了曲线配准框架中的一些概念,通过对SEM-Gibbs算法进行适当修改,将形状不变模型嵌入到潜在块模型中。由此产生的过程允许对集群概念进行几个用户定义的规范,这些规范可以根据实际情况进行选择,并通过将数据矩阵划分为同质块来提供复杂时间相关数据的简洁摘要。随着时间演化的明确建模,这些方面允许对集群的简单解释,从中也可以受益于低维设置。
{"title":"Co-clustering of Time-Dependent Data via the Shape Invariant Model.","authors":"Alessandro Casa,&nbsp;Charles Bouveyron,&nbsp;Elena Erosheva,&nbsp;Giovanna Menardi","doi":"10.1007/s00357-021-09402-8","DOIUrl":"https://doi.org/10.1007/s00357-021-09402-8","url":null,"abstract":"<p><p>Multivariate time-dependent data, where multiple features are observed over time for a set of individuals, are increasingly widespread in many application domains. To model these data, we need to account for relations among both time instants and variables and, at the same time, for subject heterogeneity. We propose a new co-clustering methodology for grouping individuals and variables simultaneously, designed to handle both functional and longitudinal data. Our approach borrows some concepts from the <i>curve registration</i> framework by embedding the <i>shape invariant model</i> in the <i>latent block model</i>, estimated via a suitable modification of the SEM-Gibbs algorithm. The resulting procedure allows for several user-defined specifications of the notion of cluster that can be chosen on substantive grounds and provides parsimonious summaries of complex time-dependent data by partitioning data matrices into homogeneous blocks. Along with the explicit modelling of time evolution, these aspects allow for an easy interpretation of the clusters, from which also low-dimensional settings may benefit.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"38 3","pages":"626-649"},"PeriodicalIF":2.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494170/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39514866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
A Gibbs Sampling Algorithm with Monotonicity Constraints for Diagnostic Classification Models 诊断分类模型的单调性约束Gibbs抽样算法
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2020-10-06 DOI: 10.31234/osf.io/undcv
K. Yamaguchi, J. Templin
Diagnostic classification models (DCMs) are restricted latent class models with a set of cross-class equality constraints and additional monotonicity constraints on their item parameters, both of which are needed to ensure the meaning of classes and model parameters. In this paper, we develop an efficient, Gibbs sampling-based Bayesian Markov chain Monte Carlo estimation method for general DCMs with monotonicity constraints. A simulation study was conducted to evaluate parameter recovery of the algorithm which showed accurate estimation of model parameters. Moreover, the proposed algorithm was compared to a previously developed Gibbs sampling algorithm which imposed constraints on only the main effect item parameters of the log-linear cognitive diagnosis model. The newly proposed algorithm showed less bias and faster convergence. An analysis of the 2000 Programme for International Student Assessment reading assessment data using this algorithm was also conducted.
诊断分类模型是一种有限制的潜在类模型,其项目参数上有一组跨类等式约束和额外的单调性约束,这两个约束都是确保类和模型参数的意义所必需的。在本文中,我们为具有单调性约束的一般DCM开发了一种有效的、基于吉布斯采样的贝叶斯马尔可夫链蒙特卡罗估计方法。对该算法的参数恢复进行了仿真研究,表明该算法对模型参数的估计是准确的。此外,将所提出的算法与先前开发的吉布斯采样算法进行了比较,该算法仅对对数线性认知诊断模型的主要影响项参数施加约束。新提出的算法具有较小的偏差和较快的收敛速度。还使用该算法对2000年国际学生评估计划的阅读评估数据进行了分析。
{"title":"A Gibbs Sampling Algorithm with Monotonicity Constraints for Diagnostic Classification Models","authors":"K. Yamaguchi, J. Templin","doi":"10.31234/osf.io/undcv","DOIUrl":"https://doi.org/10.31234/osf.io/undcv","url":null,"abstract":"Diagnostic classification models (DCMs) are restricted latent class models with a set of cross-class equality constraints and additional monotonicity constraints on their item parameters, both of which are needed to ensure the meaning of classes and model parameters. In this paper, we develop an efficient, Gibbs sampling-based Bayesian Markov chain Monte Carlo estimation method for general DCMs with monotonicity constraints. A simulation study was conducted to evaluate parameter recovery of the algorithm which showed accurate estimation of model parameters. Moreover, the proposed algorithm was compared to a previously developed Gibbs sampling algorithm which imposed constraints on only the main effect item parameters of the log-linear cognitive diagnosis model. The newly proposed algorithm showed less bias and faster convergence. An analysis of the 2000 Programme for International Student Assessment reading assessment data using this algorithm was also conducted.","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"39 1","pages":"24-54"},"PeriodicalIF":2.0,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41895649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
ROC and AUC with a Binary Predictor: a Potentially Misleading Metric. 二元预测器的ROC和AUC:一个潜在的误导性度量。
IF 2 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2020-10-01 Epub Date: 2019-12-23 DOI: 10.1007/s00357-019-09345-1
John Muschelli

In analysis of binary outcomes, the receiver operator characteristic (ROC) curve is heavily used to show the performance of a model or algorithm. The ROC curve is informative about the performance over a series of thresholds and can be summarized by the area under the curve (AUC), a single number. When a predictor is categorical, the ROC curve has one less than number of categories as potential thresholds; when the predictor is binary there is only one threshold. As the AUC may be used in decision-making processes on determining the best model, it important to discuss how it agrees with the intuition from the ROC curve. We discuss how the interpolation of the curve between thresholds with binary predictors can largely change the AUC. Overall, we show using a linear interpolation from the ROC curve with binary predictors corresponds to the estimated AUC, which is most commonly done in software, which we believe can lead to misleading results. We compare R, Python, Stata, and SAS software implementations. We recommend using reporting the interpolation used and discuss the merit of using the step function interpolator, also referred to as the "pessimistic" approach by Fawcett (2006).

在二元结果分析中,接受者算子特征(ROC)曲线被大量用于显示模型或算法的性能。ROC曲线是关于在一系列阈值上的表现的信息,可以通过曲线下面积(AUC),一个单一的数字来总结。当一个预测器是分类的,ROC曲线比潜在阈值的类别数少一个;当预测器是二元的,只有一个阈值。由于AUC可以用于确定最佳模型的决策过程,因此讨论它如何与ROC曲线的直觉一致是很重要的。我们讨论了如何用二元预测器插值阈值之间的曲线可以很大程度上改变AUC。总体而言,我们表明使用二元预测器的ROC曲线的线性插值对应于估计的AUC,这最常在软件中完成,我们认为这可能导致误导性的结果。我们比较了R、Python、Stata和SAS软件的实现。我们建议使用报告所使用的插值,并讨论使用阶跃函数插值的优点,也被称为福塞特(2006)的“悲观”方法。
{"title":"ROC and AUC with a Binary Predictor: a Potentially Misleading Metric.","authors":"John Muschelli","doi":"10.1007/s00357-019-09345-1","DOIUrl":"https://doi.org/10.1007/s00357-019-09345-1","url":null,"abstract":"<p><p>In analysis of binary outcomes, the receiver operator characteristic (ROC) curve is heavily used to show the performance of a model or algorithm. The ROC curve is informative about the performance over a series of thresholds and can be summarized by the area under the curve (AUC), a single number. When a <b>predictor</b> is categorical, the ROC curve has one less than number of categories as potential thresholds; when the predictor is binary there is only one threshold. As the AUC may be used in decision-making processes on determining the best model, it important to discuss how it agrees with the intuition from the ROC curve. We discuss how the interpolation of the curve between thresholds with binary predictors can largely change the AUC. Overall, we show using a linear interpolation from the ROC curve with binary predictors corresponds to the estimated AUC, which is most commonly done in software, which we believe can lead to misleading results. We compare R, Python, Stata, and SAS software implementations. We recommend using reporting the interpolation used and discuss the merit of using the step function interpolator, also referred to as the \"pessimistic\" approach by Fawcett (2006).</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"37 3","pages":"696-708"},"PeriodicalIF":2.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00357-019-09345-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38651248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 103
期刊
Journal of Classification
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1