This study aims to develop low-cost, eco-friendly, and circular economy-compliant composite materials by creating three types of magnetorheological suspensions (MRSs) utilizing lard, carbonyl iron (CI) microparticles, and varying quantities of gelatin particles (GP). These MRSs serve as dielectric materials in cylindrical cells used to fabricate electric capacitors. The equivalent electrical capacitance (C) of these capacitors is measured under different magnetic flux densities (B≤160 mT) superimposed on a medium-frequency electric field (f = 1 kHz) over a period of 120 s. The results indicate that at high values of B, increasing the GP content to 20 vol.% decreases the capacitance C up to about one order of magnitude compared to MRS without GP. From the measured data, the average values of capacitance Cm are derived, enabling the calculation of relative dielectric permittivities (ϵr′) and the dynamic viscosities (η) of the MRSs. It is demonstrated that ϵr′ and η can be adjusted by modifying the MRS composition and fine-tuned through the magnetic flux density B. A theoretical model based on the theory of dipolar approximations is used to show that ϵr′, η, and the magnetodielectric effect can be coarsely adjusted through the composition of MRSs and finely adjusted through the values B of the magnetic flux density. The ability to fine-tune these properties highlights the versatility of these materials, making them suitable for applications in various industries, including electronics, automotive, and aerospace.
本研究旨在利用猪油、羰基铁(CI)微粒和不同数量的明胶颗粒(GP)制作三种磁流变悬浮液(MRS),从而开发出低成本、生态友好且符合循环经济要求的复合材料。这些磁流变悬浮液在用于制造电容器的圆柱形电池中用作介电材料。在中频电场(f = 1 kHz)上叠加不同磁通密度(B≤160 mT)并持续 120 秒的情况下,测量了这些电容器的等效电容(C)。结果表明,在 B 值较高时,与不含 GP 的 MRS 相比,GP 含量增加到 20 vol.% 会使电容 C 下降约一个数量级。从测量数据中可以得出电容 Cm 的平均值,从而计算出 MRS 的相对介电常数 (ϵr′) 和动态粘度 (η)。结果表明,ϵr′和η可以通过改变磁暴介质的组成进行调整,并通过磁通密度 B 进行微调。以偶极近似理论为基础的理论模型表明,ϵr′、η 和磁介电效应可通过 MRS 的组成进行粗调,并通过磁通密度 B 的值进行微调。对这些特性进行微调的能力凸显了这些材料的多功能性,使其适用于电子、汽车和航空航天等各行各业。
{"title":"Magnetodielectric and Rheological Effects in Magnetorheological Suspensions Based on Lard, Gelatin and Carbonyl Iron Microparticles","authors":"O. Bunoiu, I. Bica, E. Anitas, L. Chirigiu","doi":"10.3390/ma17163941","DOIUrl":"https://doi.org/10.3390/ma17163941","url":null,"abstract":"This study aims to develop low-cost, eco-friendly, and circular economy-compliant composite materials by creating three types of magnetorheological suspensions (MRSs) utilizing lard, carbonyl iron (CI) microparticles, and varying quantities of gelatin particles (GP). These MRSs serve as dielectric materials in cylindrical cells used to fabricate electric capacitors. The equivalent electrical capacitance (C) of these capacitors is measured under different magnetic flux densities (B≤160 mT) superimposed on a medium-frequency electric field (f = 1 kHz) over a period of 120 s. The results indicate that at high values of B, increasing the GP content to 20 vol.% decreases the capacitance C up to about one order of magnitude compared to MRS without GP. From the measured data, the average values of capacitance Cm are derived, enabling the calculation of relative dielectric permittivities (ϵr′) and the dynamic viscosities (η) of the MRSs. It is demonstrated that ϵr′ and η can be adjusted by modifying the MRS composition and fine-tuned through the magnetic flux density B. A theoretical model based on the theory of dipolar approximations is used to show that ϵr′, η, and the magnetodielectric effect can be coarsely adjusted through the composition of MRSs and finely adjusted through the values B of the magnetic flux density. The ability to fine-tune these properties highlights the versatility of these materials, making them suitable for applications in various industries, including electronics, automotive, and aerospace.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"73 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141926694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chun-Wen Chan, Chia-Yun Hsieh, Fang-Mei Chan, Pin-Jia Huang, Chao-Yao Yang
Transition metal dichalcogenide (TMD) monolayers exhibit unique valleytronics properties due to the dependency of the coupled valley and spin state at the hexagonal corner of the first Brillouin zone. Precisely controlling valley spin-polarization via manipulating the electron population enables its application in valley-based memory or quantum technologies. This study uncovered the uncompensated spins of the antiferromagnetic nickel oxide (NiO) serving as the ferromagnetic (FM) order to induce valley spin-polarization in molybdenum disulfide (MoS2) monolayers via the magnetic proximity effect (MPE). Spin-resolved photoluminescence spectroscopy (SR-PL) was employed to observe MoS2, where the spin-polarized trions appear to be responsible for the MPE, leading to a valley magnetism. Results indicate that local FM order from the uncompensated surface of NiO could successfully induce significant valley spin-polarization in MoS2 with the depolarization temperature approximately at 100 K, which is relatively high compared to the related literature. This study reveals new perspectives in that the precise control over the surface orientation of AFMs serves as a crystallographic switch to activate the MPE and the magnetic sustainability of the trion state is responsible for the observed valley spin-polarization with the increasing temperature, which promotes the potential of AFM materials in the field of exchange-coupled Van der Waals heterostructures.
{"title":"Valley Spin–Polarization of MoS2 Monolayer Induced by Ferromagnetic Order in an Antiferromagnet","authors":"Chun-Wen Chan, Chia-Yun Hsieh, Fang-Mei Chan, Pin-Jia Huang, Chao-Yao Yang","doi":"10.3390/ma17163933","DOIUrl":"https://doi.org/10.3390/ma17163933","url":null,"abstract":"Transition metal dichalcogenide (TMD) monolayers exhibit unique valleytronics properties due to the dependency of the coupled valley and spin state at the hexagonal corner of the first Brillouin zone. Precisely controlling valley spin-polarization via manipulating the electron population enables its application in valley-based memory or quantum technologies. This study uncovered the uncompensated spins of the antiferromagnetic nickel oxide (NiO) serving as the ferromagnetic (FM) order to induce valley spin-polarization in molybdenum disulfide (MoS2) monolayers via the magnetic proximity effect (MPE). Spin-resolved photoluminescence spectroscopy (SR-PL) was employed to observe MoS2, where the spin-polarized trions appear to be responsible for the MPE, leading to a valley magnetism. Results indicate that local FM order from the uncompensated surface of NiO could successfully induce significant valley spin-polarization in MoS2 with the depolarization temperature approximately at 100 K, which is relatively high compared to the related literature. This study reveals new perspectives in that the precise control over the surface orientation of AFMs serves as a crystallographic switch to activate the MPE and the magnetic sustainability of the trion state is responsible for the observed valley spin-polarization with the increasing temperature, which promotes the potential of AFM materials in the field of exchange-coupled Van der Waals heterostructures.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"6 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141925869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
During the process of chip formation, the chip is subjected to extrusion pressure, friction, heat, and a strong chemical reaction. The chip’s macro and micro morphology, to a certain extent, reflect the condition of the tool during the cutting procedure. Therefore, researching the macroscopic and microscopic morphology of the chip’s surface in response to different tool wear conditions is of great significance to reproducing the cutting condition and analyzing the tool wear mechanism. This paper focuses on the chips formed by milling the difficult-to-machine material 508III high-strength steel. Firstly, the 508III steel milling experiment is carried out at the actual machining site to collect chip data under different tool wear conditions. Next, the free surface morphology of chips and the bottom surface morphology of chips are analyzed. Further, the chip edges are investigated, and their causes are analyzed. Finally, heavy milling 508III steel chip curl morphology analysis is performed. The research results play important roles in revealing the mechanism of tool wear and the relationship between chip morphology and tool wear. This information can be used to provide theoretical and technical support for monitoring the tool wear status based on chip morphology.
{"title":"Analysis of Chip Morphology in Heavy Milling of 508III Steel Considering Different Tool Wear Conditions","authors":"Rui Guan, Yaonan Cheng, Jing Xue, Shilong Zhou, Xingwei Zhou, Wenjie Zhai","doi":"10.3390/ma17163948","DOIUrl":"https://doi.org/10.3390/ma17163948","url":null,"abstract":"During the process of chip formation, the chip is subjected to extrusion pressure, friction, heat, and a strong chemical reaction. The chip’s macro and micro morphology, to a certain extent, reflect the condition of the tool during the cutting procedure. Therefore, researching the macroscopic and microscopic morphology of the chip’s surface in response to different tool wear conditions is of great significance to reproducing the cutting condition and analyzing the tool wear mechanism. This paper focuses on the chips formed by milling the difficult-to-machine material 508III high-strength steel. Firstly, the 508III steel milling experiment is carried out at the actual machining site to collect chip data under different tool wear conditions. Next, the free surface morphology of chips and the bottom surface morphology of chips are analyzed. Further, the chip edges are investigated, and their causes are analyzed. Finally, heavy milling 508III steel chip curl morphology analysis is performed. The research results play important roles in revealing the mechanism of tool wear and the relationship between chip morphology and tool wear. This information can be used to provide theoretical and technical support for monitoring the tool wear status based on chip morphology.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"112 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141926458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alipujiang Jierula, Cong Wu, Zhixuan Fu, Hushitaer Niyazi, Haodong Li
Recycled concrete is a new and environmentally friendly material for future construction. When applying recycled concrete to cold and severe regions, it is necessary to consider the freeze–thaw resistance of recycled concrete. Using an indoor freeze–thaw cycle test system, the rapid freezing method was used to conduct rapid freeze–thaw tests on recycled concrete specimens under set freeze–thaw cycle conditions. Relevant parameters (such as compressive strength, quality loss rate, rebound value) were tested on recycled concrete specimens that completed the set number of freeze–thaw cycles. The influence of various factors (freeze–thaw cycle number, replacement rate of recycled aggregates) on the compressive strength, quality loss rate, and rebound value of recycled concrete was analyzed. The results indicate that with the increase of freeze–thaw cycles and recycled aggregate content, the workability, rebound value, and compressive strength of the specimens decrease, and the quality loss rate increases. The changes in workability of concrete are sharp, with a slump difference of 21 mm between concrete with 100% recycled coarse aggregate and concrete using natural coarse aggregate. The rebound value of the specimen shows a decreasing trend overall, but the rebound value varies for different measuring points on the same specimen. The attenuation of compressive strength is significant. When fully using recycled aggregates to prepare concrete, the compressive strength after 30 freeze–thaw cycles decreases by 49.42% compared to the compressive strength after 0 freeze–thaw cycles. The overall quality loss rate shows a decreasing trend, but the quality loss is not severe.
{"title":"Experimental Study of Recycled Concrete under Freeze–Thaw Conditions","authors":"Alipujiang Jierula, Cong Wu, Zhixuan Fu, Hushitaer Niyazi, Haodong Li","doi":"10.3390/ma17163934","DOIUrl":"https://doi.org/10.3390/ma17163934","url":null,"abstract":"Recycled concrete is a new and environmentally friendly material for future construction. When applying recycled concrete to cold and severe regions, it is necessary to consider the freeze–thaw resistance of recycled concrete. Using an indoor freeze–thaw cycle test system, the rapid freezing method was used to conduct rapid freeze–thaw tests on recycled concrete specimens under set freeze–thaw cycle conditions. Relevant parameters (such as compressive strength, quality loss rate, rebound value) were tested on recycled concrete specimens that completed the set number of freeze–thaw cycles. The influence of various factors (freeze–thaw cycle number, replacement rate of recycled aggregates) on the compressive strength, quality loss rate, and rebound value of recycled concrete was analyzed. The results indicate that with the increase of freeze–thaw cycles and recycled aggregate content, the workability, rebound value, and compressive strength of the specimens decrease, and the quality loss rate increases. The changes in workability of concrete are sharp, with a slump difference of 21 mm between concrete with 100% recycled coarse aggregate and concrete using natural coarse aggregate. The rebound value of the specimen shows a decreasing trend overall, but the rebound value varies for different measuring points on the same specimen. The attenuation of compressive strength is significant. When fully using recycled aggregates to prepare concrete, the compressive strength after 30 freeze–thaw cycles decreases by 49.42% compared to the compressive strength after 0 freeze–thaw cycles. The overall quality loss rate shows a decreasing trend, but the quality loss is not severe.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"23 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141925761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zehua Yan, Guozheng Zhang, Sheng Yang, Wei Zhang, H. Ning, Bo Xu
Magnesium alloys show great promise in high-speed transport, aerospace, and military technology; however, their widespread adoption encounters challenges attributed to limitations such as poor plasticity and strength. This study examines the high-temperature deformation of semi-solid forged AZ91D magnesium alloy through a combination of experiments and simulations, with a focus on comprehending the influence of deformation conditions on dynamic recrystallization (DRX). The findings disclose that conspicuous signs of DRX manifest in the yield stress curve as strain increases. Additionally, decreasing the strain rate and temperature correlates with a reduction in both yield stress and peak strain, and the activation energy is 156.814 kJ/mol, while the critical strain and peak strain remain relatively consistent (εc=0.66208εp). Microstructural changes during high-temperature deformation and the onset of DRX are thoroughly examined through experimental methods. Moreover, a critical strain model for DRX and a predictive model for the volume fraction of DRX were formulated. These equations and models, validated through a combination of experiments and simulations, serve as invaluable tools for predicting the mechanical behavior and microstructural evolution, which also establishes a foundation for accurately predicting the deformation behavior of this alloy. By analyzing the hot deformation characteristics and dynamic compression mechanism of the newly developed semi-solid forging AZ91D magnesium alloy, a numerical simulation model can be effectively established. This model objectively reflects the changes and distributions of stress, strain, and rheological velocity, providing a scientific basis for selecting subsequent plastic deformation process parameters and designing mold structures.
{"title":"Hot Deformation Characteristics and Dynamic Recrystallization Mechanisms of a Semi-Solid Forged AZ91D Magnesium Alloy","authors":"Zehua Yan, Guozheng Zhang, Sheng Yang, Wei Zhang, H. Ning, Bo Xu","doi":"10.3390/ma17163939","DOIUrl":"https://doi.org/10.3390/ma17163939","url":null,"abstract":"Magnesium alloys show great promise in high-speed transport, aerospace, and military technology; however, their widespread adoption encounters challenges attributed to limitations such as poor plasticity and strength. This study examines the high-temperature deformation of semi-solid forged AZ91D magnesium alloy through a combination of experiments and simulations, with a focus on comprehending the influence of deformation conditions on dynamic recrystallization (DRX). The findings disclose that conspicuous signs of DRX manifest in the yield stress curve as strain increases. Additionally, decreasing the strain rate and temperature correlates with a reduction in both yield stress and peak strain, and the activation energy is 156.814 kJ/mol, while the critical strain and peak strain remain relatively consistent (εc=0.66208εp). Microstructural changes during high-temperature deformation and the onset of DRX are thoroughly examined through experimental methods. Moreover, a critical strain model for DRX and a predictive model for the volume fraction of DRX were formulated. These equations and models, validated through a combination of experiments and simulations, serve as invaluable tools for predicting the mechanical behavior and microstructural evolution, which also establishes a foundation for accurately predicting the deformation behavior of this alloy. By analyzing the hot deformation characteristics and dynamic compression mechanism of the newly developed semi-solid forging AZ91D magnesium alloy, a numerical simulation model can be effectively established. This model objectively reflects the changes and distributions of stress, strain, and rheological velocity, providing a scientific basis for selecting subsequent plastic deformation process parameters and designing mold structures.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"54 23","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141927834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giny Judith Pot, Patricia Anna Van Overschelde, Filip Keulemans, C. Kleverlaan, J. P. Tribst
The introduction of 3D printing technology in dentistry has opened new treatment options. The ongoing development of different materials for these printing purposes has recently enabled the production of definitive indirect restorations via 3D printing. To identify relevant data, a systematic search was conducted in three databases, namely PubMed, Scopus, and Web of Science. Additionally, a manual search using individual search terms was performed. Only English, peer-reviewed articles that encompassed in vitro or in vivo research on the mechanical properties of 3D-printed composite materials were included, provided they met the predefined inclusion and exclusion criteria. After screening 1142 research articles, 14 primary studies were selected. The included studies mainly utilized digital light processing (DLP) technology, less commonly stereolithography (SLA), and once PolyJet printing technology. The material properties of various composite resins, such as VarseoSmile Crown Plus (VSC) and Crowntec (CT), were studied, including Vickers hardness, flexural strength, elastic modulus, compressive strength, tensile strength, fracture resistance, and wear. The studies aimed to compare the behavior of the tested additive composites to each other, conventional composites, and subtractive-manufactured materials. This scoping review examined the mechanical properties of composites used for 3D printing of definitive restorations. The aim was to provide a comprehensive overview of the current knowledge on this topic and identify any gaps for future research. The findings suggest that 3D-printed composites are not yet the first option for indirect restorations, due to their insufficient mechanical properties. Due to limited evidence, more research is needed in this area. Specifically, there is a need for clinical trials and long-term in vivo research.
牙科中引入三维打印技术开辟了新的治疗方案。随着用于这些打印目的的不同材料的不断发展,最近已能通过三维打印制作确定的间接修复体。为了确定相关数据,我们在三个数据库(即 PubMed、Scopus 和 Web of Science)中进行了系统搜索。此外,还使用个别检索词进行了人工检索。只要符合预定义的纳入和排除标准,只纳入对 3D 打印复合材料的力学性能进行体外或体内研究的同行评审过的英文文章。在对 1142 篇研究文章进行筛选后,选出了 14 项主要研究。纳入的研究主要采用数字光处理(DLP)技术,较少采用立体光刻(SLA)技术,也曾采用过 PolyJet 打印技术。研究了各种复合树脂(如 VarseoSmile Crown Plus (VSC) 和 Crowntec (CT))的材料特性,包括维氏硬度、抗弯强度、弹性模量、抗压强度、抗拉强度、抗断裂性和磨损性。这些研究旨在将测试的添加剂复合材料的行为与其他材料、传统复合材料和减法制造材料进行比较。本范围综述研究了用于三维打印确定性修复体的复合材料的机械性能。目的是全面概述当前有关该主题的知识,并找出未来研究的空白点。研究结果表明,由于三维打印复合材料的机械性能不足,目前还不能作为间接修复体的首选。由于证据有限,该领域还需要更多的研究。具体来说,需要进行临床试验和长期的体内研究。
{"title":"Mechanical Properties of Additive-Manufactured Composite-Based Resins for Permanent Indirect Restorations: A Scoping Review","authors":"Giny Judith Pot, Patricia Anna Van Overschelde, Filip Keulemans, C. Kleverlaan, J. P. Tribst","doi":"10.3390/ma17163951","DOIUrl":"https://doi.org/10.3390/ma17163951","url":null,"abstract":"The introduction of 3D printing technology in dentistry has opened new treatment options. The ongoing development of different materials for these printing purposes has recently enabled the production of definitive indirect restorations via 3D printing. To identify relevant data, a systematic search was conducted in three databases, namely PubMed, Scopus, and Web of Science. Additionally, a manual search using individual search terms was performed. Only English, peer-reviewed articles that encompassed in vitro or in vivo research on the mechanical properties of 3D-printed composite materials were included, provided they met the predefined inclusion and exclusion criteria. After screening 1142 research articles, 14 primary studies were selected. The included studies mainly utilized digital light processing (DLP) technology, less commonly stereolithography (SLA), and once PolyJet printing technology. The material properties of various composite resins, such as VarseoSmile Crown Plus (VSC) and Crowntec (CT), were studied, including Vickers hardness, flexural strength, elastic modulus, compressive strength, tensile strength, fracture resistance, and wear. The studies aimed to compare the behavior of the tested additive composites to each other, conventional composites, and subtractive-manufactured materials. This scoping review examined the mechanical properties of composites used for 3D printing of definitive restorations. The aim was to provide a comprehensive overview of the current knowledge on this topic and identify any gaps for future research. The findings suggest that 3D-printed composites are not yet the first option for indirect restorations, due to their insufficient mechanical properties. Due to limited evidence, more research is needed in this area. Specifically, there is a need for clinical trials and long-term in vivo research.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"16 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141927701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cupronickel-based alloys are widely known for their excellent resistance against aqueous corrosion, however, they can be susceptible to corrosion at accelerated rates and premature failure when exposed to a polluted or brackish seawater medium, even for short-term exposure durations. This unfamiliar corrosion behavior may be a result of the formation of an unprotected corrosion film during the early exposure durations. The paper investigates the corrosion phenomenon in cupronickel 90/10 alloy, by exposing the coupons in two different seawater compositions in the Arabian Sea region. Corrosion losses were investigated on the experimental coupons in a submerged position, for a maximum exposure duration of 150 days, using the conventional weight loss method and a new dimensional metrology-based measurement technique. Additionally, in this research the tubes of a marine heat exchanger having similar material that failed prematurely during operation in the Arabian Sea were also investigated for corrosion losses, followed by the characterization of the corrosion deposits using following analytical techniques: SEM, EDS, XRD and Raman Scattering. The experimental results showed significantly higher corrosion losses on coupons exposed to seawater site rich in pollutants and nutrients including dissolved inorganic nitrogenous compounds, compared to those subjected to a natural seawater solution in corrosion tanks maintained in a controlled environment.
{"title":"Performance of a Ship-Based Cupronickel Alloy in Exposure Conditions of Arabian Seawater—A Comparative Study","authors":"Syed Ali Sarfraz, M. Abbas, Nasir Mahmood Ahmad","doi":"10.3390/ma17163940","DOIUrl":"https://doi.org/10.3390/ma17163940","url":null,"abstract":"Cupronickel-based alloys are widely known for their excellent resistance against aqueous corrosion, however, they can be susceptible to corrosion at accelerated rates and premature failure when exposed to a polluted or brackish seawater medium, even for short-term exposure durations. This unfamiliar corrosion behavior may be a result of the formation of an unprotected corrosion film during the early exposure durations. The paper investigates the corrosion phenomenon in cupronickel 90/10 alloy, by exposing the coupons in two different seawater compositions in the Arabian Sea region. Corrosion losses were investigated on the experimental coupons in a submerged position, for a maximum exposure duration of 150 days, using the conventional weight loss method and a new dimensional metrology-based measurement technique. Additionally, in this research the tubes of a marine heat exchanger having similar material that failed prematurely during operation in the Arabian Sea were also investigated for corrosion losses, followed by the characterization of the corrosion deposits using following analytical techniques: SEM, EDS, XRD and Raman Scattering. The experimental results showed significantly higher corrosion losses on coupons exposed to seawater site rich in pollutants and nutrients including dissolved inorganic nitrogenous compounds, compared to those subjected to a natural seawater solution in corrosion tanks maintained in a controlled environment.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"12 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141927156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junjie He, Chenyang Tao, Yanan Zhang, Jiufu Sun, Xiangyu Zhang, S. Jiao, Dongbo Wang, Jinzhong Wang
Photodetectors have a wide range of applications across various fields. Self-powered photodetectors that do not require external energy have garnered significant attention. The photoelectrochemical type of photodetector is a self-powered device that is both simple to fabricate and offers high performance. However, developing photoelectrochemical photodetectors with superior quality and performance remains a significant challenge. The electrolyte, which is a key component in these detectors, must maintain extensive contact with the semiconductor without degrading its material quality and efficiently catalyze the redox reactions of photogenerated electrons and holes, while also facilitating rapid charge carrier transport. In this study, α-Ga2O3 nanorod arrays were synthesized via a cost-effective hydrothermal method to achieve a self-powered solar-blind photodetector. The impacts of different electrolytes—Na2SO4, NaOH, and Na2CO3—on the photodetector was investigated. Ultimately, a self-powered photodetector with Na2SO4 as the electrolyte demonstrated a stable photoresponse, with the maximum responsivity of 0.2 mA/W at 262 nm with the light intensity of 3.0 mW/cm2, and it exhibited rise and decay times of 0.16 s and 0.10 s, respectively. The α-Ga2O3 nanorod arrays and Na2SO4 electrolyte provided a rapid pathway for the transport of photogenerated carriers and the built-in electric field at the semiconductor–liquid heterojunction interface, which was largely responsible for the effective separation of photogenerated electron–hole pairs that provided the outstanding performance of our photodetector.
{"title":"The Influence of Electrolytes on the Performance of Self-Powered Photoelectrochemical Photodetector Based on α-Ga2O3 Nanorods","authors":"Junjie He, Chenyang Tao, Yanan Zhang, Jiufu Sun, Xiangyu Zhang, S. Jiao, Dongbo Wang, Jinzhong Wang","doi":"10.3390/ma17153665","DOIUrl":"https://doi.org/10.3390/ma17153665","url":null,"abstract":"Photodetectors have a wide range of applications across various fields. Self-powered photodetectors that do not require external energy have garnered significant attention. The photoelectrochemical type of photodetector is a self-powered device that is both simple to fabricate and offers high performance. However, developing photoelectrochemical photodetectors with superior quality and performance remains a significant challenge. The electrolyte, which is a key component in these detectors, must maintain extensive contact with the semiconductor without degrading its material quality and efficiently catalyze the redox reactions of photogenerated electrons and holes, while also facilitating rapid charge carrier transport. In this study, α-Ga2O3 nanorod arrays were synthesized via a cost-effective hydrothermal method to achieve a self-powered solar-blind photodetector. The impacts of different electrolytes—Na2SO4, NaOH, and Na2CO3—on the photodetector was investigated. Ultimately, a self-powered photodetector with Na2SO4 as the electrolyte demonstrated a stable photoresponse, with the maximum responsivity of 0.2 mA/W at 262 nm with the light intensity of 3.0 mW/cm2, and it exhibited rise and decay times of 0.16 s and 0.10 s, respectively. The α-Ga2O3 nanorod arrays and Na2SO4 electrolyte provided a rapid pathway for the transport of photogenerated carriers and the built-in electric field at the semiconductor–liquid heterojunction interface, which was largely responsible for the effective separation of photogenerated electron–hole pairs that provided the outstanding performance of our photodetector.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"46 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141805324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The In–Bi–Sn low-temperature solder alloys are regarded as potential candidates for cryogenic and space exploration applications. This study investigates the variations in the mechanical properties and microstructures of two different compositions: In15wt%Bi35wt%Sn and In30wt%Bi20wt%Sn, after exposure to a low-temperature environment (−20 °C) for 10 months. An increase in the ultimate tensile strength was observed across all the tested samples and a decrease in elongation to failure was observed in In30wt%Bi20wt%Sn. Changes in the microstructure were identified through scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The impact of this low-temperature environment is described, considering the varying proportions and compositions of the three phases (BiIn2(Sn), γ-InSn4(Bi), and β-In3Sn(Bi)) present within the alloys and their contribution to the mechanical properties.
{"title":"Phase Transformations and Mechanical Properties in In–Bi–Sn Alloys as a Result of Low-Temperature Storage","authors":"Jiye Zhou, X. Tan, S. McDonald, K. Nogita","doi":"10.3390/ma17153669","DOIUrl":"https://doi.org/10.3390/ma17153669","url":null,"abstract":"The In–Bi–Sn low-temperature solder alloys are regarded as potential candidates for cryogenic and space exploration applications. This study investigates the variations in the mechanical properties and microstructures of two different compositions: In15wt%Bi35wt%Sn and In30wt%Bi20wt%Sn, after exposure to a low-temperature environment (−20 °C) for 10 months. An increase in the ultimate tensile strength was observed across all the tested samples and a decrease in elongation to failure was observed in In30wt%Bi20wt%Sn. Changes in the microstructure were identified through scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The impact of this low-temperature environment is described, considering the varying proportions and compositions of the three phases (BiIn2(Sn), γ-InSn4(Bi), and β-In3Sn(Bi)) present within the alloys and their contribution to the mechanical properties.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"48 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141802646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simon Holzer, Stefania Konstantinidi, Markus Koenigsdorff, T. Martinez, Y. Civet, Gerald Gerlach, Yves Perriard
Dielectric elastomer actuators (DEAs) have gained significant attention due to their potential in soft robotics and adaptive structures. However, their performance is often limited by their in-plane strain distribution and limited mechanical stability. We introduce a novel design utilizing fiber reinforcement to address these challenges. The fiber reinforcement provides enhanced mechanical integrity and improved strain distribution, enabling efficient energy conversion and out-of-plane displacement. We discuss an analytical model and the fabrication process, including material selection, to realize fiber-reinforced DEAs. Numerical simulations and experimental results demonstrate the performance of the fiber-reinforced equibiaxial DEAs and characterize their displacement and force capabilities. Actuators with four and eight fibers are fabricated with 100 μm and 200 μm dielectric thicknesses. A maximal out-of-plane displacement of 500 μm is reached, with a force of 0.18 N, showing promise for the development of haptic devices.
介电弹性体致动器(DEA)因其在软机器人和自适应结构方面的潜力而备受关注。然而,它们的性能往往受限于面内应变分布和有限的机械稳定性。我们介绍了一种利用纤维加固来应对这些挑战的新型设计。纤维加固增强了机械完整性,改善了应变分布,实现了高效的能量转换和平面外位移。我们讨论了实现纤维增强 DEA 的分析模型和制造工艺,包括材料选择。数值模拟和实验结果证明了纤维增强型等轴 DEA 的性能,并描述了其位移和受力能力。我们制作了介质厚度分别为 100 μm 和 200 μm 的致动器,分别有四根和八根纤维。最大平面外位移达到 500 μm,力为 0.18 N,显示了开发触觉装置的前景。
{"title":"Fiber-Reinforced Equibiaxial Dielectric Elastomer Actuator for Out-of-Plane Displacement","authors":"Simon Holzer, Stefania Konstantinidi, Markus Koenigsdorff, T. Martinez, Y. Civet, Gerald Gerlach, Yves Perriard","doi":"10.3390/ma17153672","DOIUrl":"https://doi.org/10.3390/ma17153672","url":null,"abstract":"Dielectric elastomer actuators (DEAs) have gained significant attention due to their potential in soft robotics and adaptive structures. However, their performance is often limited by their in-plane strain distribution and limited mechanical stability. We introduce a novel design utilizing fiber reinforcement to address these challenges. The fiber reinforcement provides enhanced mechanical integrity and improved strain distribution, enabling efficient energy conversion and out-of-plane displacement. We discuss an analytical model and the fabrication process, including material selection, to realize fiber-reinforced DEAs. Numerical simulations and experimental results demonstrate the performance of the fiber-reinforced equibiaxial DEAs and characterize their displacement and force capabilities. Actuators with four and eight fibers are fabricated with 100 μm and 200 μm dielectric thicknesses. A maximal out-of-plane displacement of 500 μm is reached, with a force of 0.18 N, showing promise for the development of haptic devices.","PeriodicalId":503043,"journal":{"name":"Materials","volume":"18 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141802984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}