首页 > 最新文献

Journal of Building Physics最新文献

英文 中文
Development of mathematical correlations to predict performance of forced ventilated Photovoltaic-DSF system in hot composite climate 开发数学相关性以预测高温复合气候下强制通风光伏-DSF 系统的性能
IF 2 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2024-06-25 DOI: 10.1177/17442591241247327
Sajan Preet, Sanjay Mathur, Jyotirmay Mathur, Manoj Kumar Sharma, Amartya Chowdhury
Performance of Photovoltaic-double skin façade (Photovoltaic-DSF) system in summer has been critical. Owing to high solar ingress, cooling requirement of a building significantly increases. Photovoltaic-DSF system provides a shield and controls the heat gain through fenestration in the interior spaces. In the present article, mathematical correlations are developed to analyse energy behaviour of forced-ventilated Photovoltaic-DSF system in India’s hot summer zone, that is, Jaipur. The Photovoltaic-DSF system has been installed and monitored for Jaipur’s summer months (May to July). L25 Orthogonal array of design parameters (air cavity thickness, air velocity and PV panel’s transparency) and their respective levels have been developed using Taguchi design to perform experiments. Based on experimental results, multiple linear regression has been used to forecast solar heat gain coefficient, PVs electrical power and daylighting illuminance indoors as function of design factors. The statistical significance of mathematical relationships is supported by variance analysis, which is found to be in good accord with field measurements ( R2 > 0.90). The proposed correlations are pragmatic in designing Photovoltaic-DSF systems for hot summer conditions. The Photovoltaic-DSF system with 30% transmittance and air velocity of 5 m/s in 200 mm air cavity thickness achieved maximum energy performance in hot summers.
光伏双层幕墙(Photovoltaic-DSF)系统在夏季的表现至关重要。由于太阳辐射强,建筑物的制冷需求大大增加。光伏双层幕墙系统可提供遮挡,并通过室内空间的玻璃窗控制热量的吸收。本文通过数学关联分析了印度夏季炎热地区(斋浦尔)的强制通风光伏-DSF 系统的能源特性。在斋浦尔的夏季月份(5 月至 7 月)安装并监测了光伏-DSF 系统。利用田口设计开发了 L25 正交阵列设计参数(气腔厚度、气流速度和光伏板透明度)及其各自的水平,以进行实验。根据实验结果,利用多元线性回归预测了太阳辐射热获得系数、光伏发电功率和室内日光照度与设计因素的函数关系。方差分析支持了数学关系的统计意义,发现其与现场测量结果(R2 > 0.90)十分吻合。所提出的相关关系在设计夏季炎热条件下的光伏-DSF 系统时非常实用。光电-DSF 系统的透光率为 30%,气流速度为 5 米/秒,气腔厚度为 200 毫米,在炎热的夏季实现了最大的能源性能。
{"title":"Development of mathematical correlations to predict performance of forced ventilated Photovoltaic-DSF system in hot composite climate","authors":"Sajan Preet, Sanjay Mathur, Jyotirmay Mathur, Manoj Kumar Sharma, Amartya Chowdhury","doi":"10.1177/17442591241247327","DOIUrl":"https://doi.org/10.1177/17442591241247327","url":null,"abstract":"Performance of Photovoltaic-double skin façade (Photovoltaic-DSF) system in summer has been critical. Owing to high solar ingress, cooling requirement of a building significantly increases. Photovoltaic-DSF system provides a shield and controls the heat gain through fenestration in the interior spaces. In the present article, mathematical correlations are developed to analyse energy behaviour of forced-ventilated Photovoltaic-DSF system in India’s hot summer zone, that is, Jaipur. The Photovoltaic-DSF system has been installed and monitored for Jaipur’s summer months (May to July). L25 Orthogonal array of design parameters (air cavity thickness, air velocity and PV panel’s transparency) and their respective levels have been developed using Taguchi design to perform experiments. Based on experimental results, multiple linear regression has been used to forecast solar heat gain coefficient, PVs electrical power and daylighting illuminance indoors as function of design factors. The statistical significance of mathematical relationships is supported by variance analysis, which is found to be in good accord with field measurements ( R<jats:sup>2</jats:sup> &gt; 0.90). The proposed correlations are pragmatic in designing Photovoltaic-DSF systems for hot summer conditions. The Photovoltaic-DSF system with 30% transmittance and air velocity of 5 m/s in 200 mm air cavity thickness achieved maximum energy performance in hot summers.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"32 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational and experimental analysis of PCM-infused brick for sustainable heat regulation 用于可持续热调节的注入 PCM 砖的计算和实验分析
IF 2 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2024-06-24 DOI: 10.1177/17442591241255966
Amira Dellagi, Rabeb Ayed, Salwa Bouadila, AmenAllah Guizani
Examining the thermodynamics of phase change materials (PCMs) when merged into construction materials is a significant subject within the realm of building science and environmental responsibility. When infused to construction materials like bricks, PCMs have the capacity to elevate a building’s temperature regulation by minimizing the energy required for thermal contentment. This research is dedicated to learn about the thermal conduct and the consequences of the fusion of calcium chloride hexahydrate mineral (CCHPCM) within the pores of a masonry unit. To achieve this, we implemented a practical testing specifically designed to scrutinize how CCHPCMs alter the thermal performance of studied compounds. Multiple configurations were designed by adjusting the arrangement of CCHPCM within the bricks, resulting in three distinct setups. The first set involved filling one row of the bricks, the second set entailed filling two rows, and the final configuration entailed filling all the pores with PCM. Additionally, a computational modeling was executed to survey the thermic behavior of bricks infused with CCHPCM, operating with COMSOL Multiphysics application program. The elaborated work concluded to having an enhancement of the brick’s thermal storage capacity, for Set-3, in which all rows of bricks are filled with PCM, a delay of 2 h is observed compared to Set-0 the brick without CCHPCM. This simulation also encompassed comparative findings regarding the thermal performance of CCHPCM when incorporated into the masonry unit. Overall, this study supplied the valorization of CCHPCMs infused in masonry units and their usage in distinct layouts on upgrading its candidature to achieving environmental responsibility.
研究相变材料(PCM)与建筑材料结合时的热力学,是建筑科学和环境责任领域的一个重要课题。在砖块等建筑材料中注入相变材料后,相变材料可以最大限度地减少热满足所需的能量,从而提高建筑物的温度调节能力。本研究致力于了解六水氯化钙矿物(CCHPCM)在砌体单元孔隙中的热传导和融合后果。为此,我们专门进行了一次实际测试,以仔细研究 CCHPCM 如何改变所研究化合物的热性能。我们通过调整 CCHPCM 在砖块中的排列设计了多种配置,最终形成了三种不同的设置。第一种配置是填充一排砖,第二种配置是填充两排砖,最后一种配置是用 PCM 填充所有孔隙。此外,还利用 COMSOL Multiphysics 应用程序进行了计算建模,以研究注入 CCHPCM 的砖块的热行为。详细的研究结果表明,Set-3(砖的所有行都填充了 PCM)提高了砖的蓄热能力,与不含 CCHPCM 的 Set-0 砖相比,蓄热时间延迟了 2 小时。该模拟还包含有关 CCHPCM 与砌体单元结合后热性能的比较结果。总之,这项研究为砌体单元中注入 CCHPCM 及其在不同布局中的使用提供了价值,从而提升了其实现环境责任的候选资格。
{"title":"Computational and experimental analysis of PCM-infused brick for sustainable heat regulation","authors":"Amira Dellagi, Rabeb Ayed, Salwa Bouadila, AmenAllah Guizani","doi":"10.1177/17442591241255966","DOIUrl":"https://doi.org/10.1177/17442591241255966","url":null,"abstract":"Examining the thermodynamics of phase change materials (PCMs) when merged into construction materials is a significant subject within the realm of building science and environmental responsibility. When infused to construction materials like bricks, PCMs have the capacity to elevate a building’s temperature regulation by minimizing the energy required for thermal contentment. This research is dedicated to learn about the thermal conduct and the consequences of the fusion of calcium chloride hexahydrate mineral (CCHPCM) within the pores of a masonry unit. To achieve this, we implemented a practical testing specifically designed to scrutinize how CCHPCMs alter the thermal performance of studied compounds. Multiple configurations were designed by adjusting the arrangement of CCHPCM within the bricks, resulting in three distinct setups. The first set involved filling one row of the bricks, the second set entailed filling two rows, and the final configuration entailed filling all the pores with PCM. Additionally, a computational modeling was executed to survey the thermic behavior of bricks infused with CCHPCM, operating with COMSOL Multiphysics application program. The elaborated work concluded to having an enhancement of the brick’s thermal storage capacity, for Set-3, in which all rows of bricks are filled with PCM, a delay of 2 h is observed compared to Set-0 the brick without CCHPCM. This simulation also encompassed comparative findings regarding the thermal performance of CCHPCM when incorporated into the masonry unit. Overall, this study supplied the valorization of CCHPCMs infused in masonry units and their usage in distinct layouts on upgrading its candidature to achieving environmental responsibility.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"41 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141502656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy efficiency of ecological buildings in Tunisia: Natural fiber composites and passive strategies impact 突尼斯生态建筑的能效:天然纤维复合材料和被动策略的影响
IF 2 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2024-05-04 DOI: 10.1177/17442591241246053
Hela Guesmi, Meriem Soussi, Fakhreddine Abbassi, Ali Adili, Leila Dehmani
Improving the thermal insulation and energy efficiency of building envelopes is a major objective worldwide and has significantly developed in the recent years. This study aims to evaluate the impact of ecological additive and passive strategies on building energy efficiency. An experimental study was carried out to examine the effect of the incorporation of treated Alfa and Posidonia-Oceanica fibers on the thermal properties of cement and gypsum composite samples. The experimental results were then introduced in a numerical study using TRNSYS software to perform a comparison of the energy efficiency and thermal performance of three individual buildings; two ones constructed with our ecological materials and the third one with typical materials is considered as a reference case under the Tunisian climate. The obtained results indicate that the buildings built with Alfa fibers (BAF) and Posidonia-Oceanica fibers (BPOF) are economically effective since they allow a decrease of about 48.20% and 43.48% in heating, 45.71% and 42.77% in cooling, leading to a reduction in CO2 emission of 47.90% and 43.40%, respectively, in comparison with the reference case. The investigation also focuses on the improvement of the ecological building envelope by a storage wall integrated on the south front and shaded by solar movable overhangs during the summer season. The indoor climate results reveal that incorporating passive strategies into the building improves indoor air temperature and preserves a comfortable indoor relative humidity. Heating requirements decrease by 82.82% for BAF and by 79.76% for BPOF. The cooling requirements of the reference building are also reduced by 63.46% for BAF and 60.45% for BPOF by the use of natural night ventilation (4 ACH) and the appropriate shading for Trombe walls and windows. Consequently, the implementation of passive strategies on the ecological buildings led to a net reduction in CO2 emissions by up to 80.55% for BAF, compared to the reference case.
提高建筑围护结构的隔热性能和能源效率是全世界的一个主要目标,近年来在这方面取得了长足的发展。本研究旨在评估生态添加剂和被动策略对建筑能效的影响。研究人员开展了一项实验研究,以考察加入经处理的阿尔法纤维和 Posidonia-Oceanica 纤维对水泥和石膏复合材料样品热性能的影响。实验结果随后被引入到使用 TRNSYS 软件进行的数值研究中,对三栋独立建筑的能效和热性能进行了比较;其中两栋建筑使用了我们的生态材料,第三栋使用了典型材料,被视为突尼斯气候条件下的参考案例。研究结果表明,使用阿尔法纤维(BAF)和波西多尼亚-大洋洲纤维(BPOF)建造的建筑具有很高的经济效益,因为与参考案例相比,它们的供热量分别减少了 48.20% 和 43.48%,制冷量分别减少了 45.71% 和 42.77%,二氧化碳排放量分别减少了 47.90% 和 43.40%。调查还重点关注了通过在南侧正面安装蓄热墙,并在夏季使用太阳能活动遮阳板遮阳来改善生态建筑围护结构的问题。室内气候结果表明,在建筑中采用被动式策略可以提高室内空气温度,保持舒适的室内相对湿度。BAF 的供暖需求减少了 82.82%,BPOF 减少了 79.76%。通过使用夜间自然通风(4 ACH)和适当的 Trombe 墙和窗户遮阳,参考建筑的制冷需求在 BAF 和 BPOF 分别减少了 63.46% 和 60.45%。因此,与参考案例相比,在生态建筑中实施被动式策略可使 BAF 的二氧化碳排放量净减少 80.55%。
{"title":"Energy efficiency of ecological buildings in Tunisia: Natural fiber composites and passive strategies impact","authors":"Hela Guesmi, Meriem Soussi, Fakhreddine Abbassi, Ali Adili, Leila Dehmani","doi":"10.1177/17442591241246053","DOIUrl":"https://doi.org/10.1177/17442591241246053","url":null,"abstract":"Improving the thermal insulation and energy efficiency of building envelopes is a major objective worldwide and has significantly developed in the recent years. This study aims to evaluate the impact of ecological additive and passive strategies on building energy efficiency. An experimental study was carried out to examine the effect of the incorporation of treated Alfa and Posidonia-Oceanica fibers on the thermal properties of cement and gypsum composite samples. The experimental results were then introduced in a numerical study using TRNSYS software to perform a comparison of the energy efficiency and thermal performance of three individual buildings; two ones constructed with our ecological materials and the third one with typical materials is considered as a reference case under the Tunisian climate. The obtained results indicate that the buildings built with Alfa fibers (BAF) and Posidonia-Oceanica fibers (BPOF) are economically effective since they allow a decrease of about 48.20% and 43.48% in heating, 45.71% and 42.77% in cooling, leading to a reduction in CO<jats:sub>2</jats:sub> emission of 47.90% and 43.40%, respectively, in comparison with the reference case. The investigation also focuses on the improvement of the ecological building envelope by a storage wall integrated on the south front and shaded by solar movable overhangs during the summer season. The indoor climate results reveal that incorporating passive strategies into the building improves indoor air temperature and preserves a comfortable indoor relative humidity. Heating requirements decrease by 82.82% for BAF and by 79.76% for BPOF. The cooling requirements of the reference building are also reduced by 63.46% for BAF and 60.45% for BPOF by the use of natural night ventilation (4 ACH) and the appropriate shading for Trombe walls and windows. Consequently, the implementation of passive strategies on the ecological buildings led to a net reduction in CO<jats:sub>2</jats:sub> emissions by up to 80.55% for BAF, compared to the reference case.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"1 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental method for estimating the effect of solar radiation on the inner surface heat flux of opaque building envelope elements 估算太阳辐射对不透明建筑围护结构内表面热通量影响的实验方法
IF 2 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2024-04-10 DOI: 10.1177/17442591241238436
Irati Uriarte, Aitor Erkoreka, Maria Jose Jimenez, Koldo Martin-Escudero, Hans Bloem
There still exists a considerable difference when comparing the real and the design energy consumption of buildings. The difference between the design and the real building envelope energy performance is one of its main reasons. The building envelope can be characterised through the individual characterisation of its different building envelope components such as opaque walls or windows. Therefore, the estimation of parameters such as their transmission heat transfer coefficient (UA) and their solar aperture (gA) is usually implemented. Although building components have been analysed over the years, the thermal characteristics of buildings have mainly been estimated through steady-state laboratory tests and simplified calculation/simulation procedures based on theoretical data. The use of inverse modelling based on registered dynamic data has also been used; however, unfortunately, the models used tend to significantly simplify or neglect the solar radiation effect on the inner surface heat flux of opaque building envelope elements. Therefore, this work presents an experimental, dynamic and inverse modelling method that accurately models non-linear phenomena through the use of a user-friendly simulation programme (LORD). The method is able to analyse in detail the effect of the solar radiation on the inner surface heat flux of opaque building envelope elements, without the necessity of knowing their constructive details or thermal properties. The experiment is performed in a fully monitored test box, where different models are tested with different opaque walls to find the best fit. Finally, the solar irradiance signal is removed from the best models so as to accurately quantify the weight of the solar radiation on the inner surface heat flux of each wall for two extreme periods, one for sunny summer days and other for cloudy winter days.
在比较建筑物的实际能耗和设计能耗时,仍然存在相当大的差异。建筑围护结构的设计能耗与实际能耗之间的差异是其主要原因之一。建筑围护结构可以通过对不同的建筑围护结构部件(如不透明墙体或窗户)进行单独表征。因此,通常要对其透射传热系数(UA)和太阳孔径(gA)等参数进行估算。尽管多年来一直在对建筑部件进行分析,但建筑物的热特性主要是通过稳态实验室测试和基于理论数据的简化计算/模拟程序进行估算的。然而,遗憾的是,所使用的模型往往大大简化或忽略了太阳辐射对不透明建筑围护结构内表面热通量的影响。因此,这项工作提出了一种实验、动态和反向建模方法,通过使用用户友好的模拟程序(LORD)对非线性现象进行精确建模。该方法能够详细分析太阳辐射对不透明建筑围护结构内表面热通量的影响,而无需了解其构造细节或热特性。实验在一个完全受监控的测试箱中进行,用不同的不透明墙体对不同的模型进行测试,以找到最佳匹配。最后,从最佳模型中剔除太阳辐照信号,以便准确量化太阳辐射在两个极端时期对每面墙内表面热通量的影响,一个是夏季晴天,另一个是冬季阴天。
{"title":"Experimental method for estimating the effect of solar radiation on the inner surface heat flux of opaque building envelope elements","authors":"Irati Uriarte, Aitor Erkoreka, Maria Jose Jimenez, Koldo Martin-Escudero, Hans Bloem","doi":"10.1177/17442591241238436","DOIUrl":"https://doi.org/10.1177/17442591241238436","url":null,"abstract":"There still exists a considerable difference when comparing the real and the design energy consumption of buildings. The difference between the design and the real building envelope energy performance is one of its main reasons. The building envelope can be characterised through the individual characterisation of its different building envelope components such as opaque walls or windows. Therefore, the estimation of parameters such as their transmission heat transfer coefficient (UA) and their solar aperture (gA) is usually implemented. Although building components have been analysed over the years, the thermal characteristics of buildings have mainly been estimated through steady-state laboratory tests and simplified calculation/simulation procedures based on theoretical data. The use of inverse modelling based on registered dynamic data has also been used; however, unfortunately, the models used tend to significantly simplify or neglect the solar radiation effect on the inner surface heat flux of opaque building envelope elements. Therefore, this work presents an experimental, dynamic and inverse modelling method that accurately models non-linear phenomena through the use of a user-friendly simulation programme (LORD). The method is able to analyse in detail the effect of the solar radiation on the inner surface heat flux of opaque building envelope elements, without the necessity of knowing their constructive details or thermal properties. The experiment is performed in a fully monitored test box, where different models are tested with different opaque walls to find the best fit. Finally, the solar irradiance signal is removed from the best models so as to accurately quantify the weight of the solar radiation on the inner surface heat flux of each wall for two extreme periods, one for sunny summer days and other for cloudy winter days.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"59 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140567901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hygrothermal response of a wood-frame thick-wall assembly to rainwater wetting under future climate scenarios in Canada 加拿大未来气候情景下木结构厚墙组件对雨水湿润的湿热响应
IF 2 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2024-04-09 DOI: 10.1177/17442591241238621
Alison Conroy, Phalguni Mukhopadhyaya, Guido Wimmers
Current exterior wall assembly designs for new low-rise residential buildings targeting low-energy demand in heating dominated countries include split-insulation wall and thick-wall assembly designs. Both have been shown to result in thermal efficiency gains compared to building-code minimum assemblies, however long-term hygrothermal performance can vary depending on boundary conditions and the presence of construction deficiencies. Future climate scenarios estimate many heating-dominated climates will experience a reduction in heating-degree day hours and an increase in annual rainfall. Using validated assembly performance data from a Passive House certified facility, a sensitivity analysis is performed to determine the impact of rainwater wetting, air exfiltration and insulation material properties on the hygrothermal response of a thick-wall assembly. Results show that rainwater leakage values of 0.50% and greater of the adhering rainfall on the exterior surface of the assembly results in the greatest risk for failure. The hygrothermal response of the assembly is then examined under a global temperature rise scenario of 3.5°C for five geographic locations across Canada. Results show that an increase in average annual total rainfall does not directly result in an increase in the failure rate of the assembly when a rainwater leak is present. Additional climatic factors, including outdoor air temperature, driving rain and solar radiation received will influence the hygrothermal response of the assembly and need to be considered when modelling the performance under future climate change scenarios.
在以供暖为主的国家,针对低能耗需求的新建低层住宅建筑,目前的外墙装配设计包括分层保温墙和厚墙装配设计。与建筑规范规定的最低装配相比,这两种设计都能提高热效率,但长期的湿热性能会因边界条件和建筑缺陷的存在而不同。根据未来的气候预测,许多以供暖为主的气候地区的供暖度日小时数将减少,年降雨量将增加。利用通过被动式房屋认证的设施中经过验证的装配性能数据,进行了一项敏感性分析,以确定雨水润湿、空气渗漏和保温材料特性对厚壁装配的湿热响应的影响。结果表明,雨水渗漏值达到或超过组件外表面附着降雨量的 0.50%,会导致最大的失效风险。然后,在全球气温上升 3.5 摄氏度的情况下,对加拿大五个地理位置的装配式建筑的湿热反应进行了研究。结果表明,当出现雨水泄漏时,年平均降雨总量的增加并不会直接导致组件故障率的增加。其他气候因素,包括室外气温、降雨量和太阳辐射都会影响组件的湿热响应,因此在模拟未来气候变化情景下的性能时需要加以考虑。
{"title":"Hygrothermal response of a wood-frame thick-wall assembly to rainwater wetting under future climate scenarios in Canada","authors":"Alison Conroy, Phalguni Mukhopadhyaya, Guido Wimmers","doi":"10.1177/17442591241238621","DOIUrl":"https://doi.org/10.1177/17442591241238621","url":null,"abstract":"Current exterior wall assembly designs for new low-rise residential buildings targeting low-energy demand in heating dominated countries include split-insulation wall and thick-wall assembly designs. Both have been shown to result in thermal efficiency gains compared to building-code minimum assemblies, however long-term hygrothermal performance can vary depending on boundary conditions and the presence of construction deficiencies. Future climate scenarios estimate many heating-dominated climates will experience a reduction in heating-degree day hours and an increase in annual rainfall. Using validated assembly performance data from a Passive House certified facility, a sensitivity analysis is performed to determine the impact of rainwater wetting, air exfiltration and insulation material properties on the hygrothermal response of a thick-wall assembly. Results show that rainwater leakage values of 0.50% and greater of the adhering rainfall on the exterior surface of the assembly results in the greatest risk for failure. The hygrothermal response of the assembly is then examined under a global temperature rise scenario of 3.5°C for five geographic locations across Canada. Results show that an increase in average annual total rainfall does not directly result in an increase in the failure rate of the assembly when a rainwater leak is present. Additional climatic factors, including outdoor air temperature, driving rain and solar radiation received will influence the hygrothermal response of the assembly and need to be considered when modelling the performance under future climate change scenarios.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"49 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140567805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of air entrapment on capillary absorption in porous building materials 空气夹带对多孔建筑材料毛细吸收的影响
IF 2 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2024-03-23 DOI: 10.1177/17442591241238437
Kazuma Fukui, Satoru Takada
When the water content of a porous material is high, air entrapped in the pore space is expected to affect water transfer through the pores. To understand the effects of air entrapment on water transfer in porous building materials in the high-water-saturation region, we examined the water transfer characteristics corresponding to significantly small air entrapment effects. First, we conducted two sets of water uptake experiments. In the first experiment, using three building materials, the time evolution of the amount of water absorption was measured at a low air pressure near vacuum (several kPa). In the second experiment, the water content profile during water uptake was measured using the gamma-ray attenuation method. The experimental results showed that low air pressure accelerated the water uptake by the brick and aerated concrete specimens, whereas water uptake by the calcium silicate board specimens was not significantly affected. These differences among materials were analyzed from a pore structure viewpoint. Moreover, gamma-ray attenuation measurements confirmed that the obtained water content profile was qualitatively similar at atmospheric and low air pressures, although the low air pressure increased both the water content of the material after capillary absorption and the wetting front propagation rate. Finally, simultaneous water and air transfer calculations based on the air and liquid water balance in a material reproduced the measured water absorption rates well, confirming that air entrapment and pressure development in the pores can significantly reduce the rate of water uptake and water content after capillary absorption. The calculation results also indicated that the air pressure in a material did not significantly increase at early water uptake stages where local water content was not high, which supported the general assumption that treating the liquid-water transfer in porous building materials as a one-component flow is valid in most cases.
当多孔材料的含水量较高时,孔隙中夹带的空气会影响水分通过孔隙的传递。为了了解高水饱和度区域空气夹杂对多孔建筑材料传水的影响,我们研究了空气夹杂影响明显较小情况下的传水特性。首先,我们进行了两组吸水实验。在第一组实验中,我们使用了三种建筑材料,在接近真空的低气压(几千帕)下测量了吸水量的时间变化。在第二个实验中,使用伽马射线衰减法测量了吸水过程中的含水率曲线。实验结果表明,低气压加速了砖和加气混凝土试样的吸水率,而硅酸钙板试样的吸水率没有受到明显影响。从孔隙结构的角度分析了材料之间的这些差异。此外,伽马射线衰减测量证实,在大气压和低气压条件下,所获得的含水率曲线在质量上是相似的,尽管低气压会增加毛细管吸水后材料的含水率和湿润前沿的传播速度。最后,根据材料中的空气和液体水平衡同时进行的水和空气转移计算很好地再现了测量的吸水率,证实了孔隙中的空气夹带和压力发展会显著降低毛细管吸水后的吸水率和含水率。计算结果还表明,在局部含水率不高的早期吸水阶段,材料中的气压并没有显著增加,这支持了将多孔建筑材料中的液水传递视为单组分流动在大多数情况下是有效的这一一般假设。
{"title":"Impact of air entrapment on capillary absorption in porous building materials","authors":"Kazuma Fukui, Satoru Takada","doi":"10.1177/17442591241238437","DOIUrl":"https://doi.org/10.1177/17442591241238437","url":null,"abstract":"When the water content of a porous material is high, air entrapped in the pore space is expected to affect water transfer through the pores. To understand the effects of air entrapment on water transfer in porous building materials in the high-water-saturation region, we examined the water transfer characteristics corresponding to significantly small air entrapment effects. First, we conducted two sets of water uptake experiments. In the first experiment, using three building materials, the time evolution of the amount of water absorption was measured at a low air pressure near vacuum (several kPa). In the second experiment, the water content profile during water uptake was measured using the gamma-ray attenuation method. The experimental results showed that low air pressure accelerated the water uptake by the brick and aerated concrete specimens, whereas water uptake by the calcium silicate board specimens was not significantly affected. These differences among materials were analyzed from a pore structure viewpoint. Moreover, gamma-ray attenuation measurements confirmed that the obtained water content profile was qualitatively similar at atmospheric and low air pressures, although the low air pressure increased both the water content of the material after capillary absorption and the wetting front propagation rate. Finally, simultaneous water and air transfer calculations based on the air and liquid water balance in a material reproduced the measured water absorption rates well, confirming that air entrapment and pressure development in the pores can significantly reduce the rate of water uptake and water content after capillary absorption. The calculation results also indicated that the air pressure in a material did not significantly increase at early water uptake stages where local water content was not high, which supported the general assumption that treating the liquid-water transfer in porous building materials as a one-component flow is valid in most cases.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"366 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hygro-thermo-mechanical properties of tunnel excavated earth-based plasters 隧道挖掘土基灰泥的湿热机械特性
IF 2 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2024-03-16 DOI: 10.1177/17442591241238438
Mohammed Nouali, Elhem Ghorbel
This paper aims to valorize the excavated earth (ExE) generated from the tunnel digging works, to elaborate excavated earth-based plasters for masonry walls. Excavated earth is an admixture of water, gravel, sand, and fine particles. A small amount of gravel (<4% by weight) was removed, and the tunnel-excavated earth is used to elaborate plasters. Cement and slag are used as stabilizers in ExE-based plasters and reinforced with natural hemp fibers. The physical, mechanical, thermal, and hydric properties of ExE-based plasters are investigated. The increase in cement content affects the workability of ExE-based plasters in a fresh state, while the addition of natural hemp fibers has no significant effect on the workability. It has been demonstrated that the mechanical performances (compressive strength, flexural strength, and dynamic modulus) of ExE-based plasters increase with the increase of cement content and decrease with the increase in slag content. The hemp fiber addition (0.8% by weight) shows no considerable effect on the ExE-based plaster’s mechanical performance. As for the thermal properties, the increase of cement and slag contents negatively affects the thermal conductivity. The increase in cement content decreases the water absorption of earth-plasters. Except for some tests (shrinkage, main cohesion, and cracking tests), which have not been done in this study, the results of cement-stabilized ExE-based plasters (7% and 9%) are in accordance with the recommendation of the DIN 18947 standard, indicating that the tunnel excavated earth can be used as earth-plasters.
本文旨在利用隧道挖掘工程中产生的挖掘土(ExE),为砌体墙精心制作以挖掘土为基础的灰泥。挖掘土是水、砾石、沙子和细颗粒的混合物。少量的砾石(按重量计为 4%)被清除,隧道挖掘出的土被用来制作灰泥。水泥和矿渣被用作基于 ExE 的灰泥的稳定剂,并用天然麻纤维进行加固。研究了基于 ExE 的灰泥的物理、机械、热和水力特性。水泥含量的增加会影响基于 ExE 的抹灰在新鲜状态下的可操作性,而天然麻纤维的添加对可操作性没有显著影响。研究表明,ExE 类抹灰的机械性能(抗压强度、抗折强度和动态模量)随水泥含量的增加而增加,随矿渣含量的增加而降低。麻纤维添加量(0.8% 重量比)对 ExE 基抹灰的机械性能没有显著影响。在热性能方面,水泥和矿渣含量的增加会对导热率产生负面影响。水泥含量的增加会降低土抹灰的吸水性。除了本研究没有进行的一些试验(收缩试验、主要内聚力试验和开裂试验)外,水泥稳定的 ExE 灰泥(7% 和 9%)的结果符合 DIN 18947 标准的建议,表明隧道挖掘土方可用作土方灰泥。
{"title":"Hygro-thermo-mechanical properties of tunnel excavated earth-based plasters","authors":"Mohammed Nouali, Elhem Ghorbel","doi":"10.1177/17442591241238438","DOIUrl":"https://doi.org/10.1177/17442591241238438","url":null,"abstract":"This paper aims to valorize the excavated earth (ExE) generated from the tunnel digging works, to elaborate excavated earth-based plasters for masonry walls. Excavated earth is an admixture of water, gravel, sand, and fine particles. A small amount of gravel (&lt;4% by weight) was removed, and the tunnel-excavated earth is used to elaborate plasters. Cement and slag are used as stabilizers in ExE-based plasters and reinforced with natural hemp fibers. The physical, mechanical, thermal, and hydric properties of ExE-based plasters are investigated. The increase in cement content affects the workability of ExE-based plasters in a fresh state, while the addition of natural hemp fibers has no significant effect on the workability. It has been demonstrated that the mechanical performances (compressive strength, flexural strength, and dynamic modulus) of ExE-based plasters increase with the increase of cement content and decrease with the increase in slag content. The hemp fiber addition (0.8% by weight) shows no considerable effect on the ExE-based plaster’s mechanical performance. As for the thermal properties, the increase of cement and slag contents negatively affects the thermal conductivity. The increase in cement content decreases the water absorption of earth-plasters. Except for some tests (shrinkage, main cohesion, and cracking tests), which have not been done in this study, the results of cement-stabilized ExE-based plasters (7% and 9%) are in accordance with the recommendation of the DIN 18947 standard, indicating that the tunnel excavated earth can be used as earth-plasters.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"40 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Building physics process integrated renewables energy – Contributions from COBEE 2022 社论:建筑物理过程集成可再生能源 - COBEE 2022 的贡献
IF 2 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2024-02-23 DOI: 10.1177/17442591241234454
Dahai Qi, Dengjia Wang, Yupeng Wu, Liangzhu (Leon) Wang, Dominque Derome
{"title":"Editorial: Building physics process integrated renewables energy – Contributions from COBEE 2022","authors":"Dahai Qi, Dengjia Wang, Yupeng Wu, Liangzhu (Leon) Wang, Dominque Derome","doi":"10.1177/17442591241234454","DOIUrl":"https://doi.org/10.1177/17442591241234454","url":null,"abstract":"","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"14 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139949544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization strategies of the envelope insulation for a detached house based on load sensitivity and thermal storage performance 基于负荷敏感性和蓄热性能的独立式住宅围护结构隔热优化策略
IF 2 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2024-02-20 DOI: 10.1177/17442591241230677
Botao Zhou, Juan Zhao, Yongcai Li, Junmei Gao, Bojing Huang, Ritu Wu, Wenjie Zhang, Biao Tan
Reasonable thermal insulation in cold regions is the key to improve the indoor thermal environment. In this paper, the detached house is taken as the research object, and the sensitivity analysis method is used to quantify the influence of each parameter on the building heat load in three different climate zones. The attenuation characteristics of the heat storage body to the outdoor temperature wave are studied by using the A·M Shklovel calculation method, and the thermal insulation strategy of the envelope structure is optimized by genetic algorithm (GA). The results show that the heat transfer coefficient of roof and exterior wall has the most significant influence on the building heat load. The mean effect response of each factor shows that the Delta (Delta is the value used in Taguchi design methodology to express the relative effect of each factor on the response) of roofs in the three regions is the highest, 3.061, 4.061, and 5.88, respectively. The influence of the type and thickness of the insulation material on the heat storage performance is different. The indoor and outdoor temperature wave penetration attenuation multiple increases with the increase of the thickness of the insulation layer, increases with the decrease of the thermal conductivity of the insulation material, and increases with the increase of the specific heat capacity. The choice of insulation materials is not only related to the above two parameters, but also directly affected by the price. Considering the influence of various factors, the economy of choosing expanded polystyrene board for thermal insulation in the three regions is the best. The optimal thermal insulation thickness of the north wall and roof is 8 and 16 cm (3A climate zone), 10 and 17 cm (2B climate zone), 13 and 20 cm (2A climate zone), respectively.
寒冷地区合理的保温隔热措施是改善室内热环境的关键。本文以独立式住宅为研究对象,采用敏感性分析方法量化了三个不同气候区各参数对建筑热负荷的影响。利用 A-M Shklovel 计算方法研究了蓄热体对室外温度波的衰减特性,并通过遗传算法(GA)优化了围护结构的保温策略。结果表明,屋顶和外墙的传热系数对建筑热负荷的影响最大。各因素的平均效应响应显示,三个区域中屋顶的 Delta 值(Delta 值是 Taguchi 设计方法中用来表示各因素对响应的相对影响的值)最高,分别为 3.061、4.061 和 5.88。隔热材料的类型和厚度对蓄热性能的影响不同。室内外温度波穿透衰减倍数随隔热层厚度的增加而增加,随隔热材料导热系数的降低而增加,随比热容的增加而增加。隔热材料的选择不仅与上述两个参数有关,还直接受到价格的影响。综合考虑各种因素的影响,三地选择膨胀聚苯板做保温材料的经济性最好。北墙和屋顶的最佳保温厚度分别为 8 厘米和 16 厘米(3A 气候区)、10 厘米和 17 厘米(2B 气候区)、13 厘米和 20 厘米(2A 气候区)。
{"title":"Optimization strategies of the envelope insulation for a detached house based on load sensitivity and thermal storage performance","authors":"Botao Zhou, Juan Zhao, Yongcai Li, Junmei Gao, Bojing Huang, Ritu Wu, Wenjie Zhang, Biao Tan","doi":"10.1177/17442591241230677","DOIUrl":"https://doi.org/10.1177/17442591241230677","url":null,"abstract":"Reasonable thermal insulation in cold regions is the key to improve the indoor thermal environment. In this paper, the detached house is taken as the research object, and the sensitivity analysis method is used to quantify the influence of each parameter on the building heat load in three different climate zones. The attenuation characteristics of the heat storage body to the outdoor temperature wave are studied by using the A·M Shklovel calculation method, and the thermal insulation strategy of the envelope structure is optimized by genetic algorithm (GA). The results show that the heat transfer coefficient of roof and exterior wall has the most significant influence on the building heat load. The mean effect response of each factor shows that the Delta (Delta is the value used in Taguchi design methodology to express the relative effect of each factor on the response) of roofs in the three regions is the highest, 3.061, 4.061, and 5.88, respectively. The influence of the type and thickness of the insulation material on the heat storage performance is different. The indoor and outdoor temperature wave penetration attenuation multiple increases with the increase of the thickness of the insulation layer, increases with the decrease of the thermal conductivity of the insulation material, and increases with the increase of the specific heat capacity. The choice of insulation materials is not only related to the above two parameters, but also directly affected by the price. Considering the influence of various factors, the economy of choosing expanded polystyrene board for thermal insulation in the three regions is the best. The optimal thermal insulation thickness of the north wall and roof is 8 and 16 cm (3A climate zone), 10 and 17 cm (2B climate zone), 13 and 20 cm (2A climate zone), respectively.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"12 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139949464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microscopic moisture localisation in unsaturated materials using nuclear magnetic resonance relaxometry 利用核磁共振弛豫测量法确定非饱和材料中的微观水分定位
IF 2 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2024-01-27 DOI: 10.1177/17442591231219931
Daan Deckers, Hans Janssen
Due to the detrimental effects of moisture in the built environment, there is a continuous interest in non-destructive experimental techniques that quantify and/or localise moisture in materials. Most existing experimental techniques, however, typically focus on macroscopic moisture contents in samples rather than the microscopic distribution of water in the individual pores of building materials. For the latter, a popular method such as X-ray computed tomography is not readily applicable, due to the gap between its spatial resolution limit and the typical pore sizes of building materials. Nuclear magnetic resonance (NMR) relaxometry is capable of measuring water in pores of both the nanometer and micrometer scale and is therefore an interesting possibility. While most NMR research focusses on water-saturated materials or overall moisture contents, this study determines the size distributions of the water islands in unsaturated materials with NMR, and compares results to X-ray computed tomography (XCT) images and pore network model (PNM) simulations. Results on unsaturated materials show that NMR focusses on the biggest water islands (i.e. in capillary filled pores) and disregards the hydrogen nuclei in smaller water islands (i.e. stored in pore corners). NMR relaxometry is therefore only adept at providing very rough estimates of the size of water-filled pores, especially since post-processing of the NMR experiments to obtain these water island size distributions involves a lot of uncertainty.
由于湿气在建筑环境中的有害影响,人们对量化和/或定位材料中湿气的非破坏性实验技术一直很感兴趣。然而,大多数现有的实验技术通常侧重于样品中的宏观含水量,而不是建筑材料单个孔隙中水的微观分布。对于后者,X 射线计算机断层扫描等常用方法并不适用,因为其空间分辨率限制与建筑材料的典型孔隙尺寸之间存在差距。核磁共振(NMR)弛豫测量法能够测量纳米级和微米级孔隙中的水,因此是一种有趣的可能性。大多数核磁共振研究侧重于水饱和材料或总体含水量,而本研究则利用核磁共振确定非饱和材料中水岛的尺寸分布,并将结果与 X 射线计算机断层扫描(XCT)图像和孔隙网络模型(PNM)模拟进行比较。对不饱和材料的研究结果表明,核磁共振聚焦于最大的水岛(即毛细管填充孔隙中的水),而忽略了较小水岛(即储存在孔隙角落中的水)中的氢核。因此,核磁共振弛豫测量法只能对充满水的孔隙的大小提供非常粗略的估计,特别是因为对核磁共振实验进行后处理以获得这些水岛的大小分布涉及很多不确定性。
{"title":"Microscopic moisture localisation in unsaturated materials using nuclear magnetic resonance relaxometry","authors":"Daan Deckers, Hans Janssen","doi":"10.1177/17442591231219931","DOIUrl":"https://doi.org/10.1177/17442591231219931","url":null,"abstract":"Due to the detrimental effects of moisture in the built environment, there is a continuous interest in non-destructive experimental techniques that quantify and/or localise moisture in materials. Most existing experimental techniques, however, typically focus on macroscopic moisture contents in samples rather than the microscopic distribution of water in the individual pores of building materials. For the latter, a popular method such as X-ray computed tomography is not readily applicable, due to the gap between its spatial resolution limit and the typical pore sizes of building materials. Nuclear magnetic resonance (NMR) relaxometry is capable of measuring water in pores of both the nanometer and micrometer scale and is therefore an interesting possibility. While most NMR research focusses on water-saturated materials or overall moisture contents, this study determines the size distributions of the water islands in unsaturated materials with NMR, and compares results to X-ray computed tomography (XCT) images and pore network model (PNM) simulations. Results on unsaturated materials show that NMR focusses on the biggest water islands (i.e. in capillary filled pores) and disregards the hydrogen nuclei in smaller water islands (i.e. stored in pore corners). NMR relaxometry is therefore only adept at providing very rough estimates of the size of water-filled pores, especially since post-processing of the NMR experiments to obtain these water island size distributions involves a lot of uncertainty.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"254 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139949541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Building Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1