首页 > 最新文献

ISME Journal最新文献

英文 中文
Single-cell genomics of a bloom-forming phytoplankton species reveals population genetic structure across continents. 水华形成浮游植物物种的单细胞基因组学揭示了跨大陆的种群遗传结构。
IF 11 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-01-08 DOI: 10.1093/ismejo/wrae045
Raphael Gollnisch, Dag Ahrén, Karin Rengefors

The study of microbial diversity over time and space is fundamental to the understanding of their ecology and evolution. The underlying processes driving these patterns are not fully resolved but can be studied using population genetic approaches. Here we investigated the population genetic structure of Gonyostomum semen, a bloom-forming phytoplankton species, across two continents. The species appears to be expanding in Europe, whereas similar trends are not observed in the USA. Our aim was to investigate if populations of Gonyostomum semen in Europe and in the USA are genetically differentiated, if there is population genetic structure within the continents, and what the potential drivers of differentiation are. To this end, we used a novel method based on single-amplified genomes combined with Restriction-site Associated DNA sequencing that allows de novo genotyping of natural single-cell isolates without the need for culturing. We amplified over 900 single-cell genomes from 25 lake populations across Europe and the USA and identified two distinct population clusters, one in Europe and another in the USA. Low genetic diversity in European populations supports the hypothesized recent expansion of Gonyostomum semen on this continent. Geographic population structure within each continent was associated with differences in environmental variables that may have led to ecological divergence of population clusters. Overall, our results show that single-amplified genomes combined with Restriction-site Associated DNA sequencing can be used to analyze microalgal population structure and differentiation based on single-cell isolates from natural, uncultured samples.

研究微生物在时间和空间上的多样性是了解其生态学和进化的基础。驱动这些模式的基本过程尚未完全解析,但可以利用种群遗传学方法进行研究。在这里,我们研究了藻华形成浮游植物物种 Gonyostomum semen 在两大洲的种群遗传结构。该物种在欧洲似乎正在扩大,而在美国却没有观察到类似的趋势。我们的目的是研究欧洲和美国的精囊藻种群是否存在遗传分化,各大洲内部是否存在种群遗传结构,以及分化的潜在驱动因素是什么。为此,我们采用了一种基于单扩增基因组(SAG)结合 RADseq(SAG-RAD)的新方法,该方法可对天然单细胞分离物进行从头基因分型,无需培养。我们扩增了来自欧洲和美国 25 个湖泊种群的 900 多个单细胞基因组,发现了两个不同的种群集群,一个在欧洲,另一个在美国。欧洲种群的遗传多样性较低,这支持了精斑鲤最近在欧洲大陆扩张的假设。各大洲的地理种群结构与环境变量的差异有关,这可能导致了种群集群的生态分化。总之,我们的研究结果表明,SAG-RAD 可用于分析微藻种群结构和分化,其基础是来自天然、未培养样本的单细胞分离物。
{"title":"Single-cell genomics of a bloom-forming phytoplankton species reveals population genetic structure across continents.","authors":"Raphael Gollnisch, Dag Ahrén, Karin Rengefors","doi":"10.1093/ismejo/wrae045","DOIUrl":"10.1093/ismejo/wrae045","url":null,"abstract":"<p><p>The study of microbial diversity over time and space is fundamental to the understanding of their ecology and evolution. The underlying processes driving these patterns are not fully resolved but can be studied using population genetic approaches. Here we investigated the population genetic structure of Gonyostomum semen, a bloom-forming phytoplankton species, across two continents. The species appears to be expanding in Europe, whereas similar trends are not observed in the USA. Our aim was to investigate if populations of Gonyostomum semen in Europe and in the USA are genetically differentiated, if there is population genetic structure within the continents, and what the potential drivers of differentiation are. To this end, we used a novel method based on single-amplified genomes combined with Restriction-site Associated DNA sequencing that allows de novo genotyping of natural single-cell isolates without the need for culturing. We amplified over 900 single-cell genomes from 25 lake populations across Europe and the USA and identified two distinct population clusters, one in Europe and another in the USA. Low genetic diversity in European populations supports the hypothesized recent expansion of Gonyostomum semen on this continent. Geographic population structure within each continent was associated with differences in environmental variables that may have led to ecological divergence of population clusters. Overall, our results show that single-amplified genomes combined with Restriction-site Associated DNA sequencing can be used to analyze microalgal population structure and differentiation based on single-cell isolates from natural, uncultured samples.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":11.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11065318/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140137463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Warming effects on grassland soil microbial communities are amplified in cool months. 气候变暖对草地土壤微生物群落的影响在凉爽的月份会被放大。
IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-01-08 DOI: 10.1093/ismejo/wrae088
Jiesi Lei, Yuanlong Su, Siyang Jian, Xue Guo, Mengting Yuan, Colin T Bates, Zhou Jason Shi, Jiabao Li, Yifan Su, Daliang Ning, Liyou Wu, Jizhong Zhou, Yunfeng Yang

Global warming modulates soil respiration (RS) via microbial decomposition, which is seasonally dependent. Yet, the magnitude and direction of this modulation remain unclear, partly owing to the lack of knowledge on how microorganisms respond to seasonal changes. Here, we investigated the temporal dynamics of soil microbial communities over 12 consecutive months under experimental warming in a tallgrass prairie ecosystem. The interplay between warming and time altered (P < 0.05) the taxonomic and functional compositions of microbial communities. During the cool months (January to February and October to December), warming induced a soil microbiome with a higher genomic potential for carbon decomposition, community-level ribosomal RNA operon (rrn) copy numbers, and microbial metabolic quotients, suggesting that warming stimulated fast-growing microorganisms that enhanced carbon decomposition. Modeling analyses further showed that warming reduced the temperature sensitivity of microbial carbon use efficiency (CUE) by 28.7% when monthly average temperature was low, resulting in lower microbial CUE and higher heterotrophic respiration (Rh) potentials. Structural equation modeling showed that warming modulated both Rh and RS directly by altering soil temperature and indirectly by influencing microbial community traits, soil moisture, nitrate content, soil pH, and gross primary productivity. The modulation of Rh by warming was more pronounced in cooler months compared to warmer ones. Together, our findings reveal distinct warming-induced effects on microbial functional traits in cool months, challenging the norm of soil sampling only in the peak growing season, and advancing our mechanistic understanding of the seasonal pattern of RS and Rh sensitivity to warming.

全球变暖会通过微生物分解作用调节土壤呼吸作用(RS),而这种作用与季节有关。然而,这种调节的幅度和方向仍不清楚,部分原因是缺乏有关微生物如何应对季节变化的知识。在这里,我们研究了高草草原生态系统在实验性变暖条件下连续 12 个月土壤微生物群落的时间动态。变暖和时间之间的相互作用改变了微生物群落的分类和功能组成(p < 0.05)。在凉爽的月份(1 月至 2 月和 10 月至 12 月),气候变暖导致土壤微生物群具有更高的碳分解基因组潜力、群落级核糖体 RNA 操作子(rrn)拷贝数和微生物代谢商,这表明气候变暖刺激了快速生长的微生物,从而促进了碳分解。建模分析进一步表明,当月平均气温较低时,气候变暖使微生物碳利用效率对温度的敏感性降低了28.7%,导致微生物碳利用效率降低,异养呼吸(Rh)潜能值升高。结构方程模型显示,气候变暖通过改变土壤温度直接调节 Rh 和 RS,并通过影响微生物群落特征、土壤水分、硝酸盐含量、土壤 pH 值和总初级生产力间接调节 Rh 和 RS。气候变暖对 Rh 的调节作用在凉爽月份比温暖月份更明显。总之,我们的研究结果揭示了气候变暖对凉爽月份微生物功能特征的明显影响,挑战了仅在生长旺季进行土壤采样的常规做法,并推进了我们对 RS 和 Rh 对气候变暖敏感性的季节模式的机理认识。
{"title":"Warming effects on grassland soil microbial communities are amplified in cool months.","authors":"Jiesi Lei, Yuanlong Su, Siyang Jian, Xue Guo, Mengting Yuan, Colin T Bates, Zhou Jason Shi, Jiabao Li, Yifan Su, Daliang Ning, Liyou Wu, Jizhong Zhou, Yunfeng Yang","doi":"10.1093/ismejo/wrae088","DOIUrl":"10.1093/ismejo/wrae088","url":null,"abstract":"<p><p>Global warming modulates soil respiration (RS) via microbial decomposition, which is seasonally dependent. Yet, the magnitude and direction of this modulation remain unclear, partly owing to the lack of knowledge on how microorganisms respond to seasonal changes. Here, we investigated the temporal dynamics of soil microbial communities over 12 consecutive months under experimental warming in a tallgrass prairie ecosystem. The interplay between warming and time altered (P < 0.05) the taxonomic and functional compositions of microbial communities. During the cool months (January to February and October to December), warming induced a soil microbiome with a higher genomic potential for carbon decomposition, community-level ribosomal RNA operon (rrn) copy numbers, and microbial metabolic quotients, suggesting that warming stimulated fast-growing microorganisms that enhanced carbon decomposition. Modeling analyses further showed that warming reduced the temperature sensitivity of microbial carbon use efficiency (CUE) by 28.7% when monthly average temperature was low, resulting in lower microbial CUE and higher heterotrophic respiration (Rh) potentials. Structural equation modeling showed that warming modulated both Rh and RS directly by altering soil temperature and indirectly by influencing microbial community traits, soil moisture, nitrate content, soil pH, and gross primary productivity. The modulation of Rh by warming was more pronounced in cooler months compared to warmer ones. Together, our findings reveal distinct warming-induced effects on microbial functional traits in cool months, challenging the norm of soil sampling only in the peak growing season, and advancing our mechanistic understanding of the seasonal pattern of RS and Rh sensitivity to warming.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170927/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140923837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbiota of pest insect Nezara viridula mediate detoxification and plant defense repression. 害虫 Nezara viridula 的微生物群介导解毒和植物防御抑制。
IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-01-08 DOI: 10.1093/ismejo/wrae097
Silvia Coolen, Magda A Rogowska-van der Molen, Ineke Kwakernaak, Johan A van Pelt, Jelle L Postma, Theo van Alen, Robert S Jansen, Cornelia U Welte

The Southern green shield bug, Nezara viridula, is an invasive piercing and sucking pest insect that feeds on crop plants and poses a threat to global food production. Given that insects are known to live in a close relationship with microorganisms, our study provides insights into the community composition and function of the N. viridula-associated microbiota and its effect on host-plant interactions. We discovered that N. viridula hosts both vertically and horizontally transmitted microbiota throughout different developmental stages and their salivary glands harbor a thriving microbial community that is transmitted to the plant while feeding. The N. viridula microbiota was shown to aid its host with the detoxification of a plant metabolite, namely 3-nitropropionic acid, and repression of host plant defenses. Our results demonstrate that the N. viridula-associated microbiota plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies.

南方绿盾蝽是一种入侵性刺吸害虫,以农作物为食,对全球粮食生产构成威胁。众所周知,昆虫与微生物关系密切,因此我们的研究有助于深入了解南绿盾蝽相关微生物群的群落组成和功能及其对寄主-植物相互作用的影响。我们发现,在不同的发育阶段,金龟子都寄生着垂直和水平传播的微生物群,它们的唾液腺蕴藏着一个繁荣的微生物群落,在进食时传播给植物。研究表明,毒蝇科微生物群能帮助宿主解毒植物代谢物,即 3-硝基丙酸,并抑制宿主植物的防御能力。我们的研究结果表明,在昆虫与植物之间的相互作用中,与毒蝇科昆虫相关的微生物群发挥着重要作用,因此可被视为开发可持续害虫控制策略的重要目标。
{"title":"Microbiota of pest insect Nezara viridula mediate detoxification and plant defense repression.","authors":"Silvia Coolen, Magda A Rogowska-van der Molen, Ineke Kwakernaak, Johan A van Pelt, Jelle L Postma, Theo van Alen, Robert S Jansen, Cornelia U Welte","doi":"10.1093/ismejo/wrae097","DOIUrl":"10.1093/ismejo/wrae097","url":null,"abstract":"<p><p>The Southern green shield bug, Nezara viridula, is an invasive piercing and sucking pest insect that feeds on crop plants and poses a threat to global food production. Given that insects are known to live in a close relationship with microorganisms, our study provides insights into the community composition and function of the N. viridula-associated microbiota and its effect on host-plant interactions. We discovered that N. viridula hosts both vertically and horizontally transmitted microbiota throughout different developmental stages and their salivary glands harbor a thriving microbial community that is transmitted to the plant while feeding. The N. viridula microbiota was shown to aid its host with the detoxification of a plant metabolite, namely 3-nitropropionic acid, and repression of host plant defenses. Our results demonstrate that the N. viridula-associated microbiota plays an important role in interactions between insects and plants and could therefore be considered a valuable target for the development of sustainable pest control strategies.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phylosymbiosis shapes skin bacterial communities and pathogen-protective function in Appalachian salamanders. 系统共生塑造了阿巴拉契亚蝾螈的皮肤细菌群落和病原体保护功能。
IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-01-08 DOI: 10.1093/ismejo/wrae104
Owen G Osborne, Randall R Jiménez, Allison Q Byrne, Brian Gratwicke, Amy Ellison, Carly R Muletz-Wolz

Phylosymbiosis is an association between host-associated microbiome composition and host phylogeny. This pattern can arise via the evolution of host traits, habitat preferences, diets, and the co-diversification of hosts and microbes. Understanding the drivers of phylosymbiosis is vital for modelling disease-microbiome interactions and manipulating microbiomes in multi-host systems. This study quantifies phylosymbiosis in Appalachian salamander skin in the context of infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd), while accounting for environmental microbiome exposure. We sampled ten salamander species representing >150M years of divergence, assessed their Bd infection status, and analysed their skin and environmental microbiomes. Our results reveal a significant signal of phylosymbiosis, whereas the local environmental pool of microbes, climate, geography, and Bd infection load had a smaller impact. Host-microbe co-speciation was not evident, indicating that the effect stems from the evolution of host traits influencing microbiome assembly. Bd infection is correlated with host phylogeny and the abundance of Bd-inhibitory bacterial strains, suggesting that the long-term evolutionary dynamics between salamander hosts and their skin microbiomes affect the present-day distribution of the pathogen, along with habitat-linked exposure risk. Five Bd-inhibitory bacterial strains showed unusual generalism: occurring in most host species and habitats. These generalist strains may enhance the likelihood of probiotic manipulations colonising and persisting on hosts. Our results underscore the substantial influence of host-microbiome eco-evolutionary dynamics on environmental health and disease outcomes.

系统共生是指宿主相关微生物组组成与宿主系统发育之间的联系。这种模式可通过宿主性状、栖息地偏好、饮食以及宿主和微生物共同多样化的进化而产生。了解系统共生的驱动因素对于模拟疾病与微生物组之间的相互作用以及操纵多宿主系统中的微生物组至关重要。本研究量化了阿巴拉契亚蝾螈皮肤在真菌病原体Batrachochytrium dendrobatidis(Bd)感染背景下的系统共生关系,同时考虑了环境微生物组暴露。我们采集了 10 个蝾螈物种的样本,这些物种的物种间差异大于 150 兆年,评估了它们的 Bd 感染状况,并分析了它们的皮肤和环境微生物组。我们的结果揭示了系统共生的重要信号,而当地环境微生物库、气候、地理和Bd感染负荷的影响较小。宿主与微生物的同种化并不明显,这表明其影响源于影响微生物组组合的宿主特征的进化。Bd感染与宿主系统发育和Bd抑制细菌菌株的丰度相关,表明大鲵宿主及其皮肤微生物组之间的长期进化动态影响了病原体的现今分布,以及与栖息地相关的暴露风险。五种Bd抑制细菌菌株表现出不同寻常的通性:出现在大多数宿主物种和栖息地上。这些通性菌株可能会提高益生菌在宿主身上定殖和持续存在的可能性。我们的研究结果强调了宿主-微生物组生态进化动态对环境健康和疾病结果的重大影响。
{"title":"Phylosymbiosis shapes skin bacterial communities and pathogen-protective function in Appalachian salamanders.","authors":"Owen G Osborne, Randall R Jiménez, Allison Q Byrne, Brian Gratwicke, Amy Ellison, Carly R Muletz-Wolz","doi":"10.1093/ismejo/wrae104","DOIUrl":"10.1093/ismejo/wrae104","url":null,"abstract":"<p><p>Phylosymbiosis is an association between host-associated microbiome composition and host phylogeny. This pattern can arise via the evolution of host traits, habitat preferences, diets, and the co-diversification of hosts and microbes. Understanding the drivers of phylosymbiosis is vital for modelling disease-microbiome interactions and manipulating microbiomes in multi-host systems. This study quantifies phylosymbiosis in Appalachian salamander skin in the context of infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd), while accounting for environmental microbiome exposure. We sampled ten salamander species representing >150M years of divergence, assessed their Bd infection status, and analysed their skin and environmental microbiomes. Our results reveal a significant signal of phylosymbiosis, whereas the local environmental pool of microbes, climate, geography, and Bd infection load had a smaller impact. Host-microbe co-speciation was not evident, indicating that the effect stems from the evolution of host traits influencing microbiome assembly. Bd infection is correlated with host phylogeny and the abundance of Bd-inhibitory bacterial strains, suggesting that the long-term evolutionary dynamics between salamander hosts and their skin microbiomes affect the present-day distribution of the pathogen, along with habitat-linked exposure risk. Five Bd-inhibitory bacterial strains showed unusual generalism: occurring in most host species and habitats. These generalist strains may enhance the likelihood of probiotic manipulations colonising and persisting on hosts. Our results underscore the substantial influence of host-microbiome eco-evolutionary dynamics on environmental health and disease outcomes.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195472/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Root-associated Streptomyces produce galbonolides to modulate plant immunity and promote rhizosphere colonization. 与根相关的链霉菌会产生半苯甲酮类化合物,以调节植物免疫力并促进根瘤菌群的定植。
IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-01-08 DOI: 10.1093/ismejo/wrae112
Clément Nicolle, Damien Gayrard, Alba Noël, Marion Hortala, Aurélien Amiel, Sabine Grat, Aurélie Le Ru, Guillaume Marti, Jean-Luc Pernodet, Sylvie Lautru, Bernard Dumas, Thomas Rey

The rhizosphere, which serves as the primary interface between plant roots and the soil, constitutes an ecological niche for a huge diversity of microbial communities. Currently, there is little knowledge on the nature and the function of the different metabolites released by rhizospheric microbes to facilitate colonization of this highly competitive environment. Here, we demonstrate how the production of galbonolides, a group of polyene macrolides that inhibit plant and fungal inositol phosphorylceramide synthase (IPCS), empowers the rhizospheric Streptomyces strain AgN23, to thrive in the rhizosphere by triggering the plant's defence mechanisms. Metabolomic analysis of AgN23-inoculated Arabidopsis roots revealed a strong induction in the production of an indole alkaloid, camalexin, which is a major phytoalexin in Arabidopsis. By using a plant mutant compromised in camalexin synthesis, we show that camalexin production is necessary for the successful colonization of the rhizosphere by AgN23. Conversely, hindering galbonolides biosynthesis in AgN23 knock-out mutant resulted in loss of inhibition of IPCS, a deficiency in plant defence activation, notably the production of camalexin, and a strongly reduced development of the mutant bacteria in the rhizosphere. Together, our results identified galbonolides as important metabolites mediating rhizosphere colonization by Streptomyces.

根瘤菌层是植物根系与土壤之间的主要界面,构成了微生物群落巨大多样性的生态位。目前,人们对根瘤微生物释放的不同代谢物的性质和功能知之甚少,而这些代谢物可促进根瘤微生物在这一竞争激烈的环境中定植。在这里,我们展示了抑制植物和真菌肌醇磷酸甘油酰胺合成酶(IPCS)的多烯大环内酯类化合物 galbonolides 的产生是如何通过触发植物的防御机制使根瘤链霉菌菌株 AgN23 在根瘤层中茁壮成长的。对接种了 AgN23 的拟南芥根部进行的代谢组分析表明,拟南芥的一种主要植物毒素--吲哚生物碱骆驼蓬苷的产生受到了强烈诱导。通过使用一种在山茶甙合成方面受到损害的植物突变体,我们发现山茶甙的产生是 AgN23 成功定殖根瘤的必要条件。相反,阻碍 AgN23 基因敲除突变体中半苯甲酮类化合物的生物合成会导致对 IPCS 的抑制作用丧失,植物防御激活不足,尤其是山奈酚素的产生,突变体细菌在根瘤菌层中的发展也会大大降低。总之,我们的研究结果确定了半苯甲酮类化合物是链霉菌根瘤定殖的重要代谢产物。
{"title":"Root-associated Streptomyces produce galbonolides to modulate plant immunity and promote rhizosphere colonization.","authors":"Clément Nicolle, Damien Gayrard, Alba Noël, Marion Hortala, Aurélien Amiel, Sabine Grat, Aurélie Le Ru, Guillaume Marti, Jean-Luc Pernodet, Sylvie Lautru, Bernard Dumas, Thomas Rey","doi":"10.1093/ismejo/wrae112","DOIUrl":"10.1093/ismejo/wrae112","url":null,"abstract":"<p><p>The rhizosphere, which serves as the primary interface between plant roots and the soil, constitutes an ecological niche for a huge diversity of microbial communities. Currently, there is little knowledge on the nature and the function of the different metabolites released by rhizospheric microbes to facilitate colonization of this highly competitive environment. Here, we demonstrate how the production of galbonolides, a group of polyene macrolides that inhibit plant and fungal inositol phosphorylceramide synthase (IPCS), empowers the rhizospheric Streptomyces strain AgN23, to thrive in the rhizosphere by triggering the plant's defence mechanisms. Metabolomic analysis of AgN23-inoculated Arabidopsis roots revealed a strong induction in the production of an indole alkaloid, camalexin, which is a major phytoalexin in Arabidopsis. By using a plant mutant compromised in camalexin synthesis, we show that camalexin production is necessary for the successful colonization of the rhizosphere by AgN23. Conversely, hindering galbonolides biosynthesis in AgN23 knock-out mutant resulted in loss of inhibition of IPCS, a deficiency in plant defence activation, notably the production of camalexin, and a strongly reduced development of the mutant bacteria in the rhizosphere. Together, our results identified galbonolides as important metabolites mediating rhizosphere colonization by Streptomyces.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463028/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbially mediated sulfur oxidation coupled with arsenate reduction within oligotrophic mining-impacted habitats. 在受采矿影响的寡营养生境中,微生物介导的硫氧化作用与砷酸盐还原作用相结合。
IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-01-08 DOI: 10.1093/ismejo/wrae110
Xiaoxu Sun, Qizhi Chen, Max M Häggblom, Guoqiang Liu, Tianle Kong, Duanyi Huang, Zhenyu Chen, Fangbai Li, Baoqin Li, Weimin Sun

Arsenate [As(V)] reduction is a major cause of arsenic (As) release from soils, which threatens more than 200 million people worldwide. While heterotrophic As(V) reduction has been investigated extensively, the mechanism of chemolithotrophic As(V) reduction is less studied. Since As is frequently found as a sulfidic mineral in the environment, microbial mediated sulfur oxidation coupled to As(V) reduction (SOAsR), a chemolithotrophic process, may be more favorable in sites impacted by oligotrophic mining (e.g. As-contaminated mine tailings). While SOAsR is thermodynamically favorable, knowledge regarding this biogeochemical process is still limited. The current study suggested that SOAsR was a more prevalent process than heterotrophic As(V) reduction in oligotrophic sites, such as mine tailings. The water-soluble reduced sulfur concentration was predicted to be one of the major geochemical parameters that had a substantial impact on SOAsR potentials. A combination of DNA stable isotope probing and metagenome binning revealed members of the genera Sulfuricella, Ramlibacter, and Sulfuritalea as sulfur oxidizing As(V)-reducing bacteria (SOAsRB) in mine tailings. Genome mining further expanded the list of potential SOAsRB to diverse phylogenetic lineages such as members associated with Burkholderiaceae and Rhodocyclaceae. Metagenome analysis using multiple tailing samples across southern China confirmed that the putative SOAsRB were the dominant As(V) reducers in these sites. Together, the current findings expand our knowledge regarding the chemolithotrophic As(V) reduction process, which may be harnessed to facilitate future remediation practices in mine tailings.

砷酸盐还原是土壤中砷释放的主要原因,威胁着全球 2 亿多人的健康。虽然对异养型 As(V)还原进行了广泛的研究,但对化石养型 As(V)还原的机理研究较少。由于 As 在环境中经常以硫化物矿物的形式存在,因此微生物介导的硫氧化与 As(V)还原(SOAsR)这一化石营养过程在低营养采矿影响区(如受 As 污染的矿山尾矿)可能更有利。虽然 SOAsR 在热力学上是有利的,但有关这一生物地球化学过程的知识仍然有限。目前的研究表明,与矿山尾矿等低营养地点的异养还原 As(V)过程相比,SOAsR 是一个更为普遍的过程。据预测,水溶性还原硫浓度是对 SOAsR 潜力产生重大影响的主要地球化学参数之一。结合 DNA-SIP 和元基因组分选,发现硫杆菌属、拉姆利杆菌属和 Sulfuritalea 属的成员是矿山尾矿中的硫氧化 As(V)- 还原细菌(SOAsRB)。基因组挖掘进一步扩大了潜在的硫氧化砷还原菌名单,使之包括不同的系统发生系,如与 Burkholderiaceae 和 Rhodocyclaceae 相关的成员。利用中国南方多个尾矿样本进行的元基因组分析证实,推定的 SOAsRB 是这些地点的主要砷(V)还原剂。总之,目前的研究结果拓展了我们对化学溶岩营养性砷(V)还原过程的认识,可用于促进未来矿山尾矿的修复实践。
{"title":"Microbially mediated sulfur oxidation coupled with arsenate reduction within oligotrophic mining-impacted habitats.","authors":"Xiaoxu Sun, Qizhi Chen, Max M Häggblom, Guoqiang Liu, Tianle Kong, Duanyi Huang, Zhenyu Chen, Fangbai Li, Baoqin Li, Weimin Sun","doi":"10.1093/ismejo/wrae110","DOIUrl":"10.1093/ismejo/wrae110","url":null,"abstract":"<p><p>Arsenate [As(V)] reduction is a major cause of arsenic (As) release from soils, which threatens more than 200 million people worldwide. While heterotrophic As(V) reduction has been investigated extensively, the mechanism of chemolithotrophic As(V) reduction is less studied. Since As is frequently found as a sulfidic mineral in the environment, microbial mediated sulfur oxidation coupled to As(V) reduction (SOAsR), a chemolithotrophic process, may be more favorable in sites impacted by oligotrophic mining (e.g. As-contaminated mine tailings). While SOAsR is thermodynamically favorable, knowledge regarding this biogeochemical process is still limited. The current study suggested that SOAsR was a more prevalent process than heterotrophic As(V) reduction in oligotrophic sites, such as mine tailings. The water-soluble reduced sulfur concentration was predicted to be one of the major geochemical parameters that had a substantial impact on SOAsR potentials. A combination of DNA stable isotope probing and metagenome binning revealed members of the genera Sulfuricella, Ramlibacter, and Sulfuritalea as sulfur oxidizing As(V)-reducing bacteria (SOAsRB) in mine tailings. Genome mining further expanded the list of potential SOAsRB to diverse phylogenetic lineages such as members associated with Burkholderiaceae and Rhodocyclaceae. Metagenome analysis using multiple tailing samples across southern China confirmed that the putative SOAsRB were the dominant As(V) reducers in these sites. Together, the current findings expand our knowledge regarding the chemolithotrophic As(V) reduction process, which may be harnessed to facilitate future remediation practices in mine tailings.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283718/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141433267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Agricultural intensification reduces selection of putative plant growth-promoting rhizobacteria in wheat. 农业集约化减少了小麦中假定的植物生长促进根瘤菌的选择。
IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-01-08 DOI: 10.1093/ismejo/wrae131
Tessa E Reid, Vanessa N Kavamura, Adriana Torres-Ballesteros, Monique E Smith, Maïder Abadie, Mark Pawlett, Ian M Clark, Jim A Harris, Tim H Mauchline

The complex evolutionary history of wheat has shaped its associated root microbial community. However, consideration of impacts from agricultural intensification has been limited. This study investigated how endogenous (genome polyploidization) and exogenous (introduction of chemical fertilizers) factors have shaped beneficial rhizobacterial selection. We combined culture-independent and -dependent methods to analyze rhizobacterial community composition and its associated functions at the root-soil interface from a range of ancestral and modern wheat genotypes, grown with and without the addition of chemical fertilizer. In controlled pot experiments, fertilization and soil compartment (rhizosphere, rhizoplane) were the dominant factors shaping rhizobacterial community composition, whereas the expansion of the wheat genome from diploid to allopolyploid caused the next greatest variation. Rhizoplane-derived culturable bacterial collections tested for plant growth-promoting (PGP) traits revealed that fertilization reduced the abundance of putative plant growth-promoting rhizobacteria in allopolyploid wheats but not in wild wheat progenitors. Taxonomic classification of these isolates showed that these differences were largely driven by reduced selection of beneficial root bacteria representative of the Bacteroidota phylum in allopolyploid wheats. Furthermore, the complexity of supported beneficial bacterial populations in hexaploid wheats was greatly reduced in comparison to diploid wild wheats. We therefore propose that the selection of root-associated bacterial genera with PGP functions may be impaired by crop domestication in a fertilizer-dependent manner, a potentially crucial finding to direct future plant breeding programs to improve crop production systems in a changing environment.

小麦复杂的进化史塑造了与其相关的根微生物群落。然而,对农业集约化影响的研究却很有限。本研究调查了内源(基因组多倍体化)和外源(化肥的引入)因素如何塑造了有益根瘤菌的选择。我们结合了独立于培养和独立于培养的方法,分析了一系列祖先和现代小麦基因型在施用或未施用化肥的情况下根瘤菌群落的组成及其在根-土界面的相关功能。在对照盆栽实验中,施肥和土壤区系(根瘤层、根瘤平面)是影响根瘤菌群落组成的主要因素,而小麦基因组从二倍体扩展到全多倍体则是造成次大变异的主要因素。根据促进植物生长(PGP)特性对根瘤菌培养物进行的测试表明,施肥降低了异源多倍体小麦中假定的促进植物生长根瘤菌(PGPR)的数量,而野生小麦祖先中却没有。对这些分离物的分类显示,这些差异主要是由于在全多倍体小麦中代表类杆菌门的有益根部细菌的选择减少所致。此外,与二倍体野生小麦相比,六倍体小麦中受支持的有益细菌种群的复杂性大大降低。因此,我们认为,作物驯化可能会以肥料依赖的方式损害具有PGP功能的根相关细菌属的选择,这一潜在的重要发现将指导未来的植物育种计划,以在不断变化的环境中改进作物生产系统。
{"title":"Agricultural intensification reduces selection of putative plant growth-promoting rhizobacteria in wheat.","authors":"Tessa E Reid, Vanessa N Kavamura, Adriana Torres-Ballesteros, Monique E Smith, Maïder Abadie, Mark Pawlett, Ian M Clark, Jim A Harris, Tim H Mauchline","doi":"10.1093/ismejo/wrae131","DOIUrl":"10.1093/ismejo/wrae131","url":null,"abstract":"<p><p>The complex evolutionary history of wheat has shaped its associated root microbial community. However, consideration of impacts from agricultural intensification has been limited. This study investigated how endogenous (genome polyploidization) and exogenous (introduction of chemical fertilizers) factors have shaped beneficial rhizobacterial selection. We combined culture-independent and -dependent methods to analyze rhizobacterial community composition and its associated functions at the root-soil interface from a range of ancestral and modern wheat genotypes, grown with and without the addition of chemical fertilizer. In controlled pot experiments, fertilization and soil compartment (rhizosphere, rhizoplane) were the dominant factors shaping rhizobacterial community composition, whereas the expansion of the wheat genome from diploid to allopolyploid caused the next greatest variation. Rhizoplane-derived culturable bacterial collections tested for plant growth-promoting (PGP) traits revealed that fertilization reduced the abundance of putative plant growth-promoting rhizobacteria in allopolyploid wheats but not in wild wheat progenitors. Taxonomic classification of these isolates showed that these differences were largely driven by reduced selection of beneficial root bacteria representative of the Bacteroidota phylum in allopolyploid wheats. Furthermore, the complexity of supported beneficial bacterial populations in hexaploid wheats was greatly reduced in comparison to diploid wild wheats. We therefore propose that the selection of root-associated bacterial genera with PGP functions may be impaired by crop domestication in a fertilizer-dependent manner, a potentially crucial finding to direct future plant breeding programs to improve crop production systems in a changing environment.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292143/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Hypervirulent Klebsiella pneumoniae employs genomic island encoded toxins against bacterial competitors in the gut. 更正:超病毒性肺炎克雷伯氏菌利用基因组岛编码的毒素对付肠道中的细菌竞争者。
IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-01-08 DOI: 10.1093/ismejo/wrae143
{"title":"Correction to: Hypervirulent Klebsiella pneumoniae employs genomic island encoded toxins against bacterial competitors in the gut.","authors":"","doi":"10.1093/ismejo/wrae143","DOIUrl":"10.1093/ismejo/wrae143","url":null,"abstract":"","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":"18 1","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320593/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141972254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temperature modulates dominance of a superinfecting Arctic virus in its unicellular algal host. 温度调节北极超级感染病毒在其单细胞藻类宿主中的优势。
IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-01-08 DOI: 10.1093/ismejo/wrae161
Claudia Meyer, Victoria L N Jackson, Keith Harrison, Ioanna Fouskari, Henk Bolhuis, Yael A Artzy-Randrup, Jef Huisman, Adam Monier, Corina P D Brussaard

Complex virus-virus interactions can arise when multiple viruses coinfect the same host, impacting infection outcomes with broader ecological and evolutionary significance for viruses and host. Yet, our knowledge regarding virus competition is still limited, especially for single-celled eukaryotic host-virus systems. Here, we report on mutual interference of two dsDNA viruses, MpoV-45T and MpoV-46T, competing for their Arctic algal host Micromonas polaris. Both viruses affected each other's gene expression and displayed reduced genome replication during coinfection. MpoV-45T was the dominant virus, likely due to interference in the DNA replication of is competitor. Even when its coinfection was delayed, the dominant virus still prevailed while genome production of the other virus was strongly suppressed. This contrasts with typical superinfection exclusion, where the primary infection prevents secondary infection by other viruses. Higher temperature made the suppressed virus a stronger competitor, signifying that global warming is likely to alter virus-virus interactions in Arctic waters.

当多种病毒共同感染同一宿主时,会产生复杂的病毒-病毒相互作用,影响感染结果,对病毒和宿主具有更广泛的生态和进化意义。然而,我们对病毒竞争的了解仍然有限,尤其是对单细胞真核生物宿主-病毒系统而言。在这里,我们报告了两种 dsDNA 病毒 MpoV-45 T 和 MpoV-46 T 在竞争北极藻类宿主 Micromonas polaris 时的相互干扰。在共感染过程中,两种病毒都会影响对方的基因表达并减少基因组复制。MpoV-45 T 是优势病毒,这可能是由于干扰了竞争对手的 DNA 复制。即使延迟共感染,优势病毒仍占优势,而另一种病毒的基因组生产则受到强烈抑制。这与典型的超感染排斥形成鲜明对比,在超感染排斥中,主要感染会阻止其他病毒的二次感染。温度升高使被抑制的病毒成为更强的竞争者,这表明全球变暖可能会改变北极水域病毒与病毒之间的相互作用。
{"title":"Temperature modulates dominance of a superinfecting Arctic virus in its unicellular algal host.","authors":"Claudia Meyer, Victoria L N Jackson, Keith Harrison, Ioanna Fouskari, Henk Bolhuis, Yael A Artzy-Randrup, Jef Huisman, Adam Monier, Corina P D Brussaard","doi":"10.1093/ismejo/wrae161","DOIUrl":"10.1093/ismejo/wrae161","url":null,"abstract":"<p><p>Complex virus-virus interactions can arise when multiple viruses coinfect the same host, impacting infection outcomes with broader ecological and evolutionary significance for viruses and host. Yet, our knowledge regarding virus competition is still limited, especially for single-celled eukaryotic host-virus systems. Here, we report on mutual interference of two dsDNA viruses, MpoV-45T and MpoV-46T, competing for their Arctic algal host Micromonas polaris. Both viruses affected each other's gene expression and displayed reduced genome replication during coinfection. MpoV-45T was the dominant virus, likely due to interference in the DNA replication of is competitor. Even when its coinfection was delayed, the dominant virus still prevailed while genome production of the other virus was strongly suppressed. This contrasts with typical superinfection exclusion, where the primary infection prevents secondary infection by other viruses. Higher temperature made the suppressed virus a stronger competitor, signifying that global warming is likely to alter virus-virus interactions in Arctic waters.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370638/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coordinated transcriptional response to environmental stress by a Synechococcus virus. Synechococcus 病毒对环境压力的协调转录反应。
IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY Pub Date : 2024-01-08 DOI: 10.1093/ismejo/wrae032
Branko Rihtman, Alberto Torcello-Requena, Alevtina Mikhaylina, Richard J Puxty, Martha R J Clokie, Andrew D Millard, David J Scanlan

Viruses are a major control on populations of microbes. Often, their virulence is examined in controlled laboratory conditions. Yet, in nature, environmental conditions lead to changes in host physiology and fitness that may impart both costs and benefits on viral success. Phosphorus (P) is a major abiotic control on the marine cyanobacterium Synechococcus. Some viruses infecting Synechococcus have acquired, from their host, a gene encoding a P substrate binding protein (PstS), thought to improve virus replication under phosphate starvation. Yet, pstS is uncommon among cyanobacterial viruses. Thus, we asked how infections with viruses lacking PstS are affected by P scarcity. We show that the production of infectious virus particles of such viruses is reduced in low P conditions. However, this reduction in progeny is not caused by impaired phage genome replication, thought to be a major sink for cellular phosphate. Instead, transcriptomic analysis showed that under low P conditions, a PstS-lacking cyanophage increased the expression of a specific gene set that included mazG, hli2, and gp43 encoding a pyrophosphatase, a high-light inducible protein and DNA polymerase, respectively. Moreover, several of the upregulated genes were controlled by the host's phoBR two-component system. We hypothesize that recycling and polymerization of nucleotides liberates free phosphate and thus allows viral morphogenesis, albeit at lower rates than when phosphate is replete or when phages encode pstS. Altogether, our data show how phage genomes, lacking obvious P-stress-related genes, have evolved to exploit their host's environmental sensing mechanisms to coordinate their own gene expression in response to resource limitation.

病毒是控制微生物种群的主要因素。通常,病毒的毒力是在受控的实验室条件下进行检测的。然而,在自然界中,环境条件会导致宿主的生理机能和适应能力发生变化,这可能会给病毒的成功带来成本和收益。磷(P)是海洋蓝藻 Synechococcus 的主要非生物控制因子。一些感染Synechococcus的病毒从宿主那里获得了一种编码磷底物结合蛋白(PstS)的基因,这种基因被认为能在磷酸盐饥饿的情况下改善病毒复制。然而,PstS 在蓝藻病毒中并不常见。因此,我们想知道缺乏 PstS 的病毒感染如何受到磷缺乏的影响。我们的研究表明,在低 P 条件下,这类病毒的感染性病毒粒子产量会减少。然而,这种后代的减少并不是由于噬菌体基因组复制受损造成的,而噬菌体基因组复制被认为是细胞磷酸盐的主要来源。相反,转录组分析表明,在低 P 条件下,缺乏 PstS 的蓝藻噬菌体会增加一组特定基因的表达,其中包括 mazG、hli2 和 gp43,它们分别编码焦磷酸酶、高光诱导蛋白和 DNA 聚合酶。此外,一些上调基因受宿主 phoBR 双组分系统控制。我们推测,核苷酸的循环和聚合释放了游离磷酸盐,从而使病毒形态发生得以实现,尽管其速率低于磷酸盐充足时或噬菌体编码 pstS 时的速率。总之,我们的数据显示了噬菌体基因组在缺乏明显的 P-压力相关基因的情况下,是如何进化到利用宿主的环境感应机制来协调自身基因表达以应对资源限制的。
{"title":"Coordinated transcriptional response to environmental stress by a Synechococcus virus.","authors":"Branko Rihtman, Alberto Torcello-Requena, Alevtina Mikhaylina, Richard J Puxty, Martha R J Clokie, Andrew D Millard, David J Scanlan","doi":"10.1093/ismejo/wrae032","DOIUrl":"10.1093/ismejo/wrae032","url":null,"abstract":"<p><p>Viruses are a major control on populations of microbes. Often, their virulence is examined in controlled laboratory conditions. Yet, in nature, environmental conditions lead to changes in host physiology and fitness that may impart both costs and benefits on viral success. Phosphorus (P) is a major abiotic control on the marine cyanobacterium Synechococcus. Some viruses infecting Synechococcus have acquired, from their host, a gene encoding a P substrate binding protein (PstS), thought to improve virus replication under phosphate starvation. Yet, pstS is uncommon among cyanobacterial viruses. Thus, we asked how infections with viruses lacking PstS are affected by P scarcity. We show that the production of infectious virus particles of such viruses is reduced in low P conditions. However, this reduction in progeny is not caused by impaired phage genome replication, thought to be a major sink for cellular phosphate. Instead, transcriptomic analysis showed that under low P conditions, a PstS-lacking cyanophage increased the expression of a specific gene set that included mazG, hli2, and gp43 encoding a pyrophosphatase, a high-light inducible protein and DNA polymerase, respectively. Moreover, several of the upregulated genes were controlled by the host's phoBR two-component system. We hypothesize that recycling and polymerization of nucleotides liberates free phosphate and thus allows viral morphogenesis, albeit at lower rates than when phosphate is replete or when phages encode pstS. Altogether, our data show how phage genomes, lacking obvious P-stress-related genes, have evolved to exploit their host's environmental sensing mechanisms to coordinate their own gene expression in response to resource limitation.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976474/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ISME Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1